1
|
Acharya SK, Shai S, Choon YF, Gunardi I, Hartanto FK, Kadir K, Roychoudhury A, Amtha R, Vincent-Chong VK. Cancer Stem Cells in Oral Squamous Cell Carcinoma: A Narrative Review on Experimental Characteristics and Methodological Challenges. Biomedicines 2024; 12:2111. [PMID: 39335624 PMCID: PMC11429394 DOI: 10.3390/biomedicines12092111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer stem cells (CSCs) represent a subpopulation of cancer cells that are believed to initiate and drive cancer progression. In animal models, xenotransplanted CSCs have demonstrated the ability to produce tumors. Since their initial isolation in blood cancers, CSCs have been identified in various solid human cancers, including oral squamous cell carcinoma (OSCC). In addition to their tumorigenic properties, dysregulated stem-cell-related signaling pathways-Wnt family member (Wnt), neurogenic locus notch homolog protein (Notch), and hedgehog-have been shown to endow CSCs with characteristics like self-renewal, phenotypic plasticity, and chemoresistance, contributing to recurrence and treatment failure. Consequently, CSCs have become targets for new therapeutic agents, with some currently in different phases of clinical trials. Notably, small molecule inhibitors of the hedgehog signaling pathway, such as vismodegib and glasdegib, have been approved for the treatment of basal cell carcinoma and acute myeloid leukemia, respectively. Other strategies for eradicating CSCs include natural compounds, nano-drug delivery systems, targeting mitochondria and the CSC microenvironment, autophagy, hyperthermia, and immunotherapy. Despite the extensive documentation of CSCs in OSCC since its first demonstration in head and neck (HN) SCC in 2007, none of these novel pharmacological approaches have yet entered clinical trials for OSCC patients. This narrative review summarizes the in vivo and in vitro evidence of CSCs and CSC-related signaling pathways in OSCC, highlighting their role in promoting chemoresistance and immunotherapy resistance. Additionally, it addresses methodological challenges and discusses future research directions to improve experimental systems and advance CSC studies.
Collapse
Affiliation(s)
- Surendra Kumar Acharya
- Department of Oral Medicine, Radiology and Surgery, Faculty of Dentistry, Lincoln University College, Petaling Jaya 47301, Selangor, Malaysia
| | - Saptarsi Shai
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA;
| | - Yee Fan Choon
- Department of Oral and Maxillofacial Surgical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom 42610, Selangor, Malaysia;
| | - Indrayadi Gunardi
- Oral Medicine Department, Faculty of Dentistry, Universitas Trisakti, Jakarta 11440, Indonesia; (I.G.); (F.K.H.)
| | - Firstine Kelsi Hartanto
- Oral Medicine Department, Faculty of Dentistry, Universitas Trisakti, Jakarta 11440, Indonesia; (I.G.); (F.K.H.)
| | - Kathreena Kadir
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Ajoy Roychoudhury
- Department of Oral and Maxillofacial Surgery, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Rahmi Amtha
- Oral Medicine Department, Faculty of Dentistry, Universitas Trisakti, Jakarta 11440, Indonesia; (I.G.); (F.K.H.)
| | - Vui King Vincent-Chong
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
2
|
Liao M, Yao D, Wu L, Luo C, Wang Z, Zhang J, Liu B. Targeting the Warburg effect: A revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer. Acta Pharm Sin B 2024; 14:953-1008. [PMID: 38487001 PMCID: PMC10935242 DOI: 10.1016/j.apsb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer reprogramming is an important facilitator of cancer development and survival, with tumor cells exhibiting a preference for aerobic glycolysis beyond oxidative phosphorylation, even under sufficient oxygen supply condition. This metabolic alteration, known as the Warburg effect, serves as a significant indicator of malignant tumor transformation. The Warburg effect primarily impacts cancer occurrence by influencing the aerobic glycolysis pathway in cancer cells. Key enzymes involved in this process include glucose transporters (GLUTs), HKs, PFKs, LDHs, and PKM2. Moreover, the expression of transcriptional regulatory factors and proteins, such as FOXM1, p53, NF-κB, HIF1α, and c-Myc, can also influence cancer progression. Furthermore, lncRNAs, miRNAs, and circular RNAs play a vital role in directly regulating the Warburg effect. Additionally, gene mutations, tumor microenvironment remodeling, and immune system interactions are closely associated with the Warburg effect. Notably, the development of drugs targeting the Warburg effect has exhibited promising potential in tumor treatment. This comprehensive review presents novel directions and approaches for the early diagnosis and treatment of cancer patients by conducting in-depth research and summarizing the bright prospects of targeting the Warburg effect in cancer.
Collapse
Affiliation(s)
- Minru Liao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
| | - Lifeng Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chaodan Luo
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhiwen Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Wang Z, Chen F, Wang Y, Gou S. Blockade of chemo-resistance to 5-FU by a CK2-targeted combination via attenuating AhR-TLS-promoted genomic instability in human colon cancer cells. Toxicol Appl Pharmacol 2023; 475:116647. [PMID: 37543059 DOI: 10.1016/j.taap.2023.116647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
As highly expressed in several human cancers, Casein Kinase 2 (CK2) is involved in chemotherapy-induced resistance. As a new potent CK2 inhibitor, DN701 is used to overcome chemoresistance through its synergistic antitumor effect with 5-fluorouracil (5-FU). Translesion DNA synthesis (TLS) has drawn our attention because it is associated with the development of chemo-resistance and tumor recurrence. The in vitro biological properties of 5-FU-resistant colon cancer cells revealed that DN701 combined with 5-FU could overcome chemo-resistance via blocking CK2-mediated aryl hydrocarbon receptor (AhR) and TLS-induced DNA damage repair (DDR). Moreover, pharmacologic and genetic inhibitions of AhR potently reduced TLS-promoted genomic instability. The mechanistic studies showed that combined DN701 with 5-FU was investigated to inhibit CK2 expression level and AhR-TLS-REV1 pathway. Meanwhile, DN701 combined with 5-FU could reduce CK2-AhR-TLS genomic instability, thus leading to superior in vivo antitumor effect. The insights provide a rationale for combining DN701 with 5-FU as a therapeutic strategy for patients with colon cancer.
Collapse
Affiliation(s)
- Zhiwei Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Feihong Chen
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Yuanjiang Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| |
Collapse
|
4
|
Sun Q, Chen X, Luo H, Meng C, Zhu D. Cancer stem cells of head and neck squamous cell carcinoma; distance towards clinical application; a systematic review of literature. Am J Cancer Res 2023; 13:4315-4345. [PMID: 37818051 PMCID: PMC10560931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/16/2023] [Indexed: 10/12/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the major pathological type of head and neck cancer (HNC). The disease ranks sixth among the most common malignancies worldwide, with an increasing incidence rate yearly. Despite the development of therapy, the prognosis of HNSCC remains unsatisfactory, which may be attributed to the resistance to traditional radio-chemotherapy, relapse, and metastasis. To improve the diagnosis and treatment, the targeted therapy for HNSCC may be successful as that for some other tumors. Nanocarriers are the most effective system to deliver the anti-cancerous agent at the site of interest using passive or active targeting approaches. The system enhances the drug concentration in HCN target cells, increases retention, and reduces toxicity to normal cells. Among the different techniques in nanotechnology, quantum dots (QDs) possess multiple fluorescent colors emissions under single-source excitation and size-tunable light emission. Dendrimers are the most attractive nanocarriers, which possess the desired properties of drug retention, release, unaffecting by the immune system, blood circulation time enhancing, and cells or organs specific targeting properties. In this review, we have discussed the up-to-date knowledge of the Cancer Stem Cells of Head and Neck Squamous Cell Carcinoma. Although a lot of data is available, still much more efforts remain to be made to improve the treatment of HNSCC.
Collapse
Affiliation(s)
- Qingjia Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, The China-Japan Union Hospital of Jilin UniversityXiantai Street 126, Changchun 130033, Jilin, China
| | - Xi Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, The China-Japan Union Hospital of Jilin UniversityXiantai Street 126, Changchun 130033, Jilin, China
| | - Hong Luo
- Department of Hematology, The First Hospital of QiqiharQiqihar 161005, Heilongjiang, China
| | - Cuida Meng
- Department of Otorhinolaryngology, Head and Neck Surgery, The China-Japan Union Hospital of Jilin UniversityXiantai Street 126, Changchun 130033, Jilin, China
| | - Dongdong Zhu
- Department of Otorhinolaryngology, Head and Neck Surgery, The China-Japan Union Hospital of Jilin UniversityXiantai Street 126, Changchun 130033, Jilin, China
| |
Collapse
|
5
|
Abstract
Head and neck cancers are a heterogeneous group of highly aggressive tumors and collectively represent the sixth most common cancer worldwide. Most head and neck cancers are squamous cell carcinomas (HNSCCs). Current multimodal treatment concepts combine surgery, chemotherapy, irradiation, immunotherapy, and targeted therapeutics. Recent scientific advancements have enabled a more precise molecular characterization of HNSCC and revealed novel therapeutic targets and prognostic/predictive biomarkers. Notably, HNSCC is characterized by complex relations between stromal, epithelial, and immune cells within the tumor microenvironment (TME). The TME consists of different subsets of immune cells that infiltrate the tumors and interact with the tumor cells or with each other. Understanding multiple pivotal factors in HNSCC tumorigenesis and tumor progression may help define novel targets and develop more effective therapies for patients. This review provides a comprehensive overview of the latest advances in the molecular biology of HNSCC and their effects on clinical oncology; it is meant for a broad readership in the head and neck cancers field.
Collapse
Affiliation(s)
- Subramanya Pandruvada
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, United States.
| | - Remi Kessler
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Ann Thai
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
6
|
Eptaminitaki GC, Zaravinos A, Stellas D, Panagopoulou M, Karaliota S, Baltsavia I, Iliopoulos I, Chatzaki E, Iliopoulos D, Baritaki S. Genome-Wide Analysis of lncRNA-mRNA Co-Expression Networks in CD133+/CD44+ Stem-like PDAC Cells. Cancers (Basel) 2023; 15:cancers15041053. [PMID: 36831395 PMCID: PMC9954787 DOI: 10.3390/cancers15041053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the second most prevalent gastrointestinal malignancy and the most common type of pancreatic cancer is linked with poor prognosis and, eventually, with high mortality rates. Early detection is seldom, while tumor heterogeneity and microarchitectural alterations benefit PDAC resistance to conventional therapeutics. Although emerging evidence suggest the core role of cancer stem cells (CSCs) in PDAC aggressiveness, unique stem signatures are poorly available, thus limiting the efforts of anti-CSC-targeted therapy. Herein, we report the findings of the first genome-wide analyses of mRNA/lncRNA transcriptome profiling and co-expression networks in PDAC cell line-derived CD133+/CD44+ cells, which were shown to bear a CSC-like phenotype in vitro and in vivo. Compared to CD133-/CD44- cells, the CD133+/CD44+ population demonstrated significant expression differences in both transcript pools. Using emerging bioinformatic tools, we performed lncRNA target coding gene prediction analysis, which revealed significant Gene Ontology (GO), pathway, and network enrichments in many dyregulated lncRNA nearby (cis or trans) mRNAs, with reported involvement in the regulation of CSC phenotype and functions. In this context, the construction of lncRNA/mRNA networks by ingenuity platforms identified the lncRNAs ATF2, CHEK1, DCAF8, and PAX8 to interact with "hub" SC-associated mRNAs. In addition, the expressions of the above lncRNAs retrieved by TCGA-normalized RNAseq gene expression data of PAAD were significantly correlated with clinicopathological features of PDAC, including tumor grade and stage, nodal metastasis, and overall survival. Overall, our findings shed light on the identification of CSC-specific lncRNA signatures with potential prognostic and therapeutic significance in PDAC.
Collapse
Affiliation(s)
- Giasemi C. Eptaminitaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Apostolos Zaravinos
- Basic and Translational Cancer Research Center (BTCRC), Genomics and Systems Biology Laboratory, Cancer Genetics, Nicosia 1516, Cyprus
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Dimitris Stellas
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Panagopoulou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, 71410 Heraklion, Greece
| | - Sevasti Karaliota
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ismini Baltsavia
- Laboratory of Computational Biology, Division of Basic Sciences, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ioannis Iliopoulos
- Laboratory of Computational Biology, Division of Basic Sciences, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, 71410 Heraklion, Greece
| | | | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Correspondence: ; Tel.: +30-281-039-4727
| |
Collapse
|
7
|
Trembley JH, Kren BT, Afzal M, Scaria GA, Klein MA, Ahmed K. Protein kinase CK2 – diverse roles in cancer cell biology and therapeutic promise. Mol Cell Biochem 2022; 478:899-926. [PMID: 36114992 PMCID: PMC9483426 DOI: 10.1007/s11010-022-04558-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
The association of protein kinase CK2 (formerly casein kinase II or 2) with cell growth and proliferation in cells was apparent at early stages of its investigation. A cancer-specific role for CK2 remained unclear until it was determined that CK2 was also a potent suppressor of cell death (apoptosis); the latter characteristic differentiated its function in normal versus malignant cells because dysregulation of both cell growth and cell death is a universal feature of cancer cells. Over time, it became evident that CK2 exerts its influence on a diverse range of cell functions in normal as well as in transformed cells. As such, CK2 and its substrates are localized in various compartments of the cell. The dysregulation of CK2 is documented in a wide range of malignancies; notably, by increased CK2 protein and activity levels with relatively moderate change in its RNA abundance. High levels of CK2 are associated with poor prognosis in multiple cancer types, and CK2 is a target for active research and testing for cancer therapy. Aspects of CK2 cellular roles and targeting in cancer are discussed in the present review, with focus on nuclear and mitochondrial functions and prostate, breast and head and neck malignancies.
Collapse
Affiliation(s)
- Janeen H Trembley
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Betsy T Kren
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Muhammad Afzal
- Department of Biochemistry, Riphah International University, Islamabad, Pakistan
| | - George A Scaria
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Mark A Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Khalil Ahmed
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Urology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
8
|
Firnau MB, Brieger A. CK2 and the Hallmarks of Cancer. Biomedicines 2022; 10:1987. [PMID: 36009534 PMCID: PMC9405757 DOI: 10.3390/biomedicines10081987] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Casein kinase 2 (CK2) is commonly dysregulated in cancer, impacting diverse molecular pathways. CK2 is a highly conserved serine/threonine kinase, constitutively active and ubiquitously expressed in eukaryotes. With over 500 known substrates and being estimated to be responsible for up to 10% of the human phosphoproteome, it is of significant importance. A broad spectrum of diverse types of cancer cells has been already shown to rely on disturbed CK2 levels for their survival. The hallmarks of cancer provide a rationale for understanding cancer's common traits. They constitute the maintenance of proliferative signaling, evasion of growth suppressors, resisting cell death, enabling of replicative immortality, induction of angiogenesis, the activation of invasion and metastasis, as well as avoidance of immune destruction and dysregulation of cellular energetics. In this work, we have compiled evidence from the literature suggesting that CK2 modulates all hallmarks of cancer, thereby promoting oncogenesis and operating as a cancer driver by creating a cellular environment favorable to neoplasia.
Collapse
Affiliation(s)
| | - Angela Brieger
- Department of Internal Medicine I, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
9
|
Zhou L, Wang H, Liu H, Huang Z, Wang Z, Zhou X, Mu X. The synergistic therapeutic effect of imatinib and protein kinase CK2 Inhibition correlates with PI3K-AKT activation in gastrointestinal stromal tumors. Clin Res Hepatol Gastroenterol 2022; 46:101886. [PMID: 35183792 DOI: 10.1016/j.clinre.2022.101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/28/2021] [Accepted: 02/01/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. Casein kinase 2 (CK2) has been reported to be involved in several cellular processes in multiple cancers. However, the role of CK2 in GIST remains unclear. AIM We aimed to investigate the combinatorial treatment of imatinib (IM) and CK2 inhibition on the progression of GISTs. METHODS GIST biopsies and adjacent normal tissues were collected from patients. GIST882 and GIST48 cell lines were subjected to investigate the effect of IM and CK2 inhibition in GIST cells. CCK-8 assay, Caspase-3 activity assay, western blotting, and flow cytometry analysis were employed in the present investigation. RESULTS Our results showed that CK2 was highly expressed in GIST biopsies, and inhibition of CK2 resulted in decrease in cell viability and increase in apoptosis of GIST cells. Moreover, the combination treatment with CX-4945 (CX) and IM resulted in a more significant decrease in cell viability and increase in cell apoptosis compared with mono-treatment. Mechanistically, the combination treatment influenced the activation of the PI3K/AKT pathway. The activation of the PI3K/AKT pathway reversed the synergistic impacts of the combined treatment on cell viability and apoptosis. CONCLUSION Our results demonstrated that inhibition of CK2 combined with IM exhibited a synergistic anti-cancer effect on GIST cells through inactivation of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Linsen Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou, Jiangsu 215006, China; Department of General Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School and The First people's Hospital of Yancheng, No. 166 Yulongxi Road, Yancheng, Jiangsu 224001, China
| | - Hao Wang
- Department of General Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School and The First people's Hospital of Yancheng, No. 166 Yulongxi Road, Yancheng, Jiangsu 224001, China
| | - Haofeng Liu
- Department of General Surgery, Tumor Hospital Affiliated to Nantong University and Nantong Tumor Hospital, Nantong, Jiangsu 226361, China
| | - Zhijun Huang
- Department of General Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School and The First people's Hospital of Yancheng, No. 166 Yulongxi Road, Yancheng, Jiangsu 224001, China
| | - Zhiqiang Wang
- Department of General Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School and The First people's Hospital of Yancheng, No. 166 Yulongxi Road, Yancheng, Jiangsu 224001, China
| | - Xiaojun Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou, Jiangsu 215006, China.
| | - Xiangming Mu
- Department of General Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School and The First people's Hospital of Yancheng, No. 166 Yulongxi Road, Yancheng, Jiangsu 224001, China.
| |
Collapse
|
10
|
Bhat GR, Hyole RG, Li J. Head and neck cancer: Current challenges and future perspectives. Adv Cancer Res 2021; 152:67-102. [PMID: 34353444 DOI: 10.1016/bs.acr.2021.05.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Head and neck cancers are a heterogeneous, aggressive and genetically complex collection of malignancies of the oral cavity, nasopharynx, oropharynx, hypopharynx, larynx, paranasal sinuses and salivary glands, which are difficult to treat. About 90% of all head and neck cancers are squamous cell carcinomas (HNSCC). Larynx and Oral cavity carcinomas are generally related with tobacco consumption, alcohol abuse (or both), but pharynx carcinomas are generally associated with infection of human papillomavirus (HPV), especially HPV-16 subtype. Thus, usually HNSCC can be separated into HPV-negative and HPV-positive categories. Despite substantial efforts invested into therapeutic development of HNSCC, the 5-year survival rate of patients with HNSCC still remains dismal. The primary reason being late diagnosis, recurrent metastasis, relapse and resistance to therapies. Currently surgery and radiotherapy represent the baseline treatment options for most initial stage HNSCC patients, but these treatments are associated with significant morbidity and poor prognosis. Moreover, the issue of resistance to both radiotherapy/chemotherapy and recurrent relapse are common in HNSCC. Elucidation of the genetic landscape, tumor microenvironment and aberrant signaling pathways have generated new insights into the molecular pathogenesis of this disease. Thus, the scientific research has therefore been focused on the understanding of HNSCC biology and immunobiology to identification of predictive/prognostic biomarkers, which will be key to develop more effective targeted therapies with less toxicity and high specificity.
Collapse
Affiliation(s)
- Gh Rasool Bhat
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Rosalie G Hyole
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Jiong Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, VA, United States; Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
11
|
CX-4945 and siRNA-Mediated Knockdown of CK2 Improves Cisplatin Response in HPV(+) and HPV(-) HNSCC Cell Lines. Biomedicines 2021; 9:biomedicines9050571. [PMID: 34070147 PMCID: PMC8158385 DOI: 10.3390/biomedicines9050571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) can be categorized into human papillomavirus (HPV) positive or negative disease. Elevated protein kinase CK2 level and activity have been historically observed in HNSCC cells. Previous studies on CK2 in HNSCC did not generally include consideration of HPV(+) and HPV(−) status. Here, we investigated the response of HPV(+) and HPV(−) HNSCC cells to CK2 targeting using CX-4945 or siRNA downregulation combined with cisplatin treatment. HNSCC cell lines were examined for CK2 expression levels and activity and response to CX-4945, with and without cisplatin. CK2 levels and NFκB p65-related activity were high in HPV(+) HNSCC cells relative to HPV(−) HNSCC cells. Treatment with CX-4945 decreased viability and cisplatin IC50 in all cell lines. Targeting of CK2 increased tumor suppressor protein levels for p21 and PDCD4 in most instances. Further study is needed to understand the role of CK2 in HPV(+) and HPV(−) HNSCC and to determine how incorporation of the CK2-targeted inhibitor CX-4945 could improve cisplatin response in HNSCC.
Collapse
|
12
|
Omran Z, H. Dalhat M, Abdullah O, Kaleem M, Hosawi S, A Al-Abbasi F, Wu W, Choudhry H, Alhosin M. Targeting Post-Translational Modifications of the p73 Protein: A Promising Therapeutic Strategy for Tumors. Cancers (Basel) 2021; 13:cancers13081916. [PMID: 33921128 PMCID: PMC8071514 DOI: 10.3390/cancers13081916] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 01/11/2023] Open
Abstract
The tumor suppressor p73 is a member of the p53 family and is expressed as different isoforms with opposing properties. The TAp73 isoforms act as tumor suppressors and have pro-apoptotic effects, whereas the ΔNp73 isoforms lack the N-terminus transactivation domain and behave as oncogenes. The TAp73 protein has a high degree of similarity with both p53 function and structure, and it induces the regulation of various genes involved in the cell cycle and apoptosis. Unlike those of the p53 gene, the mutations in the p73 gene are very rare in tumors. Cancer cells have developed several mechanisms to inhibit the activity and/or expression of p73, from the hypermethylation of its promoter to the modulation of the ratio between its pro- and anti-apoptotic isoforms. The p73 protein is also decorated by a panel of post-translational modifications, including phosphorylation, acetylation, ubiquitin proteasomal pathway modifications, and small ubiquitin-related modifier (SUMO)ylation, that regulate its transcriptional activity, subcellular localization, and stability. These modifications orchestrate the multiple anti-proliferative and pro-apoptotic functions of TAp73, thereby offering multiple promising candidates for targeted anti-cancer therapies. In this review, we summarize the current knowledge of the different pathways implicated in the regulation of TAp73 at the post-translational level. This review also highlights the growing importance of targeting the post-translational modifications of TAp73 as a promising antitumor strategy, regardless of p53 status.
Collapse
Affiliation(s)
- Ziad Omran
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (Z.O.); (O.A.)
| | - Mahmood H. Dalhat
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Omeima Abdullah
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (Z.O.); (O.A.)
| | - Mohammed Kaleem
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Salman Hosawi
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Fahd A Al-Abbasi
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, CA 94143, USA;
| | - Hani Choudhry
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Mahmoud Alhosin
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
- Correspondence: ; Tel.: +96-65-9795-9354
| |
Collapse
|
13
|
Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Primers 2020; 6:92. [PMID: 33243986 PMCID: PMC7944998 DOI: 10.1038/s41572-020-00224-3] [Citation(s) in RCA: 1848] [Impact Index Per Article: 462.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
Most head and neck cancers are derived from the mucosal epithelium in the oral cavity, pharynx and larynx and are known collectively as head and neck squamous cell carcinoma (HNSCC). Oral cavity and larynx cancers are generally associated with tobacco consumption, alcohol abuse or both, whereas pharynx cancers are increasingly attributed to infection with human papillomavirus (HPV), primarily HPV-16. Thus, HNSCC can be separated into HPV-negative and HPV-positive HNSCC. Despite evidence of histological progression from cellular atypia through various degrees of dysplasia, ultimately leading to invasive HNSCC, most patients are diagnosed with late-stage HNSCC without a clinically evident antecedent pre-malignant lesion. Traditional staging of HNSCC using the tumour-node-metastasis system has been supplemented by the 2017 AJCC/UICC staging system, which incorporates additional information relevant to HPV-positive disease. Treatment is generally multimodal, consisting of surgery followed by chemoradiotherapy (CRT) for oral cavity cancers and primary CRT for pharynx and larynx cancers. The EGFR monoclonal antibody cetuximab is generally used in combination with radiation in HPV-negative HNSCC where comorbidities prevent the use of cytotoxic chemotherapy. The FDA approved the immune checkpoint inhibitors pembrolizumab and nivolumab for treatment of recurrent or metastatic HNSCC and pembrolizumab as primary treatment for unresectable disease. Elucidation of the molecular genetic landscape of HNSCC over the past decade has revealed new opportunities for therapeutic intervention. Ongoing efforts aim to integrate our understanding of HNSCC biology and immunobiology to identify predictive biomarkers that will enable delivery of the most effective, least-toxic therapies.
Collapse
Affiliation(s)
- Daniel E. Johnson
- Department of Otolaryngology-Head and Neck Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Barbara Burtness
- Department of Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA
| | - C. René Leemans
- Department of Otolaryngology-Head and Neck Surgery, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Vivian Wai Yan Lui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Julie E. Bauman
- Department of Medicine-Hematology/Oncology, University of Arizona, Tucson, AZ, USA
| | - Jennifer R. Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California at San Francisco, San Francisco, CA, USA,
| |
Collapse
|
14
|
Tang S, Yuan Y, Liu Z, He Y, Pan D. Casein kinase 2 inhibitor CX-4945 elicits an anti-Warburg effects through the downregulation of TAp73 and inhibits gastric tumorigenesis. Biochem Biophys Res Commun 2020; 530:686-691. [PMID: 32771361 DOI: 10.1016/j.bbrc.2020.07.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 11/18/2022]
Abstract
Casein kinase 2 (CK2) has become a potential therapeutic target in gastric cancer; however, the underlying mechanism remains incompletely understood. TAp73, a structural homolog of the tumor suppressor p53, acts as a critical regulator of the Warburg effect. Recent study reveals that aberrant CK2 signaling is able to inhibit TAp73 function. Here we determine that TAp73 is overexpressed in AGS-1 but not in SNU-5 gastric cancer cell line as compared with normal gastric cells. In addition, we show that TAp73 expression is required for the maintenance of glucose uptake and lactate release in AGS-1 but not in SNU-5 gastric cancer cells. Importantly, the use of CX-4945, a selective inhibitor of protein kinase CK2, inhibits cell growth and invasion, and promotes cell apoptosis in AGS-1 with decreased TAp73 expression as well as downregulated glucose uptake and lactate release. Although TAp73 knockdown resulted in significant decreases in TAp73 expressions in SNU-5 cell line, no differences in glucose uptake and lactate release were observed between SNU-5 and normal gastric cells. Moreover, TAp73 gene overexpression promotes glucose uptake and lactate release and abolishes the anti-cancer effects of CX-4945 in gastric cancer cell line AGS-1. The impacts of CX-4945 on glycolysis and tumorigenesis were strongly limited in SNU-5 gastric cancer cell line. These findings suggest that CX-4945 elicits an anti-Warburg effects in gastric cancer overexpressing Tap73 and inhibits gastric tumorigenesis.
Collapse
Affiliation(s)
- Shengli Tang
- Department of General Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, China.
| | - Yufeng Yuan
- Department of General Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, China
| | - Zhisu Liu
- Department of General Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, China
| | - Yueming He
- Department of General Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, China
| | - Dingyu Pan
- Department of General Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, China
| |
Collapse
|
15
|
Li W, Zhang X, Xi X, Li Y, Quan H, Liu S, Wu L, Wu P, Lan W, Shao Y, Li H, Chen K, Hu Z. PLK2 modulation of enriched TAp73 affects osteogenic differentiation and prognosis in human osteosarcoma. Cancer Med 2020; 9:4371-4385. [PMID: 32349184 PMCID: PMC7300400 DOI: 10.1002/cam4.3066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 02/05/2023] Open
Abstract
There are three subtypes of undifferentiated human conventional osteosarcoma (HCOS): osteoblastic osteosarcoma (OOS), chondroblastic osteosarcoma (COS), and fibroblastic osteosarcoma (FOS). HCOS also exhibits heterogeneous pathological maldifferentiation in individual patients. Currently, the mechanism regulating HCOS differentiation remains unclear, and therapies are ineffective. Osteopontin (OPN) and osteocalcin (OCN) are markers of osteoblast maturation, and their expression is inhibited in HCOS. A previous study found that PLK2 inhibited TAp73 phosphorylation and consequent anti-OS function of TAp73 in OS cells with enriched TAp73. TAp73 was also reported to regulate bone cell calcification. Here, OOS was found to have higher TAp73 levels and PLK2 expression than those in COS, which is correlated with HCOS maldifferentiation according to Spearman analysis and affects patient prognosis according to Kaplan-Meier survival analysis. In the conventional OS cell-line Saos2 and in patient-derived xenograft OS (PDX-OS) cells, increased PLK2 expression owing to abundant TAp73 levels affected OPN and OCN content as measured by RT-PCR and Western blotting, and alizarin red staining showed that PLK2 affected calcium deposition in OS cells. In addition, PLK2 inhibition in PDX-OS cells prohibited clone formation, as indicated by a clonogenic assay, and sensitized OS cells to cisplatin (CDDP) (which consequently limited proliferation), as shown by the CCK-8 assay. In an established PDX animal model with abundant TAp73 levels, PLK2 inhibition or CDDP treatment prevented tumor growth and prolonged median survival. The combined therapeutic effect of PLK2 inhibition with CDDP treatment was better than that of either monotherapy. These results indicate that increased PLK2 levels due to enriched TAp73 affect osteogenic differentiation and maturation and OS prognosis. In conclusion, PLK2 is a potential target for differentiation therapy of OS with enriched TAp73.
Collapse
Affiliation(s)
- Wenhu Li
- Department of OrthopedicsShaoguan First People's Hospital Affiliated to Southern Medical UniversityShaoguanChina
| | - Xianliao Zhang
- Orthopedics CenterZhujiang Hospital of Southern Medical UniversityGuangzhouChina
| | - Xinhua Xi
- Department of OrthopaedicsThe Affiliated Yuebei People's Hospital of Shantou University Medical CollegeShaoguanChina
| | - Yufa Li
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Department of PathologyGuangdong provincial people's Hospital & Guangdong, Academy of Medical SciencesGuangzhouChina
| | - Hong Quan
- Department of OrthopedicsShaoguan First People's Hospital Affiliated to Southern Medical UniversityShaoguanChina
| | - Shifeng Liu
- Orthopedics CenterDongguan Eighth People's HospitalDongguanChina
| | - Liqi Wu
- Department of OrthopedicsShaoguan First People's Hospital Affiliated to Southern Medical UniversityShaoguanChina
| | - Penghuan Wu
- Department of OrthopedicsShaoguan First People's Hospital Affiliated to Southern Medical UniversityShaoguanChina
- Orthopedics CenterZhujiang Hospital of Southern Medical UniversityGuangzhouChina
| | - Wenxing Lan
- Department of OrthopedicsShaoguan First People's Hospital Affiliated to Southern Medical UniversityShaoguanChina
| | - Yongjun Shao
- Department of OrthopedicsShaoguan First People's Hospital Affiliated to Southern Medical UniversityShaoguanChina
| | - Haomiao Li
- Orthopedics CenterThe Third Affiliated Hospital of Southern Medical UniversityOrthopedics institute of Guangdong ProvinceGuangzhouChina
| | - Kebing Chen
- Orthopedics CenterThe Third Affiliated Hospital of Southern Medical UniversityOrthopedics institute of Guangdong ProvinceGuangzhouChina
| | - Zhengbo Hu
- Department of OrthopedicsShaoguan First People's Hospital Affiliated to Southern Medical UniversityShaoguanChina
| |
Collapse
|
16
|
Borgo C, Ruzzene M. Role of protein kinase CK2 in antitumor drug resistance. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:287. [PMID: 31277672 PMCID: PMC6612148 DOI: 10.1186/s13046-019-1292-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/25/2019] [Indexed: 01/21/2023]
Abstract
Drug resistance represents the major reason of pharmacological treatment failure. It is supported by a broad spectrum of mechanisms, whose molecular bases have been frequently correlated to aberrant protein phosphorylation. CK2 is a constitutively active protein kinase which phosphorylates hundreds of substrates; it is expressed in all cells, but its level is commonly found higher in cancer cells, where it plays anti-apoptotic, pro-migration and pro-proliferation functions. Several evidences support a role for CK2 in processes directly responsible of drug resistance, such as drug efflux and DNA repair; moreover, CK2 intervenes in signaling pathways which are crucial to evade drug response (as PI3K/AKT/PTEN, NF-κB, β-catenin, hedgehog signaling, p53), and controls the activity of chaperone machineries fundamental in resistant cells. Interestingly, a panel of specific and effective inhibitors of CK2 is available, and several examples are known of their efficacy in resistant cells, with synergistic effect when used in combination with conventional drugs, also in vivo. Here we analyze and discuss evidences supporting the hypothesis that CK2 targeting represents a valuable strategy to overcome drug resistance.
Collapse
Affiliation(s)
- Christian Borgo
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58b, 35131, Padova, Italy
| | - Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58b, 35131, Padova, Italy.
| |
Collapse
|
17
|
Das R, Coupar J, Clavijo PE, Saleh A, Cheng TF, Yang X, Chen J, VanWaes C, Chen Z. Lymphotoxin-β receptor-NIK signaling induces alternative RELB/NF-κB2 activation to promote metastatic gene expression and cell migration in head and neck cancer. Mol Carcinog 2019; 58:411-425. [PMID: 30488488 PMCID: PMC7066987 DOI: 10.1002/mc.22938] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 01/21/2023]
Abstract
Head and neck squamous cell carcinomas (HNSCC) preferentially spread to regional cervical tissues and lymph nodes. Here, we hypothesized that lymphotoxin-β (LTβ), receptor LTβR, and NF-κB-inducing kinase (NIK), promote the aberrant activation of alternative NF-κB2/RELB pathway and genes, that enhance migration and invasion of HNSCC. Genomic and expression alterations of the alternative NF-kB pathway were examined in 279 HNSCC tumors from The Cancer Genome Atlas (TCGA) and a panel of HNSCC lines. LTβR is amplified or overexpressed in HNSCC of the larynx or oral cavity, while LTβ, NIK, and RELB are overexpressed in cancers arising within lymphoid oropharyngeal and tonsillar sites. Similarly, subsets of HNSCC lines displayed overexpression of LTβR, NIK, and RELB proteins. Recombinant LTβ, and siRNA depletion of endogenous LTβR and NIK, modulated expression of LTβR, NIK, and nuclear translocation of NF-κB2(p52)/RELB as well as functional NF-κB promoter reporter activity. Treatment with a NIK inhibitor (1,3[2H,4H]-Iso-Quinoline Dione) reduced the protein expression of NIK and NF-κB2(p52)/RELB, and blocked LTβ induced nuclear translocation of RELB. NIK and RELB siRNA knockdown or NIK inhibitor slowed HNSCC migration or invation in vitro. LTβ-induces expression of migration and metastasis related genes, including hepatocyte growth/scatter factor receptor MET. Knockdown of NIK or MET similarly inhibited the migration of HNSCC cell lines. This may help explain why HNSCC preferentially migrate to local lymph nodes, where LTβ is expressed. Our findings show that LTβ/LTβR promotes activation of the alternative NIK-NF-κB2/RELB pathway to enhance MET-mediated cell migration in HNSCC, which could be potential therapeutic targets in HNSCC.
Collapse
Affiliation(s)
- Rita Das
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 201892
| | - Jamie Coupar
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 201892
| | - Paul E. Clavijo
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 201892
| | - Anthony Saleh
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 201892
| | - Tsu-Fan Cheng
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 201892
| | - Xinping Yang
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 201892
| | - Jianhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 201892
| | - Carter VanWaes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 201892
- Contributed equally as senior authors
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 201892
- Contributed equally as senior authors
| |
Collapse
|
18
|
Emerging functional markers for cancer stem cell-based therapies: Understanding signaling networks for targeting metastasis. Semin Cancer Biol 2018; 53:90-109. [PMID: 29966677 DOI: 10.1016/j.semcancer.2018.06.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
Metastasis is one of the most challenging issues in cancer patient management, and effective therapies to specifically target disease progression are missing, emphasizing the urgent need for developing novel anti-metastatic therapeutics. Cancer stem cells (CSCs) gained fast attention as a minor population of highly malignant cells within liquid and solid tumors that are responsible for tumor onset, self-renewal, resistance to radio- and chemotherapies, and evasion of immune surveillance accelerating recurrence and metastasis. Recent progress in the identification of their phenotypic and molecular characteristics and interactions with the tumor microenvironment provides great potential for the development of CSC-based targeted therapies and radical improvement in metastasis prevention and cancer patient prognosis. Here, we report on newly uncovered signaling mechanisms controlling CSC's aggressiveness and treatment resistance, and CSC-specific agents and molecular therapeutics, some of which are currently under investigation in clinical trials, gearing towards decisive functional CSC intrinsic or surface markers. One special research focus rests upon subverted regulatory pathways such as insulin-like growth factor 1 receptor signaling and its interactors in metastasis-initiating cell populations directly related to the gain of stem cell- and EMT-associated properties, as well as key components of the E2F transcription factor network regulating metastatic progression, microenvironmental changes, and chemoresistance. In addition, the study provides insight into systems biology tools to establish complex molecular relationships behind the emergence of aggressive phenotypes from high-throughput data that rely on network-based analysis and their use to investigate immune escape mechanisms or predict clinical outcome-relevant CSC receptor signaling signatures. We further propose that customized vector technologies could drastically enhance systemic drug delivery to target sites, and summarize recent progress and remaining challenges. This review integrates available knowledge on CSC biology, computational modeling approaches, molecular targeting strategies, and delivery techniques to envision future clinical therapies designed to conquer metastasis-initiating cells.
Collapse
|
19
|
Krzywinska E, Zorawski MD, Taracha A, Kotarba G, Kikulska A, Mlacki M, Kwiatkowska K, Wilanowski T. Threonine 454 phosphorylation in Grainyhead-like 3 is important for its function and regulation by the p38 MAPK pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1002-1011. [PMID: 29702134 DOI: 10.1016/j.bbamcr.2018.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/26/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023]
Abstract
The mammalian Grainyhead-like 3 (GRHL3) transcription factor is essential for epithelial development and plays a protective role against squamous cell carcinoma of the skin and of the oral cavity. A single nucleotide polymorphism (SNP) in GRHL3, rs141193530 (p.P455A), is associated with non-melanoma skin cancer in human patients. Moreover, it is known that this SNP, as well as another variant, rs41268753 (p.T454M), are associated with nonsyndromic cleft palate and that rs41268753 negatively affects GRHL3 transcriptional activity. These SNPs are located in adjacent codons of the GRHL3 gene, and the occurrence of either SNP abolishes a putative threonine-proline phosphorylation motif at T454 in the encoded protein. The role of phosphorylation in regulating mammalian GRHL function is currently unknown. In this work we show that GRHL3 is phosphorylated at several residues in a human keratinocyte cell line, among them at T454. This site is essential for the full transcriptional activity of GRHL3. The T454 residue is phosphorylated by p38 MAPK in vitro and activation of p38 signaling in cells causes an increase in GRHL3 activity. The regulation of GRHL3 function by this pathway is dependent on T454, as the substitution of T454 with methionine inhibits the activation of GRHL3. Taken together, our results show that T454 is one of the phosphorylated residues in GRHL3 in keratinocytes and this residue is important for the upregulation of GRHL3 transcriptional activity by the p38 pathway.
Collapse
Affiliation(s)
- Ewa Krzywinska
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Marek Dominick Zorawski
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Agnieszka Taracha
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Grzegorz Kotarba
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Agnieszka Kikulska
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Michal Mlacki
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Tomasz Wilanowski
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
20
|
Abstract
Osteosarcoma(OS) remains a major health concern in childhood and adolescence, although cisplatin is one of the gold standard chemotherapeutic drugs in the treatment of OS, chemoresistant to cisplatin is common. Phosphoinositide 3-kinase (PI3K)-Akt-mammalian target of rapamycin inhibitor (mTOR) pathway and autophagy regulates chemosensitivity incancer cells. In this study, we hypothesized that NVP-BEZ235, a dual inhibitor of PI3K/mTOR, could synergize cisplatin sensitivity in OS. In vitro, NVP-BEZ235 plus cisplatinexerted a synergistic effect on cell proliferation inhibition and apoptosis induction. Cisplatin could activate PI3K-Akt-mTOR pathway activity in early times, whereas, NVP-BEZ235 could inhibit PI3K-Akt -mTOR pathway activity all the times alone or combined with cisplatin. What's more, NVP-BEZ235 could switch function of autophagy induced by cisplatin to synergize cisplatin sensitivity. In vivo, pronounced decrease in tumor cell proliferation and increase in apoptosisin combination-treated mouse xenograft models compared with cisplatin or NVP-BEZ235 treated models. All these results suggest NVP-BEZ235 could synergize cisplatin sensitivity in OS, combination of NVP-BEZ235 with cisplatin could represent a novel therapeutic strategy for treatment of OS.
Collapse
|
21
|
Pützer BM, Solanki M, Herchenröder O. Advances in cancer stem cell targeting: How to strike the evil at its root. Adv Drug Deliv Rev 2017; 120:89-107. [PMID: 28736304 DOI: 10.1016/j.addr.2017.07.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/10/2017] [Accepted: 07/16/2017] [Indexed: 12/18/2022]
Abstract
Cancer progression to metastatic stages is still unmanageable and the promise of effective anti-metastatic therapy remains largely unmet, emphasizing the need to develop novel therapeutics. The special focus here is on cancer stem cells (CSC) as the seed of tumor initiation, epithelial-mesenchymal transition, chemoresistance and, as a consequence, drivers of metastatic dissemination. We report on targeted therapies gearing towards the CSC's internal and membrane-anchored markers using agents such as antibody derivatives, nucleic therapeutics, small molecules and genetic payloads. Another emphasis lies on novel proceedings envisaged to deliver current and prospective therapies to the target sites using newest viral and non-viral vector technologies. In this review, we summarize recent progress and remaining challenges in therapeutic strategies to combat CSC.
Collapse
Affiliation(s)
- Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Biomedical Research Center (BMFZ), Rostock University Medical School, Germany.
| | - Manish Solanki
- Institute of Experimental Gene Therapy and Cancer Research, Biomedical Research Center (BMFZ), Rostock University Medical School, Germany
| | - Ottmar Herchenröder
- Institute of Experimental Gene Therapy and Cancer Research, Biomedical Research Center (BMFZ), Rostock University Medical School, Germany
| |
Collapse
|
22
|
Chua MMJ, Ortega CE, Sheikh A, Lee M, Abdul-Rassoul H, Hartshorn KL, Dominguez I. CK2 in Cancer: Cellular and Biochemical Mechanisms and Potential Therapeutic Target. Pharmaceuticals (Basel) 2017; 10:E18. [PMID: 28134850 PMCID: PMC5374422 DOI: 10.3390/ph10010018] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 01/09/2023] Open
Abstract
CK2 genes are overexpressed in many human cancers, and most often overexpression is associated with worse prognosis. Site-specific expression in mice leads to cancer development (e.g., breast, lymphoma) indicating the oncogenic nature of CK2. CK2 is involved in many key aspects of cancer including inhibition of apoptosis, modulation of signaling pathways, DNA damage response, and cell cycle regulation. A number of CK2 inhibitors are now available and have been shown to have activity against various cancers in vitro and in pre-clinical models. Some of these inhibitors are now undergoing exploration in clinical trials as well. In this review, we will examine some of the major cancers in which CK2 inhibition has promise based on in vitro and pre-clinical studies, the proposed cellular and signaling mechanisms of anti-cancer activity by CK2 inhibitors, and the current or recent clinical trials using CK2 inhibitors.
Collapse
Affiliation(s)
- Melissa M J Chua
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Charina E Ortega
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Ayesha Sheikh
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Migi Lee
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Hussein Abdul-Rassoul
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Kevan L Hartshorn
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Isabel Dominguez
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| |
Collapse
|
23
|
Naik PP, Das DN, Panda PK, Mukhopadhyay S, Sinha N, Praharaj PP, Agarwal R, Bhutia SK. Implications of cancer stem cells in developing therapeutic resistance in oral cancer. Oral Oncol 2016; 62:122-135. [PMID: 27865365 DOI: 10.1016/j.oraloncology.2016.10.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/05/2016] [Accepted: 10/15/2016] [Indexed: 12/13/2022]
Abstract
Conventional therapeutics are often frequented with recurrences, refraction and regimen resistance in oral cavity cancers which are predominantly manifested by cancer stem cells (CSCs). During oncoevolution, cancer cells may undergo structural and functional reprogramming wherein they evolve as highly tolerant CSC phenotypes with greater survival advantages. The CSCs possess inherent and exclusive properties including self-renewal, hierarchical differentiation, and tumorigenicity that serve as the basis of chemo-radio-resistance in oral cancer. However, the key mechanisms underlying the CSC-mediated therapy resistance need to be further elucidated. A spectrum of dysfunctional cellular pathways including the developmental signaling, apoptosis, autophagy, cell cycle regulation, DNA damage responses and epigenetic regulations protect the CSCs from conventional therapies. Moreover, tumor niche shelters CSCs and creates an immunosuppressive environment favoring the survival of CSCs. Maintenance of lower redox status, epithelial-to-mesenchymal transition (EMT), metabolic reprogramming and altered drug responses are the accessory features that aid in the process of chemo-radio-resistance in oral CSCs. This review deals with the functional and molecular basis of cancer cell pluripotency-associated resistance highlighting the abrupt fundamental cellular processes; targeting these events may hold a great promise in the successful treatment of oral cancer.
Collapse
Affiliation(s)
- Prajna Paramita Naik
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Durgesh Nandini Das
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Prashanta Kumar Panda
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Subhadip Mukhopadhyay
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika Sinha
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | | | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, United States; University of Colorado Cancer Center, University of Colorado Denver, Aurora, CO, United States.
| | - Sujit Kumar Bhutia
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
24
|
Hu ZB, Liao XH, Xu ZY, Yang X, Dong C, Jin AM, Lu H. PLK2 phosphorylates and inhibits enriched TAp73 in human osteosarcoma cells. Cancer Med 2015; 5:74-87. [PMID: 26625870 PMCID: PMC4708894 DOI: 10.1002/cam4.558] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/12/2015] [Accepted: 09/14/2015] [Indexed: 01/01/2023] Open
Abstract
TAp73, a member of the p53 tumor suppressor family, can substitute for p53 function, especially in p53‐null and p53‐mutant cells. However, TAp73 enrichment and phosphorylation change its transcriptional activity. Previously, we found that the antitumor function of TAp73 was reactivated by dephosphorylation. Polo‐like kinase 2 (PLK2) plays an important role in bone development. Using a biological information database and phosphorylation prediction software, we hypothesized that PLK2 phosphorylates TAp73 and inhibits TAp73 function in osteosarcomas. Actually,we determined that PLK2 physically binds to and phosphorylates TAp73 when TAp73 protein abundance is up‐regulated by cisplatin. PLK2‐phosphorylated TAp73 at residue Ser48 within the TA domain; phosphorylation of TAp73 was abolished by mutating this residue. Moreover, PLK2 inhibition combined with cisplatin treatment in osteosarcoma Saos2 cells up‐regulated p21 and puma mRNA expression to a greater extent than cisplatin treatment alone. Inhibiting PLK2 in TAp73‐enriched Saos2 cells resulted in inhibited cell proliferation, increased apoptosis, G1 phase arrest, and decreased cell invasion. However, these changes did not occur in TAp73 knockdown Saos2 cells. In conclusion, these findings reveal a novel PLK2 function in the phosphorylation of TAp73, which prevents TAp73 activity in osteosarcoma cells. Thereby, this research provides an insight into the clinical treatment of malignant tumors overexpressing TAp73.
Collapse
Affiliation(s)
- Zheng Bo Hu
- Department of Orthopedics, Zhu Jiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Xiao Hong Liao
- The State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510280, China
| | - Zun Ying Xu
- Department of Orthopedics, Zhu Jiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Xiao Yang
- Department of Orthopedics, Zhu Jiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Chao Dong
- Department of Orthopedics, Zhu Jiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - An Min Jin
- Department of Orthopedics, Zhu Jiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Hai Lu
- Department of Orthopaedics, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangzhou, Guangdong, 510665, China
| |
Collapse
|
25
|
Hu Z, Xu Z, Liao X, Yang X, Dong C, Luk K, Jin A, Lu H. Polo-like kinase 2 acting as a promoter in human tumor cells with an abundance of TAp73. Onco Targets Ther 2015; 8:3475-88. [PMID: 26640387 PMCID: PMC4662374 DOI: 10.2147/ott.s90302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background TAp73, a member of the p53 tumor suppressor family, is frequently overexpressed in malignant tumors in humans. TAp73 abundance and phosphorylation modification result in variations in transcriptional activity. In a previous study, we found that the antitumor function of TAp73 was reactivated by dephosphorylation in head and neck squamous cell carcinomas. Polo-like kinase 2 (PLK2) displayed a close relationship with the p53 family in affecting the fate of cells. Herein, we investigate the hypothesis that PLK2 phosphorylates TAp73 and inhibits TAp73 function. Materials and methods Head and neck squamous cell carcinoma cell lines and osteosarcoma cell lines were used as natural models of the different expression levels of TAp73. Phosphorylation predictor software Scansite 3.0 and the predictor GPS-polo 1.0 were used to analyze the phosphorylation sites. Coimmunoprecipitation, phosphor-tag Western blot, metabolic labeling, and indirect immunofluorescence assays were used to determine the interactions between PLK2 and TAp73. TAp73 activity was assessed by Western blot and reverse transcription polymerase chain reaction, which we used to detect P21 and PUMA, both downstream genes of TAp73. The physiological effects of PLK2 cross talk with TAp73 on cell cycle progress and apoptosis were observed by flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling assays. Results PLK2 binds to and phosphorylates TAp73. PLK2 phosphorylates TAp73 at residue Ser48 and prohibits TAp73 translocation to the nucleus. Additionally, PLK2 inhibition combined with a DNA-damaging drug upregulated p21 and PUMA mRNA expression to a greater extent than DNA-damaging drug treatment alone. Inhibiting PLK2 in TAp73-enriched cells strengthened the effects of the DNA-damaging drug on both G1 phase arrest and apoptosis. Pretreatment with TAp73-siRNA weakened these effects. Conclusion These findings reveal a novel PLK2 function (catalyzed phosphorylation of TAp73) which suppresses TAp73 functions. PLK2 promotes the survival of human tumor cells, a novel insight into the workings of malignant tumors characterized by TAp73 overexpression, and one that could speed the development of therapies.
Collapse
Affiliation(s)
- ZhengBo Hu
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - ZunYing Xu
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - XiaoHong Liao
- The State Key Laboratory of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiao Yang
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Cao Dong
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - KuaDi Luk
- Department of Orthopedics and Traumatology, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - AnMin Jin
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Hai Lu
- Department of Orthopedics, the Third Affiliated Hospital of the Southern Medical University, Guangzhou, Guangdong, People's Republic of China ; Academy of Orthopedics, Guangdong Province, People's Republic of China
| |
Collapse
|
26
|
Meier C, Hardtstock P, Joost S, Alla V, Pützer BM. p73 and IGF1R Regulate Emergence of Aggressive Cancer Stem-like Features via miR-885-5p Control. Cancer Res 2015; 76:197-205. [PMID: 26554827 DOI: 10.1158/0008-5472.can-15-1228] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/19/2015] [Indexed: 11/16/2022]
Abstract
Cancer stem-like cells (CSC) have been proposed to promote cancer progression by initiating tumor growth at distant sites, suggesting that stem-like cell features can support metastatic efficiency. Here, we demonstrate that oncogenic DNp73, a dominant-negative variant of the tumor-suppressor p73, confers cancer cells with enhanced stem-like properties. DNp73 overexpression in noninvasive melanoma and lung cancer cells increased anchorage-independent growth and elevated the expression of the pluripotency factors CD133, Nanog, and Oct4. Conversely, DNp73 depletion in metastatic cells downregulated stemness genes, attenuated sphere formation and reduced the tumor-initiating capability of spheroids in tumor xenograft models. Mechanistic investigations indicated that DNp73 acted by attenuating expression of miR-885-5p, a direct regulator of the IGF1 receptor (IGF1R) responsible for stemness marker expression. Modulating this pathway was sufficient to enhance chemosensitivity, overcoming DNp73-mediated drug resistance. Clinically, we established a correlation between low p73 function and high IGF1R/CD133/Nanog/Oct4 levels in melanoma specimens that associated with reduced patient survival. Our work shows how DNp73 promotes cancer stem-like features and provides a mechanistic rationale to target the DNp73-IGF1R cascade as a therapeutic strategy to eradicate CSC.
Collapse
Affiliation(s)
- Claudia Meier
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Philip Hardtstock
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Sophie Joost
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Vijay Alla
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
27
|
Filhol O, Giacosa S, Wallez Y, Cochet C. Protein kinase CK2 in breast cancer: the CK2β regulatory subunit takes center stage in epithelial plasticity. Cell Mol Life Sci 2015; 72:3305-22. [PMID: 25990538 PMCID: PMC11113558 DOI: 10.1007/s00018-015-1929-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 12/11/2022]
Abstract
Structurally, protein kinase CK2 consists of two catalytic subunits (α and α') and two regulatory subunits (β), which play a critical role in targeting specific CK2 substrates. Compelling evidence shows the complexity of the CK2 cellular signaling network and supports the view that this enzyme is a key component of regulatory protein kinase networks that are involved in several aspects of cancer. CK2 both activates and suppresses the expression of a number of essential oncogenes and tumor suppressors, and its expression and activity are upregulated in blood tumors and virtually all solid tumors. The prognostic significance of CK2α expression in association with various clinicopathological parameters highlighted this kinase as an adverse prognostic marker in breast cancer. In addition, several recent studies reported its implication in the regulation of the epithelial-to-mesenchymal transition (EMT), an early step in cancer invasion and metastasis. In this review, we briefly overview the contribution of CK2 to several aspects of cancer and discuss how in mammary epithelial cells, the expression of its CK2β regulatory subunit plays a critical role in maintaining an epithelial phenotype through CK2-mediated control of key EMT-related transcription factors. Importantly, decreased CK2β expression in breast tumors is correlated with inefficient phosphorylation and nuclear translocation of Snail1 and Foxc2, ultimately leading to EMT induction. This review highlights the pivotal role played by CK2β in the mammary epithelial phenotype and discusses how a modest alteration in its expression may be sufficient to induce dramatic effects facilitating the early steps in tumor cell dissemination through the coordinated regulation of two key transcription factors.
Collapse
Affiliation(s)
- Odile Filhol
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| | - Sofia Giacosa
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| | - Yann Wallez
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| | - Claude Cochet
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| |
Collapse
|