1
|
Chung YH, Hung TH, Yu CF, Tsai CK, Weng CC, Jhang F, Chen FH, Lin G. Glycolytic Plasticity of Metastatic Lung Cancer Captured by Noninvasive 18F-FDG PET/CT and Serum 1H-NMR Analysis: An Orthotopic Murine Model Study. Metabolites 2023; 13:metabo13010110. [PMID: 36677035 PMCID: PMC9866275 DOI: 10.3390/metabo13010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
We aim to establish a noninvasive diagnostic platform to capture early phenotypic transformation for metastasis using 18F-FDG PET and 1H-NMR-based serum metabolomics. Mice with implantation of NCI-H460 cells grew only primary lung tumors in the localized group and had both primary and metastatic lung tumors in the metastatic group. The serum metabolites were analyzed using 1H-NMR at the time of PET/CT scan. The glycolysis status and cell proliferation were validated by Western blotting and staining. A receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic accuracy of SUVmean and serum metabolites in metastasis. In the metastatic mice, the SUVmean of metastatic tumors was significantly higher than that of primary lung tumors in PET images, which was supported by elevated glycolytic protein expression of HK2 and PKM2. The serum pyruvate level in the metastatic group was significantly lower than that in the localized group, corresponding to increased pyruvate-catalyzed enzyme and proliferation rates in metastatic tumors. In diagnosing localized or metastatic tumors, the areas under the ROC curves of SUVmean and pyruvate were 0.92 and 0.91, respectively, with p < 0.05. In conclusion, the combination of 18F-FDG PET and 1H-NMR-based serum metabolomics demonstrated the feasibility of a glycolytic platform for diagnosing metastatic lung cancers.
Collapse
Affiliation(s)
- Yi-Hsiu Chung
- Department of Medical Research and Development, Chang Gung Memorial Hospital at Linkou, Taoyuan 333423, Taiwan
| | - Tsai-Hsien Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan 333423, Taiwan
| | - Ching-Fang Yu
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan 333323, Taiwan
| | - Cheng-Kun Tsai
- Clinical Metabolomics Core Lab, Chang Gung Memorial Hospital at Linkou, Taoyuan 333423, Taiwan
| | - Chi-Chang Weng
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 333323, Taiwan
| | - Fujie Jhang
- Department of Medical Research and Development, Chang Gung Memorial Hospital at Linkou, Taoyuan 333423, Taiwan
| | - Fang-Hsin Chen
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Gigin Lin
- Clinical Metabolomics Core Lab, Chang Gung Memorial Hospital at Linkou, Taoyuan 333423, Taiwan
- Department of Medical Imaging and Intervention, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan 333323, Taiwan
- Correspondence:
| |
Collapse
|
2
|
Ren Y, Pan F, Kan X, Wang J, Han P, Yan J, Li L, Sun P, Liu CY, Bao Q, Yang L, Zheng C. Multimodal Imaging Response after the Singular or Combination Treatments of Vascular Endothelial Growth Factor Inhibitor and Immune Checkpoint Inhibitor. Mol Pharm 2022; 19:3664-3672. [PMID: 35976154 DOI: 10.1021/acs.molpharmaceut.2c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study aims to dynamically assess tumor changes after variable treatments with vascular endothelial growth factor (VEGF) inhibitor and/or immune checkpoint inhibitor (ICI) using multimodal imaging of MRI and 18F-FDG PET/CT in a hepatocellular carcinoma (HCC) mice model. Based on different treatments, 24 mice were randomly divided into four groups: control (isotype-matched IgG antibody 10 mg/kg), VEGF inhibitor (sorafenib 50 mg/kg), ICI (anti-PD-L1 antibody 10 mg/kg), and combination groups (sorafenib 50 mg/kg + anti-PD-L1 antibody 10 mg/kg). Quantitative imaging assessments, including volume transfer constant (Ktrans), apparent diffusion coefficient (ADC), lactate/choline ratio, and the maximum standardized 18F-FDG uptake value ratio of tumor to muscle (SUVtumor/SUVmuscle ratio), were acquired at different time points (before treatment and 7, 14, and 21 days after treatment). Quantitative data were presented as the mean ± standard errors and two-way repeated-measure ANOVA tests were performed for intergroup and intertime point comparisons. After 21 days from the initiation of therapies, combination group showed the lowest tumor volume and weight, followed by ICI, VEGF inhibitor, and control group, with no significance between the VEGF inhibitor and control groups. In addition, Ktrans values significantly decreased, and the lactate/choline ratio and SUVtumor/SUVmuscle ratio were significantly elevated in the VEGF inhibitor group. ADC significantly increased in the ICI and combination groups, with no significant differences in ADC observed between the control and VEGF inhibitor groups, which showed a similar dynamic change to the tumor volume. Furthermore, Ktrans, lactate/choline ratio, and ADC were significantly correlated with CD31+ area, hypoxyprobe+ area, and apoptosis, respectively. Our results suggest that the singular treatment and combination of the VEGF inhibitor and ICI treatments for HCC present different multimodal imaging changes in accordance with the specific histopathological features. These findings might facilitate the formulation of better treatment response criteria; besides, we find ADC is probably an indicator easily to obtain for treatment response evaluation.
Collapse
Affiliation(s)
- Yanqiao Ren
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Feng Pan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xuefeng Kan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jiazheng Wang
- Clinical & Technical Solutions, Philips Healthcare, Beijing 100600, China
| | - Ping Han
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jingjie Yan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathmatics, Innovation Academy for Precision Measurement Science and Technology, Wuhan 430071, China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lingli Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Peng Sun
- Clinical & Technical Solutions, Philips Healthcare, Beijing 100600, China
| | - Chao-Yang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathmatics, Innovation Academy for Precision Measurement Science and Technology, Wuhan 430071, China
| | - Qingjia Bao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathmatics, Innovation Academy for Precision Measurement Science and Technology, Wuhan 430071, China
| | - Lian Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
3
|
Hipólito A, Martins F, Mendes C, Lopes-Coelho F, Serpa J. Molecular and Metabolic Reprogramming: Pulling the Strings Toward Tumor Metastasis. Front Oncol 2021; 11:656851. [PMID: 34150624 PMCID: PMC8209414 DOI: 10.3389/fonc.2021.656851] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Metastasis is a major hurdle to the efficient treatment of cancer, accounting for the great majority of cancer-related deaths. Although several studies have disclosed the detailed mechanisms underlying primary tumor formation, the emergence of metastatic disease remains poorly understood. This multistep process encompasses the dissemination of cancer cells to distant organs, followed by their adaptation to foreign microenvironments and establishment in secondary tumors. During the last decades, it was discovered that these events may be favored by particular metabolic patterns, which are dependent on reprogrammed signaling pathways in cancer cells while they acquire metastatic traits. In this review, we present current knowledge of molecular mechanisms that coordinate the crosstalk between metastatic signaling and cellular metabolism. The recent findings involving the contribution of crucial metabolic pathways involved in the bioenergetics and biosynthesis control in metastatic cells are summarized. Finally, we highlight new promising metabolism-based therapeutic strategies as a putative way of impairing metastasis.
Collapse
Affiliation(s)
- Ana Hipólito
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| | - Filipa Martins
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| | - Cindy Mendes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| | - Filipa Lopes-Coelho
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| |
Collapse
|
4
|
Grace VMB, Saranya S, Wilson DD. Protective role of All Trans Retinoic Acid on B16F10 melanoma cell line metastasis in C57BL/6 mice by enhancing RAR- β protein and homeostasis maintenance. J Histotechnol 2021; 44:127-138. [PMID: 33947313 DOI: 10.1080/01478885.2021.1896291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lung cancer is the leading cancer according to the World Health Organization (WHO), resulting in highest death rate worldwide due to the high level of metastasis. Hence, the drugs that protect from metastasis either as an adjuvant or a primary therapeutic agent may help to reduce the death rate. In this study, All Trans Retinoic Acid (ATRA) was tested for its action against metastatic lodging of B16F10 melanoma cells in the lung and liver of the C57BL/6 mouse model. Serum, lung and liver were evaluated biochemically for the cancer associated changes. Metastatic cancer development was confirmed by tumor nodule formation and histopathological analysis. RAR-β protein expression was analyzed by immunohistochemistry and histopathology. ATRA treated mice showed a percentage of inhibition on metastatic tumor growth in lung and liver and a corresponding protection against pathological changes in these organs. Cholesterol and γ-Glutamyl Transferase (GGT) levels found in cancer induced mice were reduced in the ATRA treated group. As compared to the normal group, lung tissue from cell line induced cancer control group had less RAR-β protein expression while the ATRA treated group showed enhanced RAR-β protein expression. This indicates that the anti-metastasis effects of ATRA might have shown the induction of RAR-β expression and subsequent molecular signaling pathways to regulate the homeostasis of biochemical changes. This study demonstrated the capability of ATRA to prevent the establishment of metastasis by the melanoma cell line into the lung and liver of experimental mice.
Collapse
Affiliation(s)
- V M Berlin Grace
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - S Saranya
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - D David Wilson
- School of Arts and Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| |
Collapse
|
5
|
Tao P, Xiao W, Zhou P, Lu G, Li S. Metabolic Profiles in Madin-Darby Canine Kidney Cell Lines Infected with H3N2 Canine Influenza Viruses. Viral Immunol 2020; 33:573-584. [PMID: 33030418 DOI: 10.1089/vim.2020.0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Virus replication and host cell growth require host cell metabolic networks to provide energy and precursors for the synthesis of macromolecules. The aim of this study was to investigate the most direct changes in energy metabolism and small-molecule metabolism of Madin-Darby canine kidney (MDCK) cells infected with H3N2 canine influenza virus (CIV) and to determine whether small metabolites contribute to the pathogenesis of CIV. To study the metabolomics of MDCK cells infected with H3N2 CIV, we used liquid chromatography-tandem mass spectrometry combined with multivariate statistical analysis. The results showed that 798 positive ions were detected, among which 33 were upregulated and 11 were downregulated, and 406 negative ions were detected, among which 33 were upregulated and 9 were downregulated. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, we found that these differentially expressed molecules were mainly concentrated in the steroid hormone biosynthesis, amino sugar and nucleotide sugar metabolism, sphingolipid metabolism, vitamin B6 metabolism, cysteine and methionine metabolism, vitamin digestion and absorption, arginine and proline metabolism, biosynthesis of amino acids, and folate biosynthesis metabolic pathways. These pathways are involved in energy metabolism and nucleic acid and protein synthesis, which are essential for virus replication. Our experimental data suggest that H3N2 CIV infection reconstitutes/influences cellular metabolic processes, which in turn may contribute to viral replication. These findings are important for the development of enzyme inhibitors or metabolites for the identification of antiviral drugs. In addition, understanding the metabolic interaction between CIV and host cells is also very important for the complex pathogenicity of CIV, providing certain guidance for the treatment of canine influenza.
Collapse
Affiliation(s)
- Pan Tao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Weiqi Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Pei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Gang Lu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| |
Collapse
|