1
|
Gadwal A, Purohit P, Khokhar M, Vishnoi JR, Pareek P, Choudhary R, Elhence P, Banerjee M, Sharma P. GALNT6, GALNT14, and Gal-3 in association with GDF-15 promotes drug resistance and stemness of breast cancer via β-catenin axis. Growth Factors 2024; 42:84-100. [PMID: 38889447 DOI: 10.1080/08977194.2024.2368907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
N-acetylgalactosaminyltransferases (GALNTs) are a polypeptide responsible for aberrant glycosylation in breast cancer (BC), but the mechanism is unclear. In this study, expression levels of GALNT6, GALNT14, and Gal-3 were assessed in BC, and their association with GDF-15, β-catenin, stemness (SOX2 and OCT4), and drug resistance marker (ABCC5) was evaluated. Gene expression of GALNT6, GALNT14, Gal-3, GDF-15, OCT4, SOX2, ABCC5, and β-catenin in tumor and adjacent non-tumor tissues (n = 30) was determined. The same was compared with GEO-microarray datasets. A significant increase in the expression of candidate genes was observed in BC tumor compared to adjacent non-tumor tissue; and in pre-therapeutic patients compared to post-therapeutic. GALNT6, GALNT14, Gal-3, and GDF-15 showed positive association with β-catenin, SOX2, OCT4, and ABCC5 and were significantly associated with poor Overall Survival. Our findings were also validated via in silico analysis. Our study suggests that GALNT6, GALNT14, and Gal-3 in association with GDF-15 promote stemness and intrinsic drug resistance in BC, possibly by β-catenin signaling pathway.
Collapse
Affiliation(s)
- Ashita Gadwal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Jeewan Ram Vishnoi
- Department of Oncosurgery, All India Institute of Medical Sciences, Jodhpur, India
| | - Puneet Pareek
- Department of Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, India
| | - Ramkaran Choudhary
- Department of General Surgery, All India Institute of Medical Sciences, Jodhpur, India
| | - Poonam Elhence
- Department of Pathology, All India Institute of Medical Sciences, Jodhpur, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
2
|
Liang D, Gao Q, Meng Z, Li W, Song J, Xue K. Glycosylation in breast cancer progression and mammary development: Molecular connections and malignant transformations. Life Sci 2023; 326:121781. [PMID: 37207809 DOI: 10.1016/j.lfs.2023.121781] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/13/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
INTRODUCTION The cellular behavior in normal mammary gland development and the progression of breast cancer is like the relationship between an object and its mirror image: they may appear similar, but their essence is completely different. Breast cancer can be considered as temporal and spatial aberrations of normal development in mammary gland. Glycans have been shown to regulate key pathophysiological steps during mammary development and breast cancer progression, and the glycoproteins that play a key role in both processes can affect the normal differentiation and development of mammary cells, and even cause malignant transformation or accelerate tumorigenesis due to differences in their type and level of glycosylation. KEY FINDINGS In this review, we summarize the roles of glycan alterations in essential cellular behaviors during breast cancer progression and mammary development, and also highlight the importance of key glycan-binding proteins such as epidermal growth factor receptor, transforming growth factor β receptors and other proteins, which are pivotal in the modulation of cellular signaling in mammary gland. Our review takes an overall view of the molecular interplay, signal transduction and cellular behaviors in mammary gland development and breast cancer progression from a glycobiological perspective. SIGNIFICANCE This review will give a better understanding of the similarities and differences in glycosylation between mammary gland development and breast cancer progression, laying the foundation for elucidating the key molecular mechanisms of glycobiology underlying the malignant transformation of mammary cells.
Collapse
Affiliation(s)
- Dongyang Liang
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Qian Gao
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Zixuan Meng
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Wenzhe Li
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Jiazhe Song
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China.
| | - Kai Xue
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China.
| |
Collapse
|
3
|
Detarya M, Lert-Itthiporn W, Mahalapbutr P, Klaewkla M, Sorin S, Sawanyawisuth K, Silsirivanit A, Seubwai W, Wongkham C, Araki N, Wongkham S. Emerging roles of GALNT5 on promoting EGFR activation in cholangiocarcinoma: a mechanistic insight. Am J Cancer Res 2022; 12:4140-4159. [PMID: 36225633 PMCID: PMC9548001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a lethal cancer in that the incidence is now increasing worldwide. N-acetylgalactosaminyltransferase 5 (GALNT5), an enzyme that initiates the first step of mucin type-O glycosylation, has been reported to promote aggressiveness of CCA cells via the epithelial to the mesenchymal transition (EMT) process, and Akt/Erk activation. In this study, the clinical and biological relevance of GALNT5 and the molecular mechanisms by which GALNT5 modulated EGFR in promoting CCA progression were examined. Using publicly available datasets, upregulation of GALNT5 in patient CCA tissues and its correlation with EGFR expression was noted. High levels of GALNT5 were significantly associated with the short survival of patients, suggesting a prognostic marker of GALNT5 for CCA. GALNT5 modulated EGFR expression as shown in CCA cell lines. Upregulation of GALNT5 significantly increased EGFR mRNA and protein in GALNT5 overexpressing cells, whereas suppression of GALNT5 expression gave the opposite results. The molecular dynamics simulations and MM/PB(GB)SA-based free energy calculations showed that O-glycosylation on the EGFR extracellular domain enhanced the structural stability, compactness, and H-bond formation of the EGF/GalNAc-EGFR complex compared with those of EGF/EGFR. This stabilized the growth factor binding site and fostered stronger interactions between EGF and EGFR. Using the EGF-induced EGFR activation model, GALNT5 was shown to mediate EGFR stability via a decreased rate of EGFR degradation and enhanced EGFR activity by increasing the binding affinity of EGF/EGFR that consequently increasing the activation of EGFR and its downstream effectors Akt and Erk. In summary, GALNT5 was upregulated in CCA tissues and associated with a worse prognosis. The study identified for the first time the impacts of GALNT5 on EGFR activity by increasing: 1) EGFR expression via a transcriptional-dependent mechanism, 2) EGFR stability by reducing EGFR degradation, and 3) EGFR activation through an increased binding affinity of EGF/EGFR which all together fostered the activation of EGFR. These results expanded the understanding of the molecular mechanism of how GALNT5 impacted CCA progression and suggested GALNT5 as a new target for therapeutic intervention against metastatic CCA.
Collapse
Affiliation(s)
- Marutpong Detarya
- Department of Biochemistry, Faculty of Medicine, and Center for Translational Medicine, Khon Kaen UniversityKhon Kaen 40002, Thailand
| | - Worachart Lert-Itthiporn
- Department of Biochemistry, Faculty of Medicine, and Center for Translational Medicine, Khon Kaen UniversityKhon Kaen 40002, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Faculty of Medicine, and Center for Translational Medicine, Khon Kaen UniversityKhon Kaen 40002, Thailand
| | - Methus Klaewkla
- Future Health Innovation Technology Co., Ltd.Bangkok 10170, Thailand
| | - Supannika Sorin
- Department of Biochemistry, Faculty of Medicine, and Center for Translational Medicine, Khon Kaen UniversityKhon Kaen 40002, Thailand
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Faculty of Medicine, and Center for Translational Medicine, Khon Kaen UniversityKhon Kaen 40002, Thailand
| | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, and Center for Translational Medicine, Khon Kaen UniversityKhon Kaen 40002, Thailand
| | - Wunchana Seubwai
- Department of Forensic Medicine, Faculty of Medicine, Khon Kaen UniversityKhon Kaen 40002, Thailand
| | - Chaisiri Wongkham
- Department of Biochemistry, Faculty of Medicine, and Center for Translational Medicine, Khon Kaen UniversityKhon Kaen 40002, Thailand
| | - Norie Araki
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto UniversityKumamoto 860-8556, Japan
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, and Center for Translational Medicine, Khon Kaen UniversityKhon Kaen 40002, Thailand
| |
Collapse
|
4
|
RUNX3-Regulated GALNT6 Promotes the Migration and Invasion of Hepatocellular Carcinoma Cells by Mediating O-Glycosylation of MUC1. DISEASE MARKERS 2022; 2022:2959846. [PMID: 35909886 PMCID: PMC9334053 DOI: 10.1155/2022/2959846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. Dysregulation of messenger RNAs (mRNA) has been recognized to be associated with HCC carcinogenesis and development. Polypeptide GalNAc Transferase 6 (GALNT6), an O-type glycosyltransferase, has been confirmed as tumor promoter in different cancers. However, the function of GALNT6 in HCC remains to be studied. Methods RT-qPCR and western blot experiments were, respectively, performed for evaluating RNA expressions and protein levels. Supported by bioinformatics analysis, mechanism assays were conducted for validating the potential relation between different genes. Functional assays were implemented to analyze HCC cell migration and invasion after different transfections. Results GALNT6 was aberrantly upregulated in HCC cells. Knockdown of GALNT6 could repress HCC cell migration and invasion. RUNX3 was verified to bind to GALNT6 promoter and activate GALNT6 transcription. GALNT6 depletion led to inhibited O-glycosylation and aggravated degradation of MUC1. MUC1 overexpression could rescue the impeded HCC cell migration and invasion induced by GALNT6 knockdown. Conclusion To sum up, GALNT6 transcriptionally activated by RUNX3 mediated the O-glycosylation of MUC1, thus exerting promoting influence on HCC cell migration and invasion.
Collapse
|
5
|
Abstract
This article reviews the discovery of PCSK9, its structure-function characteristics, and its presently known and proposed novel biological functions. The major critical function of PCSK9 deduced from human and mouse studies, as well as cellular and structural analyses, is its role in increasing the levels of circulating low-density lipoprotein (LDL)-cholesterol (LDLc), via its ability to enhance the sorting and escort of the cell surface LDL receptor (LDLR) to lysosomes. This implicates the binding of the catalytic domain of PCSK9 to the EGF-A domain of the LDLR. This also requires the presence of the C-terminal Cys/His-rich domain, its binding to the secreted cytosolic cyclase associated protein 1, and possibly another membrane-bound "protein X". Curiously, in PCSK9-deficient mice, an alternative to the downregulation of the surface levels of the LDLR by PCSK9 is taking place in the liver of female mice in a 17β-estradiol-dependent manner by still an unknown mechanism. Recent studies have extended our understanding of the biological functions of PCSK9, namely its implication in septic shock, vascular inflammation, viral infections (Dengue; SARS-CoV-2) or immune checkpoint modulation in cancer via the regulation of the cell surface levels of the T-cell receptor and MHC-I, which govern the antitumoral activity of CD8+ T cells. Because PCSK9 inhibition may be advantageous in these processes, the availability of injectable safe PCSK9 inhibitors that reduces by 50% to 60% LDLc above the effect of statins is highly valuable. Indeed, injectable PCSK9 monoclonal antibody or small interfering RNA could be added to current immunotherapies in cancer/metastasis.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC, Canada
| |
Collapse
|
6
|
Lebeau PF, Platko K, Byun JH, Makda Y, Austin RC. The Emerging Roles of Intracellular PCSK9 and Their Implications in Endoplasmic Reticulum Stress and Metabolic Diseases. Metabolites 2022; 12:metabo12030215. [PMID: 35323658 PMCID: PMC8954296 DOI: 10.3390/metabo12030215] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
The importance of the proprotein convertase subtilisin/kexin type-9 (PCSK9) gene was quickly recognized by the scientific community as the third locus for familial hypercholesterolemia. By promoting the degradation of the low-density lipoprotein receptor (LDLR), secreted PCSK9 protein plays a vital role in the regulation of circulating cholesterol levels and cardiovascular disease risk. For this reason, the majority of published works have focused on the secreted form of PCSK9 since its initial characterization in 2003. In recent years, however, PCSK9 has been shown to play roles in a variety of cellular pathways and disease contexts in LDLR-dependent and -independent manners. This article examines the current body of literature that uncovers the intracellular and LDLR-independent roles of PCSK9 and also explores the many downstream implications in metabolic diseases.
Collapse
|
7
|
Ding R, Hu X, Hu W, Du Z, Huang P, Wang M, Sheng J, Ma Y, Wang A, Luan X, Dong M, Cao Q, Zou Y, Hu T. Cosmc transfection decreases malignant behavior of Tn + cells and enhances sensitivity to apoptosis when induced by Apo2L/TRAIL via alteration of O-glycan structure. Aging (Albany NY) 2021; 13:23393-23406. [PMID: 34644263 PMCID: PMC8549606 DOI: 10.18632/aging.203633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
Cosmc mutations may cause abnormal O-glycosylation and result in Tn antigen expression. In the current study, it was discovered that proliferation and migration of Tn+ cells (Jurkat T and LS174T-Tn+ cells) with mutant Cosmc decreased after transfected Cosmc, and their sensitivity to apoptosis induced by Apo2L/TRAIL increased. Core 1-, 2-, and 3-derived O-glycans were absent in Tn+ cells. After Cosmc transfection, normal extended core 1-derived O-glycans appeared and were accompanied by increased T-synthase activity. Core 2-derived O-glycans appeared in transfected LS174T-Tn+ cells, and their structural types and levels were lower than those in LS174T-Tn− cells. Core 3-derived O-glycans were present only in LS174T-Tn− cells. The activity of C3GnT in LS174T-Tn+ cells was lower than that in LS174T-Tn− cells, and it was absent in Jurkat T cells. Cosmc transfection did not alter C3GnT activity or core 3-derived O-glycans in Jurkat T and LS174T-Tn+ cells. The results demonstrated that the composition and structure of O-glycans were different among various Tn+ cells, which not only affected cell malignant behavior but also modulated sensitivity to apoptotic stimuli. Thus, Cosmc transfection may effectively decrease the malignant behavior of Tn+ tumor cells and enhance their sensitivity to apoptosis when induced by Apo2L/TRAIL through modification of O-glycans.
Collapse
Affiliation(s)
- Ruisong Ding
- Department of Immunology, Binzhou Medical University, Yantai 264003, PR China
| | - Xingyou Hu
- Qingdao University, Qingdao 266071, PR China
| | - Wen Hu
- Department of Immunology, Binzhou Medical University, Yantai 264003, PR China
| | - Zhenzhen Du
- Department of Immunology, Binzhou Medical University, Yantai 264003, PR China
| | - Panpan Huang
- Department of Immunology, Binzhou Medical University, Yantai 264003, PR China
| | - Mengyang Wang
- Department of Immunology, Binzhou Medical University, Yantai 264003, PR China
| | - Jiaoyue Sheng
- Department of Oncology, Qingdao No.6 People's Hospital, Qingdao 266033, PR China
| | - Yanchao Ma
- Department of Immunology, Binzhou Medical University, Yantai 264003, PR China
| | - Ailing Wang
- Laboratory Department, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong Province 264100, PR China
| | - Xiying Luan
- Department of Immunology, Binzhou Medical University, Yantai 264003, PR China
| | - Menghua Dong
- Department of Immunology, Binzhou Medical University, Yantai 264003, PR China
| | - Qizhi Cao
- Department of Immunology, Binzhou Medical University, Yantai 264003, PR China
| | - Yanfen Zou
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, PR China
| | - Tao Hu
- Department of Immunology, Binzhou Medical University, Yantai 264003, PR China
| |
Collapse
|
8
|
Lebeau PF, Wassef H, Byun JH, Platko K, Ason B, Jackson S, Dobroff J, Shetterly S, Richards WG, Al-Hashimi AA, Won KD, Mbikay M, Prat A, Tang A, Paré G, Pasqualini R, Seidah NG, Arap W, Chrétien M, Austin RC. The loss-of-function PCSK9Q152H variant increases ER chaperones GRP78 and GRP94 and protects against liver injury. J Clin Invest 2021; 131:128650. [PMID: 33211673 DOI: 10.1172/jci128650] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Individuals harboring the loss-of-function (LOF) proprotein convertase subtilisin/kexin type 9 Gln152His variation (PCSK9Q152H) have low circulating low-density lipoprotein cholesterol levels and are therefore protected against cardiovascular disease (CVD). This uncleavable form of proPCSK9, however, is retained in the endoplasmic reticulum (ER) of liver hepatocytes, where it would be expected to contribute to ER storage disease (ERSD), a heritable condition known to cause systemic ER stress and liver injury. Here, we examined liver function in members of several French-Canadian families known to carry the PCSK9Q152H variation. We report that PCSK9Q152H carriers exhibited marked hypocholesterolemia and normal liver function despite their lifelong state of ER PCSK9 retention. Mechanistically, hepatic overexpression of PCSK9Q152H using adeno-associated viruses in male mice greatly increased the stability of key ER stress-response chaperones in liver hepatocytes and unexpectedly protected against ER stress and liver injury rather than inducing them. Our findings show that ER retention of PCSK9 not only reduced CVD risk in patients but may also protect against ERSD and other ER stress-driven conditions of the liver. In summary, we have uncovered a cochaperone function for PCSK9Q152H that explains its hepatoprotective effects and generated a translational mouse model for further mechanistic insights into this clinically relevant LOF PCSK9 variant.
Collapse
Affiliation(s)
- Paul F Lebeau
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton and Hamilton Centre for Kidney Research, Hamilton, Ontario, Canada
| | - Hanny Wassef
- Laboratory of Functional Endoproteolysis, Clinical Research Institute of Montreal, affiliated with the University of Montreal, Montreal, Quebec, Canada
| | - Jae Hyun Byun
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton and Hamilton Centre for Kidney Research, Hamilton, Ontario, Canada
| | - Khrystyna Platko
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton and Hamilton Centre for Kidney Research, Hamilton, Ontario, Canada
| | - Brandon Ason
- Cardiometabolic Disorders, Amgen Research Inc., South San Francisco, California, USA
| | - Simon Jackson
- Cardiometabolic Disorders, Amgen Research Inc., South San Francisco, California, USA
| | | | - Susan Shetterly
- Cardiometabolic Disorders, Amgen Research Inc., South San Francisco, California, USA
| | | | - Ali A Al-Hashimi
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton and Hamilton Centre for Kidney Research, Hamilton, Ontario, Canada
| | - Kevin Doyoon Won
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton and Hamilton Centre for Kidney Research, Hamilton, Ontario, Canada
| | - Majambu Mbikay
- Laboratory of Functional Endoproteolysis, Clinical Research Institute of Montreal, affiliated with the University of Montreal, Montreal, Quebec, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated with the University of Montreal, Montreal, Quebec, Canada
| | - An Tang
- Department of Radiology at the Centre Hospitalier Universitaire de Montréal, University of Montreal, Montreal, Quebec, Canada
| | - Guillaume Paré
- Population Health Research Institute and Departments of Medicine, Epidemiology, and Pathology, McMaster University, Hamilton, Ontario, Canada
| | | | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated with the University of Montreal, Montreal, Quebec, Canada
| | - Wadih Arap
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School and Rutgers Cancer Institute of New Jersey, Newark, New Jersey, USA
| | - Michel Chrétien
- Laboratory of Functional Endoproteolysis, Clinical Research Institute of Montreal, affiliated with the University of Montreal, Montreal, Quebec, Canada
| | - Richard C Austin
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton and Hamilton Centre for Kidney Research, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Calcium as a reliable marker for the quantitative assessment of endoplasmic reticulum stress in live cells. J Biol Chem 2021; 296:100779. [PMID: 34000299 PMCID: PMC8191341 DOI: 10.1016/j.jbc.2021.100779] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/01/2021] [Accepted: 05/11/2021] [Indexed: 11/20/2022] Open
Abstract
Calcium (Ca2+) is an essential mineral of endoplasmic reticulum (ER) luminal biochemistry because of the Ca2+ dependence of ER-resident chaperones charged with folding de novo proteins that transit this cellular compartment. ER Ca2+ depletion reduces the ability of chaperones to properly fold the proteins entering the ER, thus leading to an accumulation of misfolded proteins and the onset of a state known as ER stress. However, not all conditions that cause ER stress do so in a manner dependent on ER Ca2+ depletion. Agents such as tunicamycin inhibit the glycosylation of de novo polypeptides, a key step in the maturation process of newly synthesized proteins. Despite this established effect of tunicamycin, our understanding of how such conditions modulate ER Ca2+ levels is still limited. In the present study, we report that a variety of ER stress–inducing agents that have not been known to directly alter ER Ca2+ homeostasis can also cause a marked reduction in ER Ca2+ levels. Consistent with these observations, protecting against ER stress using small chemical chaperones, such as 4-phenylbutyrate and tauroursodeoxycholic acid, also attenuated ER Ca2+ depletion caused by these agents. We also describe a novel high-throughput and low-cost assay for the rapid quantification of ER stress using ER Ca2+ levels as a surrogate marker. This report builds on our understanding of ER Ca2+ levels in the context of ER stress and also provides the scientific community with a new, reliable tool to study this important cellular process in vitro.
Collapse
|
10
|
Thakur G, Sathe G, Kundu I, Biswas B, Gautam P, Alkahtani S, Idicula-Thomas S, Sirdeshmukh R, Kishore U, Madan T. Membrane Interactome of a Recombinant Fragment of Human Surfactant Protein D Reveals GRP78 as a Novel Binding Partner in PC3, a Metastatic Prostate Cancer Cell Line. Front Immunol 2021; 11:600660. [PMID: 33542717 PMCID: PMC7850985 DOI: 10.3389/fimmu.2020.600660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/15/2020] [Indexed: 01/08/2023] Open
Abstract
Surfactant protein-D (SP-D), a member of the collectin family has been shown to induce apoptosis in cancer cells. SP-D is composed of an N-terminal collagen-like domain and a calcium-dependent carbohydrate recognition domain (CRD). Recently, we reported that a recombinant fragment of human SP-D (rfhSP-D), composed of homotrimeric CRD region, induced intrinsic apoptotic pathway in prostate cancer cells. Here, we analyzed the membrane interactome of rfhSP-D in an androgen-independent prostate cancer cell line, PC3, by high resolution mass spectrometry and identified 347 proteins. Computational analysis of PPI network of this interactome in the context of prostate cancer metastasis and apoptosis revealed Glucose Regulated Protein of 78 kDa (GRP78) as an important binding partner of rfhSP-D. Docking studies suggested that rfhSP-D (CRD) bound to the substrate-binding domain of glycosylated GRP78. This was further supported by the observations that human recombinant GRP78 interfered with the binding of rfhSP-D to anti-SP-D polyclonal antibodies; GRP78 also significantly inhibited the binding of recombinant full-length human SP-D with a monoclonal antibody specific to the CRD in a dose-dependent manner. We conclude that the interaction with rfhSP-D is likely to interfere with the pro-survival signaling of GRP78.
Collapse
Affiliation(s)
- Gargi Thakur
- Department of Innate Immunity, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Gajanan Sathe
- Institute of Bioinformatics, Bengaluru, India.,Manipal Academy of Higher Education, Manipal, India
| | - Indra Kundu
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Barnali Biswas
- Department of Innate Immunity, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Poonam Gautam
- Laboratory of Molecular Oncology, ICMR-National Institute of Pathology, New Delhi, India
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Susan Idicula-Thomas
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Ravi Sirdeshmukh
- Institute of Bioinformatics, Bengaluru, India.,Manipal Academy of Higher Education, Manipal, India
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Taruna Madan
- Department of Innate Immunity, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| |
Collapse
|
11
|
Lin Y, Yin P, Zhu Z, Peng Y, Li M, Li J, Liang L, Yu X. Epigenome-wide association study and network analysis for IgA Nephropathy from CD19 + B-cell in Chinese Population. Epigenetics 2021; 16:1283-1294. [PMID: 33319642 DOI: 10.1080/15592294.2020.1861171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
IgA nephropathy (IgAN) is the most common primary glomerular disease in China and worldwide. The proliferation of B cells is known to be associated with both risk and prognosis of IgAN, but the epigenetic mechanism underlying this association is unknown. In this study we carried out the first Epigenome-wide Association Study (EWAS) by using the latest Infinium Methylation EPIC BeadChip on 184 B cell-specific samples (92 case/control pairs) for Chinese IgAN population. After rigorous data normalization and residual batch effect correction, linear mixed effect model was used to detect methylation CpG sites associated with IgAN adjusting for age, gender and smoking. False discovery rate (FDR) less than 10% was used to account for multiple testing. Weighted gene co-methylation networks were generated to identify gene modules highly correlated with IgAN. A permutation test was performed to account for the potential effect of overfitting. After adjusting clinical covariates and potential technical batch effects, three CpGs corresponding to PCDH17, TERT, WDR82 genes and three in the intergenic regions passed the genome-wide significant threshold. Methylation network analysis identified an additional IgAN associated gene module, containing 72 significant CpGs including GALNT6, IQSEC1, CDC16 and SYS1, involved in the pathway related to tubular atrophy/interstitial fibrosis of IgAN. These results suggested important DNA methylation and gene targets in CD19+ B cells for the pathogenesis of IgAN.
Collapse
Affiliation(s)
- Yifei Lin
- Precision Medicine Center, Department of Urology, Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, China.,Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Peiran Yin
- Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhaozhong Zhu
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Yuan Peng
- Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ming Li
- Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Li
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Liming Liang
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Xueqing Yu
- Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Nephrology, Guangdong Provincial People's Hospital, Guangzhou, China
| |
Collapse
|
12
|
Farshbaf M, Khosroushahi AY, Mojarad-Jabali S, Zarebkohan A, Valizadeh H, Walker PR. Cell surface GRP78: An emerging imaging marker and therapeutic target for cancer. J Control Release 2020; 328:932-941. [DOI: 10.1016/j.jconrel.2020.10.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/12/2022]
|
13
|
Metzendorf C, Wineberger K, Rausch J, Cigliano A, Peters K, Sun B, Mennerich D, Kietzmann T, Calvisi DF, Dombrowski F, Ribback S. Transcriptomic and Proteomic Analysis of Clear Cell Foci (CCF) in the Human Non-Cirrhotic Liver Identifies Several Differentially Expressed Genes and Proteins with Functions in Cancer Cell Biology and Glycogen Metabolism. Molecules 2020; 25:molecules25184141. [PMID: 32927708 PMCID: PMC7570661 DOI: 10.3390/molecules25184141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 01/06/2023] Open
Abstract
Clear cell foci (CCF) of the liver are considered to be pre-neoplastic lesions of hepatocellular adenomas and carcinomas. They are hallmarked by glycogen overload and activation of AKT (v-akt murine thymoma viral oncogene homolog)/mTOR (mammalian target of rapamycin)-signaling. Here, we report the transcriptome and proteome of CCF extracted from human liver biopsies by laser capture microdissection. We found 14 genes and 22 proteins differentially expressed in CCF and the majority of these were expressed at lower levels in CCF. Using immunohistochemistry, the reduced expressions of STBD1 (starch-binding domain-containing protein 1), USP28 (ubiquitin-specific peptidase 28), monad/WDR92 (WD repeat domain 92), CYB5B (Cytochrome b5 type B), and HSPE1 (10 kDa heat shock protein, mitochondrial) were validated in CCF in independent specimens. Knockout of Stbd1, the gene coding for Starch-binding domain-containing protein 1, in mice did not have a significant effect on liver glycogen levels, indicating that additional factors are required for glycogen overload in CCF. Usp28 knockout mice did not show changes in glycogen storage in diethylnitrosamine-induced liver carcinoma, demonstrating that CCF are distinct from this type of cancer model, despite the decreased USP28 expression. Moreover, our data indicates that decreased USP28 expression is a novel factor contributing to the pre-neoplastic character of CCF. In summary, our work identifies several novel and unexpected candidates that are differentially expressed in CCF and that have functions in glycogen metabolism and tumorigenesis.
Collapse
Affiliation(s)
- Christoph Metzendorf
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany; (C.M.); (K.W.); (J.R.); (A.C.); (K.P.); (D.F.C.); (F.D.)
| | - Katharina Wineberger
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany; (C.M.); (K.W.); (J.R.); (A.C.); (K.P.); (D.F.C.); (F.D.)
| | - Jenny Rausch
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany; (C.M.); (K.W.); (J.R.); (A.C.); (K.P.); (D.F.C.); (F.D.)
| | - Antonio Cigliano
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany; (C.M.); (K.W.); (J.R.); (A.C.); (K.P.); (D.F.C.); (F.D.)
| | - Kristin Peters
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany; (C.M.); (K.W.); (J.R.); (A.C.); (K.P.); (D.F.C.); (F.D.)
| | - Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA;
| | - Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90570 Oulu, Finland; (D.M.); (T.K.)
- Biocenter Oulu, University of Oulu, 90570 Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90570 Oulu, Finland; (D.M.); (T.K.)
- Biocenter Oulu, University of Oulu, 90570 Oulu, Finland
| | - Diego F. Calvisi
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany; (C.M.); (K.W.); (J.R.); (A.C.); (K.P.); (D.F.C.); (F.D.)
| | - Frank Dombrowski
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany; (C.M.); (K.W.); (J.R.); (A.C.); (K.P.); (D.F.C.); (F.D.)
| | - Silvia Ribback
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany; (C.M.); (K.W.); (J.R.); (A.C.); (K.P.); (D.F.C.); (F.D.)
- Correspondence: ; Tel.: +49-383-486-5732; Fax: +49-383-486-5778
| |
Collapse
|
14
|
Liu C, Li Z, Xu L, Shi Y, Zhang X, Shi S, Hou K, Fan Y, Li C, Wang X, Zhou L, Liu Y, Qu X, Che X. GALNT6 promotes breast cancer metastasis by increasing mucin-type O-glycosylation of α2M. Aging (Albany NY) 2020; 12:11794-11811. [PMID: 32559179 PMCID: PMC7343513 DOI: 10.18632/aging.103349] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 05/14/2020] [Indexed: 01/22/2023]
Abstract
Breast cancer is the most lethal malignancy in women. N-acetylgalactosaminyltransferase 6 (GALNT6) is an enzyme which mediates the initial step of mucin-type O-glycosylation, and has been reported to be involved in mammary carcinogenesis. However, the molecular mechanism of GALNT6 in breast cancer metastasis has not been fully explored. In this study, based on online database analyses and tissue microarrays, the overall survival (OS) of breast cancer patients with high expression of GALNT6 was found to be shorter than those with low expression of GALNT6. Also, high GALNT6 expression was positively correlated with advanced pN stage and pTNM stage. GALNT6 was shown to be able to promote the migration and invasion of breast cancer cells, and enhance the level of mucin-type O-glycosylation of substrates in the supernatants of breast cancer cells. Qualitative mucin-type glycosylomics analysis identified α2M as a novel substrate of GALNT6. Further investigation showed that GALNT6 increased O-glycosylation of α2M, and the following activation of the downstream PI3K/Akt signaling pathway was involved in the promotion of migration and invasion of breast cancer cells. This study identified a new substrate of GALNT6 and provides novel understanding of the role of GALNT6 in promoting metastasis and poor prognosis in breast cancer.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Breast/pathology
- Breast/surgery
- Breast Neoplasms/diagnosis
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Breast Neoplasms/surgery
- Breast Neoplasms, Male/diagnosis
- Breast Neoplasms, Male/mortality
- Breast Neoplasms, Male/pathology
- Breast Neoplasms, Male/surgery
- Carcinoma, Ductal, Breast/diagnosis
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/secondary
- Carcinoma, Ductal, Breast/surgery
- Cell Line, Tumor
- Datasets as Topic
- Female
- Follow-Up Studies
- Glycosylation
- Humans
- Kaplan-Meier Estimate
- Male
- Mastectomy
- Middle Aged
- N-Acetylgalactosaminyltransferases/metabolism
- Neoplasm Metastasis/pathology
- Neoplasm Staging
- Phosphatidylinositol 3-Kinases/metabolism
- Prognosis
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction
- Tissue Array Analysis
- alpha-Macroglobulins/metabolism
- Polypeptide N-acetylgalactosaminyltransferase
Collapse
Affiliation(s)
- Chang Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
- Department of Internal Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Zhi Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Lu Xu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yu Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaojie Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Sha Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yibo Fan
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaoxun Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Lu Zhou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
15
|
Song J, Liu W, Wang J, Hao J, Wang Y, You X, Du X, Zhou Y, Ben J, Zhang X, Ye M, Wang Q. GALNT6 promotes invasion and metastasis of human lung adenocarcinoma cells through O-glycosylating chaperone protein GRP78. Cell Death Dis 2020; 11:352. [PMID: 32393740 PMCID: PMC7214460 DOI: 10.1038/s41419-020-2537-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
Lung adenocarcinoma remains a threat to human health due to its high rate of recurrence and distant metastasis. However, the molecular mechanism underlying lung adenocarcinoma metastasis remains yet incompletely understood. Here, we show that upregulated expression of polypeptide N-acetylgalactosaminyltransferase6 (GALNT6) in lung adenocarcinoma is associated with lymph node metastasis and poor prognosis. In lung adenocarcinoma cells, GALNT6 over-expression promoted epithelial-mesenchymal transition (EMT), wound healing, and invasion which could be significantly reversed by GALNT6 silencing. GALNT6 silencing also mitigated the metastasis of lung adenocarcinoma and prolonged the survival of xenograft tumor-bearing mice. Furthermore, GALNT6 directly interacted with, and O-glycosylated chaperone protein GRP78, which promoted EMT by enhancing the MEK1/2/ERK1/2 signaling in lung cancer cells. Therefore, GALNT6 is emerging as novel positive regulator for the malignancy of human lung adenocarcinoma. Targeting GALNT6-GRP78-MEK1/2/ERK1/2 may thus represent a new avenue to develop therapeutics against lung cancer metastasis.
Collapse
Affiliation(s)
- Jing Song
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116023, China
| | - Wenwen Liu
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116023, China
| | - Jianzhen Wang
- Department of Respiratory and Critical Care Medicine, The First Hospital, Shanxi Medical University, No. 85Jiefang South Road, Taiyuan, Shanxi, 030001, China
| | - Junxia Hao
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116023, China
| | - Yingyan Wang
- Laboratory Center for Diagnostics, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, Liaoning, 116044, China
| | - Xin You
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, No. 457 Zhongshan Road, Dalian, Liaoning, 116023, China
| | - Xiaohui Du
- Department of Scientific Research Center, The Second Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116023, China
| | - Yang Zhou
- Department of Scientific Research Center, The Second Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116023, China
| | - Jing Ben
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116023, China
| | - Xinri Zhang
- Department of Respiratory and Critical Care Medicine, The First Hospital, Shanxi Medical University, No. 85Jiefang South Road, Taiyuan, Shanxi, 030001, China.
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, No. 457 Zhongshan Road, Dalian, Liaoning, 116023, China.
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116023, China.
| |
Collapse
|
16
|
Liu X, Zhang Y, Han Y, Lu W, Yang J, Tian J, Sun P, Yu T, Hu Y, Zhang H, Huang P, Liu P. Overexpression of GLT1D1 induces immunosuppression through glycosylation of PD-L1 and predicts poor prognosis in B-cell lymphoma. Mol Oncol 2020; 14:1028-1044. [PMID: 32157792 PMCID: PMC7191186 DOI: 10.1002/1878-0261.12664] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/14/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
B‐cell non‐Hodgkin's lymphoma (NHL) is a class of heterogeneous diseases with variable clinical outcomes. Immunosuppression is particularly common in the subtypes of lymphoma with poor prognosis, but the underlying mechanism remains unclear. Using a RT‐PCR array analysis, we have identified that glycosyltransferase 1 domain‐containing 1 (GLT1D1), an enzyme that transfers glycosyl groups to proteins, is highly upregulated in the incurable subtype of B‐cell NHL and in early relapse diffuse large B‐cell lymphoma. Analysis of clinical specimens revealed that GLT1D1 expression was positively correlated with the level of glycosylated programmed cell death‐ligand 1 (PD‐L1) in B‐cell NHL and that high GLT1D1 expression was associated with poor prognosis. Mechanistically, we showed that GLT1D1 transferred N‐linked glycans to PD‐L1, thus promoting the immunosuppressive function of glycosylated PD‐L1. Downregulation of GLT1D1 resulted in a decrease of glycosylated PD‐L1 and enhanced cytotoxic T‐cell function against lymphoma cells. In vivo, overexpression of GLT1D1 promoted tumor growth by facilitating tumor immune escape through increased levels of PD‐L1. Our work has identified GLT1D1 as a predictive biomarker for B‐cell NHL. It has also shown that this enzyme enhances PD‐L1 stabilization via N‐glycosylation, thus promoting immunosuppression and tumor growth. As such, GLT1D1 might be a novel therapeutic target for the treatment of B‐NHL.
Collapse
Affiliation(s)
- Xiaoxia Liu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanyu Zhang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yi Han
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wenhua Lu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jing Yang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jingyu Tian
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Metabolic Innovation Center, Sun Yat-Sen University, Guangzhou, China
| | - Peng Sun
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tiantian Yu
- Metabolic Innovation Center, Sun Yat-Sen University, Guangzhou, China
| | - Yumin Hu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hui Zhang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Metabolic Innovation Center, Sun Yat-Sen University, Guangzhou, China
| | - Peng Huang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Panpan Liu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
17
|
Kimura R, Yoshimaru T, Matsushita Y, Matsuo T, Ono M, Park JH, Sasa M, Miyoshi Y, Nakamura Y, Katagiri T. The GALNT6‑LGALS3BP axis promotes breast cancer cell growth. Int J Oncol 2020; 56:581-595. [PMID: 31894262 DOI: 10.3892/ijo.2019.4941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/24/2019] [Indexed: 11/05/2022] Open
Abstract
Polypeptide N‑acetylgalactosaminyltransferase 6 (GALNT6), which is involved in the initiation of O‑glycosylation, has been reported to play crucial roles in mammary carcinogenesis through binding to several substrates; however, its biological roles in mediating growth‑promoting effects remain unknown. The present study demonstrated a crucial pathophysiological role of GALNT6 through its O‑glycosylation of lectin galactoside‑binding soluble 3 binding protein (LGALS3BP), a secreted growth‑promoting glycoprotein, in breast cancer growth. The Cancer Genome Atlas data analysis revealed that high expression levels of GALNT6 were significantly associated with poor prognosis of breast cancer. GALNT6 O‑glycosylated LGALS3BP in breast cancer cells, whereas knockdown of GALNT6 by siRNA led to the inhibition of both the O‑glycosylation and secretion of LGALS3BP, resulting in the suppression of breast cancer cell growth. Notably, LGALS3BP is potentially O‑glycosylated at three sites (T556, T571 and S582) by GALNT6, thereby promoting autocrine cell growth, whereas the expression of LGALS3BP with three Ala substitutions (T556A, T571A and S582A) in cells drastically reduced GALNT6‑dependent LGALS3BP O‑glycosylation and secretion, resulting in suppression of autocrine growth‑promoting effect. The findings of the present study suggest that the GALNT6‑LGALS3BP axis is crucial for breast cancer cell proliferation and may be a therapeutic target and biomarker for mammary tumors.
Collapse
Affiliation(s)
- Ryuichiro Kimura
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Tokushima 770‑8503, Japan
| | - Tetsuro Yoshimaru
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Tokushima 770‑8503, Japan
| | - Yosuke Matsushita
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Tokushima 770‑8503, Japan
| | - Taisuke Matsuo
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Tokushima 770‑8503, Japan
| | - Masaya Ono
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo 104‑0045, Japan
| | - Jae-Hyun Park
- Cancer Precision Medicine, Inc., Kawasaki, Kanagawa 210‑0821, Japan
| | - Mitsunori Sasa
- Department of Surgery, Tokushima Breast Care Clinic, Tokushima, Tokushima 770‑0052, Japan
| | - Yasuo Miyoshi
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Yusuke Nakamura
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135‑8550, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Tokushima 770‑8503, Japan
| |
Collapse
|
18
|
Forcella M, Lau P, Oldani M, Melchioretto P, Bogni A, Gribaldo L, Fusi P, Urani C. Neuronal specific and non-specific responses to cadmium possibly involved in neurodegeneration: A toxicogenomics study in a human neuronal cell model. Neurotoxicology 2020; 76:162-173. [DOI: 10.1016/j.neuro.2019.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/23/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022]
|
19
|
Bello C, Rovero P, Papini AM. Just a spoonful of sugar: Short glycans affect protein properties and functions. J Pept Sci 2019; 25:e3167. [PMID: 30924227 DOI: 10.1002/psc.3167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/09/2022]
Abstract
Glycosylation has a strong impact on the chemical and physical properties of proteins and on their activity. The heterogeneous nature of this modification complicates the elucidation of the role of each glycan, thus slowing down the progress in glycobiology. Nevertheless, the great advances recently made in protein engineering and in the chemical synthesis, and semisynthesis of glycoproteins are giving impulse to the field, fostering important discoveries. In this review, we report on the findings of the last two decades on the importance that the attachment site, linkage, and composition of short glycans have in affecting protein properties and functions.
Collapse
Affiliation(s)
- Claudia Bello
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Paolo Rovero
- Laboratory of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Italy
| | - Anna Maria Papini
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy.,PeptLab@UCP Platform and Laboratory of Chemical Biology EA4505, University Paris-Seine, Cergy-Pontoise CEDEX, France
| |
Collapse
|
20
|
Mao Y, Zhang Y, Fan S, Chen L, Tang L, Chen X, Lyu J. GALNT6 Promotes Tumorigenicity and Metastasis of Breast Cancer Cell via β-catenin/MUC1-C Signaling Pathway. Int J Biol Sci 2019; 15:169-182. [PMID: 30662357 PMCID: PMC6329923 DOI: 10.7150/ijbs.29048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/02/2018] [Indexed: 01/07/2023] Open
Abstract
Polypeptide N-acetylgalactosaminyl transferase-6 (GALNT6), a member of the N-acetyl-D-galactosamine transferase family, was shown to be over-expression in mammary cancer and could be used as a biomarker. However, its roles and underlying mechanisms in the pathogenesis of breast cancer are still unclear. In this study, we reported that GALNT6 was up-expression in breast cancer, and it was not associated with tumor stage. The expression level of GALNT6 and menopause status was associated with patient survival. Biological function results illustrated that knockdown of GALNT6 inhibited proliferation, migration and invasion of MDA-MB-231 cells, and increased cell apoptosis. Knockdown of GALNT6 in breast cancer cell attenuated the protein expression of PCNA, cyclin D1, C-myc and β-catenin, and increased the expression of E-cadherin, caspase 3 and cleaved PARP1. Cell fractionation assay showed that knockdown of GALNT6 reduced the levels of β-catenin and MUC1-C in nucleus. Simultaneously knockdown of GALNT6 and β-catenin significantly reduced the level of C-myc. Co-IP experiments indicated that GALNT6 interacted with MUC1-N, β-catenin interacting with MUC1-C in breast cancer cells. Together, our study reveals that GALNT6 promotes tumorigenicity and metastasis through β-catenin/MUC1-C signaling pathway.
Collapse
Affiliation(s)
- Yingge Mao
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Present address: The First Affiliated Hospital of Henan University
| | - Yuqi Zhang
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sairong Fan
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lvao Chen
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lili Tang
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoming Chen
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianxin Lyu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Deng B, Tarhan YE, Ueda K, Ren L, Katagiri T, Park JH, Nakamura Y. Critical Role of Estrogen Receptor Alpha O-Glycosylation by N-Acetylgalactosaminyltransferase 6 (GALNT6) in Its Nuclear Localization in Breast Cancer Cells. Neoplasia 2018; 20:1038-1044. [PMID: 30208353 PMCID: PMC6138801 DOI: 10.1016/j.neo.2018.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/12/2018] [Accepted: 08/20/2018] [Indexed: 12/28/2022]
Abstract
Alteration of protein O-glycosylation in various human cancers including breast cancer is well known, but molecular roles of their aberrant glycosylations on cancer have not been fully understood. We previously reported critical roles of polypeptide N-acetylgalactosaminyltransferase 6 (GALNT6 or GalNAc-T6) that was upregulated in a great majority of breast cancer tissues. Here we further report O-glycosylation of estrogen receptor alpha (ER-α) by GALNT6 and the significant role of its nuclear localization in breast cancer cells. Knockdown of GALNT6 expression in two breast cancer cell lines, T47D and MCF7, in which both ER-α and GALNT6 were highly expressed, by small interfering RNA could significantly attenuate expression of ER-α. Immunocytochemical analysis clearly demonstrated the drastic decrease of ER-α protein in the nucleus of these cancer cells. Accordingly, the downstream genes of the ER-α pathway such as MYC, CCND1, and CTSD were significantly downregulated. We confirmed GALNT6-dependent ER-α O-glycosylation and identified O-glycosylation of S573 in an F domain of ER-α by GALNT6 through LC-MS/MS analysis. We also obtained evidences showing that the glycosylation of ER-α at S573 by GALNT6 is essential for protein stability and nuclear localization of ER-α in breast cancer cells. Furthermore, we designed cell membrane-permeable peptides including the O-glycosylation site and found a significant decrease of the cell viability of breast cancer cells by treatment of these peptides in a GALNT6 expression-dependent manner. Our study suggests that targeting the GALNT6 enzymatic activity as well as the GALNT6/ER-α interaction could be a promising therapeutic approach to ER-α-positive breast cancer patients.
Collapse
Affiliation(s)
- Boya Deng
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Yunus Emre Tarhan
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine Research Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Lili Ren
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan
| | - Jae-Hyun Park
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Yusuke Nakamura
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
22
|
Reverendo M, Mendes A, Argüello RJ, Gatti E, Pierre P. At the crossway of ER-stress and proinflammatory responses. FEBS J 2018; 286:297-310. [PMID: 29360216 DOI: 10.1111/febs.14391] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/12/2018] [Accepted: 01/18/2018] [Indexed: 12/13/2022]
Abstract
Immune cells detect specific microbes or damage to tissue integrity in order to initiate efficient immune responses. Abnormal accumulation of proteins in the endoplasmic reticulum (ER) can be seen as a sign of cellular malfunction and stress that triggers a collection of conserved emergency rescue programs. These different signaling cascades, which favor ER proteostasis and promote cell survival, are collectively known as the unfolded protein response (UPR). In recent years, a synergy between the UPR and inflammatory cytokine production has been unraveled, with different branches of the UPR entering in a cross-talk with specialized microbe sensing pathways, which turns on or amplify inflammatory cytokines production. Complementary to this synergetic activity, UPR induction alone, can itself be seen as a danger signal, and triggers directly or indirectly inflammation in different cellular and pathological models, this independently of the presence of pathogens. Here, we discuss recent advances on the nature of these cross-talks and how innate immunity, metabolism dysregulation, and ER-signaling pathways intersect in specialized immune cells, such as dendritic cells (DCs), and contribute to the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Marisa Reverendo
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille cedex 9, France.,International Associated Laboratory (LIA) CNRS 'Mistra', Marseille cedex 9, France
| | - Andreia Mendes
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille cedex 9, France.,International Associated Laboratory (LIA) CNRS 'Mistra', Marseille cedex 9, France
| | - Rafael J Argüello
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille cedex 9, France
| | - Evelina Gatti
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille cedex 9, France.,International Associated Laboratory (LIA) CNRS 'Mistra', Marseille cedex 9, France.,Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, Department of Medical Sciences, University of Aveiro, Portugal
| | - Philippe Pierre
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille cedex 9, France.,International Associated Laboratory (LIA) CNRS 'Mistra', Marseille cedex 9, France.,Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, Department of Medical Sciences, University of Aveiro, Portugal
| |
Collapse
|