1
|
You Q, Li R, Yao J, Zhang YC, Sui X, Xiao CC, Zhang JB, Xiao JQ, Chen HT, Li H, Zhang J, Zheng J, Yang Y. Insights into lenvatinib resistance: mechanisms, potential biomarkers, and strategies to enhance sensitivity. Med Oncol 2024; 41:75. [PMID: 38381181 DOI: 10.1007/s12032-023-02295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/28/2023] [Indexed: 02/22/2024]
Abstract
Lenvatinib is a multitargeted tyrosine kinase inhibitor capable of promoting apoptosis, suppressing angiogenesis, inhibiting tumor cell proliferation, and modulating the immune response. In multiple cancer types, lenvatinib has presented manageable safety and is currently approved as an effective first-line therapy. However, with the gradual increase in lenvatinib application, the inevitable progression of resistance to lenvatinib is becoming more prevalent. A series of recent researches have reported the mechanisms underlying the development of lenvatinib resistance in tumor therapy, which are related to the regulation of cell death or proliferation, histological transformation, metabolism, transport processes, and epigenetics. In this review, we aim to outline recent discoveries achieved in terms of the mechanisms and potential predictive biomarkers of lenvatinib resistance as well as to summarize untapped approaches available for improving the therapeutic efficacy of lenvatinib in patients with various types of cancers.
Collapse
Affiliation(s)
- Qiang You
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Rong Li
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jia Yao
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Ying-Cai Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xin Sui
- Surgical ICU of the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Cui-Cui Xiao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jie-Bin Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jia-Qi Xiao
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Hai-Tian Chen
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Hua Li
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jian Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China.
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China.
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
2
|
Hwang Y, Yun HJ, Jeong JW, Kim M, Joo S, Lee HK, Chang HS, Kim SM, Fang S. Co-inhibition of glutaminolysis and one-carbon metabolism promotes ROS accumulation leading to enhancement of chemotherapeutic efficacy in anaplastic thyroid cancer. Cell Death Dis 2023; 14:515. [PMID: 37573361 PMCID: PMC10423221 DOI: 10.1038/s41419-023-06041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Anaplastic thyroid cancer (ATC) is one of the most aggressive tumors with an extremely poor prognosis. Based on the several biological features related to glutamine metabolism in ATC, we hypothesized glutaminolysis inhibition induces cell death in ATC cells. However, glutamine metabolism inhibition triggered cell growth arrest independent of cell death in ATC, suggesting that other signaling pathways avoid glutamine metabolism inhibition-induced stress exist. To investigate the functional mechanism against glutamine metabolism inhibition, we conducted mRNA and ATAC-Sequencing data analysis and found that glutamine deprivation increased ATF4-mediated one-carbon metabolism. When we inhibited PHGDH, the first rate-limiting enzyme for one-carbon metabolism, cell growth arrest was promoted upon glutamine metabolism inhibition by accumulating intracellular ROS. We next observed that the co-inhibition of glutamine and one-carbon metabolism could augment the anticancer effects of drugs used in patients with ATC. Finally, single-cell RNA sequencing analysis revealed that one-carbon metabolism was strengthened through the evolutionary process from PTC to ATC. Collectively, our data demonstrate that one-carbon metabolism has a potential role of modulation of cell fate in metabolic stress and can be a therapeutic target for enhancing antitumor effects in ATC.
Collapse
Affiliation(s)
- Yeseong Hwang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Hyeok Jun Yun
- Department of Surgery, Thyroid Cancer Center, Institute of Refractory Thyroid Cancer, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Woong Jeong
- Department of Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Minki Kim
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Seyeon Joo
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Hae-Kyung Lee
- Severance Biomedical Science Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hang-Seok Chang
- Department of Surgery, Thyroid Cancer Center, Institute of Refractory Thyroid Cancer, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seok-Mo Kim
- Department of Surgery, Thyroid Cancer Center, Institute of Refractory Thyroid Cancer, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| | - Sungsoon Fang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea.
- Severance Biomedical Science Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Korea.
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
3
|
Zhang K, Wang J, He Z, Qiu X, Sa R, Chen L. Epigenetic Targets and Their Inhibitors in Thyroid Cancer Treatment. Pharmaceuticals (Basel) 2023; 16:ph16040559. [PMID: 37111316 PMCID: PMC10142462 DOI: 10.3390/ph16040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Although biologically targeted therapies based on key oncogenic mutations have made significant progress in the treatment of locally advanced or metastatic thyroid cancer, the challenges of drug resistance are urging us to explore other potentially effective targets. Herein, epigenetic modifications in thyroid cancer, including DNA methylation, histone modifications, non-coding RNAs, chromatin remodeling and RNA alterations, are reviewed and epigenetic therapeutic agents for the treatment of thyroid cancer, such as DNMT (DNA methyltransferase) inhibitors, HDAC (histone deacetylase) inhibitors, BRD4 (bromodomain-containing protein 4) inhibitors, KDM1A (lysine demethylase 1A) inhibitors and EZH2 (enhancer of zeste homolog 2) inhibitors, are updated. We conclude that epigenetics is promising as a therapeutic target in thyroid cancer and further clinical trials are warranted.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Junyao Wang
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Ziyan He
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Xian Qiu
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Ri Sa
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Department of Nuclear Medicine, The First Hospital of Jilin University, 1 Xinmin St., Changchun 130021, China
| | - Libo Chen
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
4
|
Bo W, Chen Y. Lenvatinib resistance mechanism and potential ways to conquer. Front Pharmacol 2023; 14:1153991. [PMID: 37153782 PMCID: PMC10157404 DOI: 10.3389/fphar.2023.1153991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
Lenvatinib (LVN) has been appoved to treat advanced renal cell carcinoma, differentiated thyroid carcinoma, hepatocellular carcinoma. Further other cancer types also have been tried in pre-clinic and clinic without approvation by FDA. The extensive use of lenvastinib in clinical practice is sufficient to illustrate its important therapeutic role. Although the drug resistance has not arised largely in clinical, the studies focusing on the resistance of LVN increasingly. In order to keep up with the latest progress of resistance caused by LVN, we summerized the latest studies from identify published reports. In this review, we found the latest report about resistance caused by lenvatinib, which were contained the hotspot mechanism such as the epithelial-mesenchymal transition, ferroptosis, RNA modification and so on. The potential ways to conquer the resistance of LVN were embraced by nanotechnology, CRISPR technology and traditional combined strategy. The latest literature review of LVN caused resistance would bring some ways for further study of LVN. We call for more attention to the pharmacological parameters of LVN in clinic, which was rarely and would supply key elements for drug itself in human beings and help to find the resistance target or idea for further study.
Collapse
Affiliation(s)
- Wentao Bo
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Chen
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Yan Chen,
| |
Collapse
|
5
|
Protein tyrosine kinase inhibitor resistance in malignant tumors: molecular mechanisms and future perspective. Signal Transduct Target Ther 2022; 7:329. [PMID: 36115852 PMCID: PMC9482625 DOI: 10.1038/s41392-022-01168-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/08/2022] [Accepted: 08/26/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractProtein tyrosine kinases (PTKs) are a class of proteins with tyrosine kinase activity that phosphorylate tyrosine residues of critical molecules in signaling pathways. Their basal function is essential for maintaining normal cell growth and differentiation. However, aberrant activation of PTKs caused by various factors can deviate cell function from the expected trajectory to an abnormal growth state, leading to carcinogenesis. Inhibiting the aberrant PTK function could inhibit tumor growth. Therefore, tyrosine kinase inhibitors (TKIs), target-specific inhibitors of PTKs, have been used in treating malignant tumors and play a significant role in targeted therapy of cancer. Currently, drug resistance is the main reason for limiting TKIs efficacy of cancer. The increasing studies indicated that tumor microenvironment, cell death resistance, tumor metabolism, epigenetic modification and abnormal metabolism of TKIs were deeply involved in tumor development and TKI resistance, besides the abnormal activation of PTK-related signaling pathways involved in gene mutations. Accordingly, it is of great significance to study the underlying mechanisms of TKIs resistance and find solutions to reverse TKIs resistance for improving TKIs efficacy of cancer. Herein, we reviewed the drug resistance mechanisms of TKIs and the potential approaches to overcome TKI resistance, aiming to provide a theoretical basis for improving the efficacy of TKIs.
Collapse
|
6
|
Zhang Y, Xing Z, Liu T, Tang M, Mi L, Zhu J, Wu W, Wei T. Targeted therapy and drug resistance in thyroid cancer. Eur J Med Chem 2022; 238:114500. [DOI: 10.1016/j.ejmech.2022.114500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022]
|
7
|
Modulation of the tumour microenvironment in hepatocellular carcinoma by tyrosine kinase inhibitors: from modulation to combination therapy targeting the microenvironment. Cancer Cell Int 2022; 22:73. [PMID: 35148789 PMCID: PMC8840552 DOI: 10.1186/s12935-021-02435-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide. Tyrosine kinase inhibitors (TKIs) remain the backbone of systematic therapy for advanced hepatocellular carcinoma. Sorafenib and lenvatinib are currently approved as first-line therapeutic drugs, and regorafenib and cabozantinib are applied as second-line treatments. With inhibition of angiogenesis as the main target, TKIs exert a profound effect on the tumour microenvironment (TME). The TME is a complex mixture of cellular and noncellular components surrounding the tumour mass, and is associated with tumour progression partially through the epithelial-mesenchymal transition. Specifically, the TME of HCC is characterized by profound extracellular matrix remodelling and an immunosuppressive microenvironment. The purpose of this review is to provide a summary of TME remodelling mediated by four Food and Drug Administration approved TKIs in HCC and thus summarize the rationale and potential targets for combination therapy. The modulatory effect of TKIs on the TME of HCC was reported to enhance the antitumour effect of TKIs through pyroptosis of macrophages and subsequent natural killer cell activation, T cell activation, regulatory T cell reduction in HCC. Meanwhile, TKIs also induce drug resistance via M2 polarization and accumulation, recruitment of tumour-associated neutrophils, and induction of the epithelial-mesenchymal transition. In conclusion, the effect of TKIs on TME can enhance its antitumour effect, but might also partially contribute to the drug resistance that hinders the progression of TKIs as treatment for HCC. Additionally, the effect of TKIs also provides the rationale for combination therapy, including combining TKIs with immune checkpoint inhibitors, to facilitate increased drug efficacy of TKIs.
Collapse
|
8
|
Effects of Anti-Cancer Drug Sensitivity-Related Genetic Differences on Therapeutic Approaches in Refractory Papillary Thyroid Cancer. Int J Mol Sci 2022; 23:ijms23020699. [PMID: 35054884 PMCID: PMC8776099 DOI: 10.3390/ijms23020699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Thyroid cancer (TC) includes tumors of follicular cells; it ranges from well differentiated TC (WDTC) with generally favorable prognosis to clinically aggressive poorly differentiated TC (PDTC) and undifferentiated TC (UTC). Papillary thyroid cancer (PTC) is a WDTC and the most common type of thyroid cancer that comprises almost 70–80% of all TC. PTC can present as a solid, cystic, or uneven mass that originates from normal thyroid tissue. Prognosis of PTC is excellent, with an overall 10-year survival rate >90%. However, more than 30% of patients with PTC advance to recurrence or metastasis despite anti-cancer therapy; consequently, systemic therapy is limited, which necessitates expansion of improved clinical approaches. We strived to elucidate genetic distinctions due to patient-derived anti-cancer drug-sensitive or -resistant PTC, which can support in progress novel therapies. Patients with histologically proven PTC were evaluated. PTC cells were gained from drug-sensitive and -resistant patients and were compared using mRNA-Seq. We aimed to assess the in vitro and in vivo synergistic anti-cancer effects of a novel combination therapy in patient-derived refractory PTC. This combination therapy acts synergistically to promote tumor suppression compared with either agent alone. Therefore, genetically altered combination therapy might be a novel therapeutic approach for refractory PTC.
Collapse
|
9
|
Genome-scale CRISPR-Cas9 knockout screening in hepatocellular carcinoma with lenvatinib resistance. Cell Death Discov 2021; 7:359. [PMID: 34795217 PMCID: PMC8602346 DOI: 10.1038/s41420-021-00747-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022] Open
Abstract
Lenvatinib is the first target drug approved for advanced hepatocellular carcinoma (HCC). However, the development of drug resistance is common, and the mechanisms of lenvatinib resistance and resistant targets in HCC are poorly understood. By using CRISPR/Cas9 library screening, we screened out two key resistance genes, neurofibromin 1(NF1), and dual specificity phosphatase 9 (DUSP9), as critical drivers for lenvatinib resistance in HCC. With RNAi knockdown and CRISPR/Cas9 knockout models, we further clarified the mechanisms by which NF1 loss reactivates the PI3K/AKT and MAPK/ERK signaling pathways, while DUSP9 loss activates the MAPK/ERK signaling pathways, thereby inactivating FOXO3, followed by degradation of FOXO3, finally induced lenvatinib resistance. We also screened out trametinib, a small molecule pathway inhibitor for MEK, that can be used to reverse resistance induced by NF1 and DUSP9 loss in HCC cells. Trametinib was still able to halt HCC growth even when NF1 was knocked out in mice. Collectively, the findings indicate that NF1 and DUSP9 takes critical role in lenvatinib resistance and may be novel specific targets and predictive markers for lenvatinib resistance in HCC.
Collapse
|
10
|
Spartalis E, Kotrotsios K, Chrysikos D, Spartalis M, Paschou SA, Schizas D, Tsamakis K, Dimitroulis D, Troupis T, Nikiteas N. Histone Deacetylase Inhibitors and Papillary Thyroid Cancer. Curr Pharm Des 2021; 27:2199-2208. [PMID: 33308111 DOI: 10.2174/1381612826666201211112234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/21/2020] [Indexed: 12/07/2022]
Abstract
BACKGROUND/AIM Papillary Thyroid Cancer (PTC) is the most common type of endocrine malignancy. Although PTC has an excellent prognosis, the recurrent or metastatic disease could affect patients' survival. Recent studies show that Histone Deacetylase Inhibitors (HDACIs) might be promising anticancer agents against PTC. The aim of this review is to evaluate the role of HDACIs as an additional modality in PTC treatment and to depict the latest trends of current research on this field. MATERIALS AND METHODS This literature review was performed using the MEDLINE database. The search strategy included terms: "thyroid cancer", "papillary", "HDAC", "histone", and "deacetylase". RESULTS Agents, such as Suberoyl Anilide Hydroxamic Acid, Trichostatin A, Valproic Acid, Sodium butyrate, Panobinostat, Belinostat, Romidepsin, CUDC907 and N-Hydroxy-7-(2-naphthylthio)-Hepanomide have shown promising anti-cancer effects on PTC cell lines but fail to trigger a major response in clinical trials. CONCLUSION HDACIs have no significant effect as monotherapy against PTC, but further research needs to be conducted in order to investigate their potential effect when used as an additional modality.
Collapse
Affiliation(s)
- Eleftherios Spartalis
- 2nd Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Konstantinos Kotrotsios
- 2nd Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Dimosthenis Chrysikos
- Department of Anatomy, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Michael Spartalis
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas", National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Stavroula A Paschou
- Division of Endocrinology and Diabetes, Aghia Sophia Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Dimitrios Schizas
- 1st Department of Surgery, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Tsamakis
- Second Department of Psychiatry, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Dimitrios Dimitroulis
- 2nd Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Theodore Troupis
- Department of Anatomy, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Nikolaos Nikiteas
- 2nd Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| |
Collapse
|
11
|
Oura K, Takuma K, Nakahara M, Tadokoro T, Fujita K, Mimura S, Tani J, Morishita A, Kobara H, Masaki T. Multimodal treatment involving molecular targeted agents and on-demand transcatheter arterial chemoembolization for advanced hepatocellular carcinoma: A case report and review of the literature. Mol Clin Oncol 2021; 15:154. [PMID: 34178325 PMCID: PMC8220648 DOI: 10.3892/mco.2021.2316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Formulating sequential therapeutic strategies based on the pathological conditions of patients and by using molecular targeted agents (MTAs) and transcatheter arterial chemoembolization (TACE) is crucial for the treatment of unresectable advanced hepatocellular carcinoma (HCC). The current report presents the case of a patient with HCC involving a large intrahepatic primary tumor and lung metastases, and discusses treatment strategies for advanced HCC based on the current literature. Sequential therapy with MTAs was effective after TACE. Lenvatinib was effective for treating the metastases in the lungs and spleen. Only the progressing intrahepatic tumor was additionally treated with TACE. The patient has been alive for 3 years and continued lenvatinib treatment without HCC progression or decline in liver function. In conclusion, although multiple MTAs introduced into the clinic have been gradually replacing TACE, on-demand TACE in the multidisciplinary treatment of advanced HCC may be effective for intrahepatic hypervascular tumors resistant to MTAs, including lenvatinib. It may be possible to re-initiate lenvatinib treatment with good efficacy against distant metastatic lesions, thereby contributing to long-term survival.
Collapse
Affiliation(s)
- Kyoko Oura
- Department of Gastroenterology and Neurology, Kagawa University, Miki, Kita, Kagawa 761-0793, Japan
| | - Kei Takuma
- Department of Gastroenterology and Neurology, Kagawa University, Miki, Kita, Kagawa 761-0793, Japan
| | - Mai Nakahara
- Department of Gastroenterology and Neurology, Kagawa University, Miki, Kita, Kagawa 761-0793, Japan
| | - Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Kagawa University, Miki, Kita, Kagawa 761-0793, Japan
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Kagawa University, Miki, Kita, Kagawa 761-0793, Japan
| | - Shima Mimura
- Department of Gastroenterology and Neurology, Kagawa University, Miki, Kita, Kagawa 761-0793, Japan
| | - Joji Tani
- Department of Gastroenterology and Neurology, Kagawa University, Miki, Kita, Kagawa 761-0793, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University, Miki, Kita, Kagawa 761-0793, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Kagawa University, Miki, Kita, Kagawa 761-0793, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University, Miki, Kita, Kagawa 761-0793, Japan
| |
Collapse
|
12
|
Cai J, Cui Y, Yang J, Wang S. Epithelial-mesenchymal transition: When tumor cells meet myeloid-derived suppressor cells. Biochim Biophys Acta Rev Cancer 2021; 1876:188564. [PMID: 33974950 DOI: 10.1016/j.bbcan.2021.188564] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous myeloid cell population characterized by protumoral functions in the tumor immune network. An increasing number of studies have focused on the biological functions of MDSCs in tumor immunity. Epithelial-mesenchymal transition (EMT) is a cellular plasticity process accompanied by a loss of epithelial phenotypes and an acquisition of mesenchymal phenotypes. In general, tumor cells that undergo EMT are more likely to invade and metastasize. Recently, extensive evidence suggests that EMT is closely related to a highly immunosuppressive environment. This review will summarize the immunosuppressive capacities of MDSC subsets and their distinct role in tumor EMT and further discuss immunotherapy for tumor EMT by targeting MDSCs.
Collapse
Affiliation(s)
- Jingshan Cai
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yudan Cui
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jun Yang
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
13
|
Ye J, Qi L, Liang J, Zong K, Liu W, Li R, Feng R, Zhai W. Lenvatinib induces anticancer activity in gallbladder cancer by targeting AKT. J Cancer 2021; 12:3548-3557. [PMID: 33995632 PMCID: PMC8120192 DOI: 10.7150/jca.50292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 04/06/2021] [Indexed: 12/28/2022] Open
Abstract
Gallbladder cancer (GBC) is characterized by poor prognosis, early metastasis, and high recurrence rates, which seriously threaten human health. The effect of lenvatinib, a widely used drug in anti-hepatocellular carcinoma in China, on GBC progress, as well as its underlying molecular mechanism, remains unclear. Therefore, the present study investigated the effect of lenvatinib on human GBC GBC-SD and NOZ cells and its underlying mechanisms. A series of experiments, including cell proliferation, clone formation, wound healing, and cell migration and invasion assays, as well as flow cytometry, were performed to investigate the anticancer effect of lenvatinib on GBC. Western blotting was used to detect alterations in protein expression of CKD2, CKD4, cyclin D1, caspase-9, matrix metalloproteinase (MMP)-2, cell migration-inducing protein (CEMIP) and phospho-AKT (p-AKT). In addition, the chemosensitivity of lenvatinib-treated GBC cells to gemcitabine (GEM) and whether the activation of phosphoinositide 3 kinase (PI3K)/AKT contributed to the chemoresistance were determined. Finally, the anticancer effect of lenvatinib in vivo was detected using a xenograft mouse model. These data showed that treatment with lenvatinib inhibited cell proliferation, colony formation ability, migration, induced apoptosis, regulated cell cycle and resulted in decreased resistance to GEM. Treatment with lenvatinib decreased the expression of MMP-2, CEMIP, CDK2, CDK4 and cyclin D1, and increased the expression of cleaved caspase-9, which was mediated by the inactivation of the PI3K/AKT pathway in vitro. In addition, lenvatinib inhibited autophagy in GBC-SD and NOZ cells. Besides, Lenvatinib suppressed GBC cell growth in vivo by targeting p-AKT. In combination, the present data indicated that lenvatinib plays a potential anticancer role in GBC by downregulating the expression of p-AKT.
Collapse
Affiliation(s)
- Jianwen Ye
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan 450052, P.R. China
| | - Lei Qi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jialu Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan 450052, P.R. China
| | - Ke Zong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan 450052, P.R. China
| | - Wentao Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan 450052, P.R. China
| | - Renfeng Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan 450052, P.R. China
| | - Ruo Feng
- Department of Histology and Embryology, Medical College of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Wenlong Zhai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
14
|
Liu B, Zhou X, Wu D, Zhang X, Shen X, Mi K, Qu Z, Jiang Y, Shang D. Comprehensive characterization of a drug-resistance-related ceRNA network across 15 anti-cancer drug categories. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:11-24. [PMID: 33738135 PMCID: PMC7933708 DOI: 10.1016/j.omtn.2021.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/09/2021] [Indexed: 01/22/2023]
Abstract
Cancer is still a major health problem around the world. The treatment failure of cancer has largely been attributed to drug resistance. Competitive endogenous RNAs (ceRNAs) are involved in various biological processes and thus influence the drug sensitivity of cancers. However, a comprehensive characterization of drug-sensitivity-related ceRNAs has not yet been performed. In the present study, we constructed 15 ceRNA networks across 15 anti-cancer drug categories, involving 217 long noncoding RNAs (lncRNAs), 158 microRNAs (miRNAs), and 1,389 protein coding genes (PCGs). We found that these ceRNAs were involved in hallmark processes such as “self-sufficiency in growth signals,” “insensitivity to antigrowth signals,” and so on. We then identified an intersection ceRNA network (ICN) across the 15 anti-cancer drug categories. We further identified interactions between genes in the ICN and clinically actionable genes (CAGs) by analyzing the co-expressions, protein-protein interactions, and transcription factor-target gene interactions. We found that certain genes in the ICN are correlated with CAGs. Finally, we found that genes in the ICN were aberrantly expressed in tumors, and some were associated with patient survival time and cancer stage.
Collapse
Affiliation(s)
- Bing Liu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin 150081, P.R. China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150086, P.R. China
| | - Xiaorui Zhou
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, P.R. China
| | - Dongyuan Wu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin 150030, P.R. China
| | - Xuesong Zhang
- Department of Stomatology, 962 Hospital of PLA, Harbin 150080, P.R. China
| | - Xiuyun Shen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, P.R. China
| | - Kai Mi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, P.R. China
| | - Zhangyi Qu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin 150081, P.R. China
| | - Yanan Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, P.R. China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150086, P.R. China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, P.R. China
| | - Desi Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, P.R. China
| |
Collapse
|
15
|
Synergistic Anticancer Activity of N-Hydroxy-7-(2-Naphthylthio) Heptanomide, Sorafenib, and Radiation Therapy in Patient-Derived Anaplastic Thyroid Cancer Models. Int J Mol Sci 2021; 22:ijms22020536. [PMID: 33430361 PMCID: PMC7825761 DOI: 10.3390/ijms22020536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) is an undifferentiated and advanced form of thyroid cancer, accompanied with a high ratio of epigenetic adjustment, which occurs more than genetic mutations. In this study, we aimed to evaluate the synergistic anticancer effect (in vitro and in vivo) of the new combination of N-hydroxy-7-(2-naphthylthio) heptanomide (HNHA) and sorafenib with radiation therapy in pre-clinical models of ATC. The ATC cell lines, YUMC-A1 and YUMC-A2, were isolated from the current patients who were treated with HNHA and sorafenib, either as monotherapy or combination therapy. Synergistic anticancer effect of the combination therapy on the intracellular signaling pathways and cell cycle was assessed via flow cytometry and immunoblot analysis. To examine tumor shrinkage activity in vivo, an ATC cell line-derived mouse xenograft model was used. Results showed that the combination therapy of HNHA and sorafenib with radiation promoted tumor suppression via caspase cleavage and cell cycle arrest in patient-derived ATC. In addition, the combination therapy of HNHA and sorafenib with radiation was more effective against ATC than therapy with HNHA or sorafenib with radiation. Thus, the combination of HNHA and sorafenib with radiation may be used as a novel curative approach for the treatment of ATC.
Collapse
|
16
|
Lim JH, Choi KH, Kim SY, Park CS, Kim SM, Park KC. Patient-Derived, Drug-Resistant Colon Cancer Cells Evade Chemotherapeutic Drug Effects via the Induction of Epithelial-Mesenchymal Transition-Mediated Angiogenesis. Int J Mol Sci 2020; 21:ijms21207469. [PMID: 33050525 PMCID: PMC7589077 DOI: 10.3390/ijms21207469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer cells can exhibit resistance to different anticancer drugs by acquiring enhanced anti-apoptotic potential, improved DNA injury resistance, diminished enzymatic inactivation, and enhanced permeability, allowing for cell survival. However, the genetic mechanisms for these effects are unknown. Therefore, in this study, we obtained drug-sensitive HT-29 cells (commercially) and drug-resistant cancer cells (derived from biochemically and histologically confirmed colon cancer patients) and performed microarray analysis to identify genetic differences. Cellular proliferation and other properties were determined after treatment with oxaliplatin, lenvatinib, or their combination. In vivo, tumor volume and other properties were examined using a mouse xenograft model. The oxaliplatin and lenvatinib cotreatment group showed more significant cell cycle arrest than the control group and groups treated with either agent alone. Oxaliplatin and lenvatinib cotreatment induced the most significant tumor shrinkage in the xenograft model. Drug-resistant and metastatic colon cancer cells evaded the anticancer drug effects via angiogenesis. These findings present a breakthrough strategy for treating drug-resistant cancer.
Collapse
Affiliation(s)
- Jin Hong Lim
- Gangnam Severance Hospital, Department of Surgery Yonsei, University College of Medicine 211 Eonjuro, Gangnam-gu, Seoul 135-720, Korea; (J.H.L.); (S.Y.K.); (C.S.P.)
- Department of Surgery, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea
| | - Kyung Hwa Choi
- Department of Urology, CHA Bundang Medical Center, CHA University, Seongnam 463-712, Korea;
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Soo Young Kim
- Gangnam Severance Hospital, Department of Surgery Yonsei, University College of Medicine 211 Eonjuro, Gangnam-gu, Seoul 135-720, Korea; (J.H.L.); (S.Y.K.); (C.S.P.)
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Cheong Soo Park
- Gangnam Severance Hospital, Department of Surgery Yonsei, University College of Medicine 211 Eonjuro, Gangnam-gu, Seoul 135-720, Korea; (J.H.L.); (S.Y.K.); (C.S.P.)
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Seok-Mo Kim
- Gangnam Severance Hospital, Department of Surgery Yonsei, University College of Medicine 211 Eonjuro, Gangnam-gu, Seoul 135-720, Korea; (J.H.L.); (S.Y.K.); (C.S.P.)
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Korea
- Correspondence: (S.-M.K.); (K.C.P.)
| | - Ki Cheong Park
- Department of Surgery, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea
- Correspondence: (S.-M.K.); (K.C.P.)
| |
Collapse
|
17
|
The Possible Role of Cancer Stem Cells in the Resistance to Kinase Inhibitors of Advanced Thyroid Cancer. Cancers (Basel) 2020; 12:cancers12082249. [PMID: 32796774 PMCID: PMC7465706 DOI: 10.3390/cancers12082249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Target therapy with various kinase inhibitors (KIs) has been extended to patients with advanced thyroid cancer, but only a subset of these compounds has displayed efficacy in clinical use. However, after an initial response to KIs, dramatic disease progression occurs in most cases. With the discovery of cancer stem cells (CSCs), it is possible to postulate that thyroid cancer resistance to KI therapies, both intrinsic and acquired, may be sustained by this cell subtype. Indeed, CSCs have been considered as the main drivers of metastatic activity and therapeutic resistance, because of their ability to generate heterogeneous secondary cell populations and survive treatment by remaining in a quiescent state. Hence, despite the impressive progress in understanding of the molecular basis of thyroid tumorigenesis, drug resistance is still the major challenge in advanced thyroid cancer management. In this view, definition of the role of CSCs in thyroid cancer resistance may be crucial to identifying new therapeutic targets and preventing resistance to anti-cancer treatments and tumor relapse. The aim of this review is to elucidate the possible role of CSCs in the development of resistance of advanced thyroid cancer to current anti-cancer therapies and their potential implications in the management of these patients.
Collapse
|
18
|
Fallahi P, Ferrari SM, Elia G, Ragusa F, Patrizio A, Paparo SR, Marone G, Galdiero MR, Guglielmi G, Foddis R, Cristaudo A, Antonelli A. Primary cell cultures for the personalized therapy in aggressive thyroid cancer of follicular origin. Semin Cancer Biol 2020; 79:203-216. [PMID: 32569821 DOI: 10.1016/j.semcancer.2020.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
Thyroid cancer (TC) is the most prevalent endocrine malignancy. More than 90 % of TC is represented by differentiated TC (DTC) arising from the follicular thyroid cells. DTC includes papillary TC (PTC), follicular TC (FTC), and Hürthle cell TC. Anaplastic TC (ATC) accounts for 1% of TC, and it represents 15-40 % of TC death. Current treatment strategies are not completely effective against aggressive DTC or ATC, and mortality is one of the most important challenges. Recently, progresses have been obtained in the understanding of the molecular/genetic basis of TC progression, and new drugs have been introduced [i.e. tyrosine kinase inhibitors (TKIs)], able to block the oncogenic or signaling kinases, associated with cellular growth. Thyroid cell lines, obtained from tumoral cells and chosen for high proliferation in vitro, have been used as preclinical models. Actually, these cells lose the characteristic features of the primary tumor, because they adapt to in vitro growth conditions. For these reasons, the use of these cell lines has important limitations, and more recently human primary cell cultures have been established as monolayer cultures, and investigated for their biological behavior. Moreover, in the past, primary TC cells could be collected only through surgical biopsies, while recently human primary cell cultures can be established also from samples of fine-needle aspiration citology from aggressive dedifferentiated DTC or ATC. Testing in vitro different TKIs in each patient can help to develop new personalized treatments, without using ineffective drugs. In conclusion, personalized medicine and precise oncology, which consider both patients and their disease features, represent the future of the treatment approach, and further progress is needed in this direction.
Collapse
Affiliation(s)
- Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Giusy Elia
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Ragusa
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Armando Patrizio
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; Center for Basic and Clinical Immunology Research, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization Center of Excellence, University of Naples Federico II, 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, 80131 Naples, Italy
| | - Maria Rosaria Galdiero
- Center for Basic and Clinical Immunology Research, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization Center of Excellence, University of Naples Federico II, 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, 80131 Naples, Italy; Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Giovanni Guglielmi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Rudy Foddis
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alfonso Cristaudo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
19
|
Chehrazi-Raffle A, Pal SK. Vorolanib and everolimus: Lenvatinib and everolimus part deux, or something new? EBioMedicine 2020; 56:102812. [PMID: 32512515 PMCID: PMC7276505 DOI: 10.1016/j.ebiom.2020.102812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 11/01/2022] Open
Affiliation(s)
- Alexander Chehrazi-Raffle
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Sumanta Kumar Pal
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
20
|
Lin B, Lu B, Hsieh IY, Liang Z, Sun Z, Yi Y, Lv W, Zhao W, Li J. Synergy of GSK-J4 With Doxorubicin in KRAS-Mutant Anaplastic Thyroid Cancer. Front Pharmacol 2020; 11:632. [PMID: 32477122 PMCID: PMC7239034 DOI: 10.3389/fphar.2020.00632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background Anaplastic thyroid cancer is the most aggressive thyroid cancer and has a poor prognosis. At present, there is no effective treatment for it. Methods Here, we used different concentrations of GSK-J4 or a combination of GSK-J4 and doxorubicin to treat human Cal-62, 8505C, and 8305C anaplastic thyroid cancer (ATC) cell lines. The in vitro experiments were performed using cell viability assays, cell cycle assays, annexin-V/PI binding assays, Transwell migration assays, and wound-healing assays. Tumor xenograft models were used to observe effects in vivo. Results The half maximal inhibitory concentration (IC50) of GSK-J4 in Cal-62 cells was 1.502 μM, and as the dose of GSK-J4 increased, more ATC cells were blocked in the G2-M and S stage. The combination of GSK-J4 and doxorubicin significantly increased the inhibitory effect on proliferation, especially in KRAS-mutant ATC cells in vivo (inhibition rate 38.0%) and in vitro (suppresses rate Fa value 0.624, CI value 0.673). The invasion and migration abilities of the KRAS-mutant cell line were inhibited at a low concentration (p < 0.05). Conclusions The combination of GSK-J4 with doxorubicin in KRAS-mutant ATC achieved tumor-suppressive effects at a low dose. The synergy of the combination of GSK-J4 and doxorubicin may make it an effective chemotherapy regimen for KRAS-mutant ATC.
Collapse
Affiliation(s)
- Bo Lin
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bing Lu
- Institute of Urology of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen, China
| | - I-Yun Hsieh
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhen Liang
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Zicheng Sun
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang Yi
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Weiming Lv
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Zhao
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| | - Jie Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Xu T, Guo P, He Y, Pi C, Wang Y, Feng X, Hou Y, Jiang Q, Zhao L, Wei Y. Application of curcumin and its derivatives in tumor multidrug resistance. Phytother Res 2020; 34:2438-2458. [PMID: 32255545 DOI: 10.1002/ptr.6694] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/27/2020] [Accepted: 03/22/2020] [Indexed: 12/16/2022]
Abstract
Malignant tumor endangers seriously the health of all mankind. Multidrug resistance (MDR) is one of the main causes of clinical tumor chemotherapy failure. Curcumin (CUR) has not only antitumor activity but also reversing tumor MDR effect. CUR reverses tumor MDR via regulating related signal pathways or corresponding expressed proteins or gene. When combined with chemotherapeutic agents, CUR can be a chemotherapeutic sensitive agent to enhance chemotherapy efficacy and weaken tumor MDR. On the other hand, to improve the MDR reversal effect of CUR, its derivatives have been extensively studied. Therefore, this article mainly focuses on reviewing the application of CUR and its derivatives in MDR and its mechanism of reversing MDR.
Collapse
Affiliation(s)
- Ting Xu
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Pu Guo
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yingmeng He
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Chao Pi
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yuanyuan Wang
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xianhu Feng
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yi Hou
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Qingsheng Jiang
- School of International Education, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Ling Zhao
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yumeng Wei
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
22
|
Laetitia G, Sven S, Fabrice J. Combinatorial Therapies in Thyroid Cancer: An Overview of Preclinical and Clinical Progresses. Cells 2020; 9:E830. [PMID: 32235612 PMCID: PMC7226736 DOI: 10.3390/cells9040830] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Accounting for about 2% of cancers diagnosed worldwide, thyroid cancer has caused about 41,000 deaths in 2018. Despite significant progresses made in recent decades in the treatment of thyroid cancer, many resistances to current monotherapies are observed. In our complete review, we report all treatments that were tested in combination against thyroid cancer. Many preclinical studies investigating the effects of inhibitors of the MAPK and PI3K pathways highlighted the importance of mutations in such signaling pathways and their impacts on the subsequent efficacy of targeted therapies, thus reinforcing the need of more personalized therapeutic strategies. Our review also points out the multiple possibilities of combinatory strategies, particularly using therapies targeting proliferation, survival, angiogenesis, and in combination with conventional treatments such as chemotherapies. In any case, resistances to anticancer therapies always develop through the activation of alternative signaling pathways. Combinatory treatments aim to blockade such mechanisms, which are gradually decrypted, thus offering new perspectives for the future. The preclinical and clinical aspects of our review allow us to have a global opinion of the different therapeutic options currently evaluated in combination and to be aware about new perspectives of treatment of thyroid cancer.
Collapse
Affiliation(s)
- Gheysen Laetitia
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine, Mons University, Avenue du Champ de Mars, 8, B7000 Mons, Belgium; (S.S.); (J.F.)
| | | | | |
Collapse
|
23
|
Ghione S, Mabrouk N, Paul C, Bettaieb A, Plenchette S. Protein kinase inhibitor-based cancer therapies: Considering the potential of nitric oxide (NO) to improve cancer treatment. Biochem Pharmacol 2020; 176:113855. [PMID: 32061562 DOI: 10.1016/j.bcp.2020.113855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Abstract
The deregulation of a wide variety of protein kinases is associated with cancer cell initiation and tumor progression. Owing to their indispensable function in signaling pathways driving malignant cell features, protein kinases constitute major therapeutic targets in cancer. Over the past two decades, intense efforts in drug development have been dedicated to this field. The development of protein kinase inhibitors (PKIs) have been a real breakthrough in targeted cancer therapy. Despite obvious successes across patients with different types of cancer, the development of PKI resistance still prevails. Combination therapies are part of a comprehensive approach to address the problem of drug resistance. The therapeutic use of nitric oxide (NO) donors to bypass PKI resistance in cancer has never been tested in clinic yet but several arguments suggest that the combination of PKIs and NO donors may exert a potential anticancer effect. The present review summarized the current state of knowledge on common targets to both PKIs and NO. Herein, we attempt to provide the rationale underlying a potential combination of PKIs and NO donors for future directions and design of new combination therapies in cancer.
Collapse
Affiliation(s)
- Silvia Ghione
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75000 Paris, France; LIIC, EA7269, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Nesrine Mabrouk
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75000 Paris, France; LIIC, EA7269, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Catherine Paul
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75000 Paris, France; LIIC, EA7269, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Ali Bettaieb
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75000 Paris, France; LIIC, EA7269, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Stéphanie Plenchette
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75000 Paris, France; LIIC, EA7269, Université de Bourgogne Franche-Comté, 21000 Dijon, France.
| |
Collapse
|
24
|
Paragliola RM, Corsello A, Del Gatto V, Papi G, Pontecorvi A, Corsello SM. Lenvatinib for thyroid cancer treatment: discovery, pre-clinical development and clinical application. Expert Opin Drug Discov 2019; 15:11-26. [PMID: 31608696 DOI: 10.1080/17460441.2020.1674280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Introduction: About one third of patients affected with thyroid cancer present with recurrent disease. Unresectability, advanced disease and radioiodine refractoriness are considered poor prognostic factors. Treatment with small molecules inhibiting molecular signaling can be considered for patients with progressive disease, when other therapeutic strategies cannot be applied. Lenvatinib is a tyrosine kinase inhibitor targeting multiple molecular factors involved in angiogenesis and tumor progression. Preclinical studies have demonstrated the utility of lenvatinib as a targeted therapy for different tumors, including both differentiated and anaplastic thyroid cancer.Areas covered: The authors provide an overview of the preclinical development of lenvatinib in the treatment of thyroid cancer and review its clinical application. They also provide their expert opinion on its development.Expert opinion: Preclinical studies have helped in the understanding of the mechanisms of thyroid carcinogenesis and in the development of a targeted therapy. These findings have represented the rationale for the use of lenvatinib in clinical trials, which have confirmed its utility but yet failed to prove a clear benefit in overall survival. The decision to start a systemic treatment with lenvatinib must be personalized for each patient evaluating the risk/benefits ratio. Treatment emergent adverse events must be considered and reasonably managed by a multidisciplinary approach.
Collapse
Affiliation(s)
- Rosa Maria Paragliola
- Endocrinology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Corsello
- Endocrinology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valeria Del Gatto
- Endocrinology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giampaolo Papi
- Endocrinology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alfredo Pontecorvi
- Endocrinology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Salvatore Maria Corsello
- Endocrinology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
25
|
Jin Y, Liu M, Sa R, Fu H, Cheng L, Chen L. Mouse models of thyroid cancer: Bridging pathogenesis and novel therapeutics. Cancer Lett 2019; 469:35-53. [PMID: 31589905 DOI: 10.1016/j.canlet.2019.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022]
Abstract
Due to a global increase in the incidence of thyroid cancer, numerous novel mouse models were established to reveal thyroid cancer pathogenesis and test promising therapeutic strategies, necessitating a comprehensive review of translational medicine that covers (i) the role of mouse models in the research of thyroid cancer pathogenesis, and (ii) preclinical testing of potential anti-thyroid cancer therapeutics. The present review article aims to: (i) describe the current approaches for mouse modeling of thyroid cancer, (ii) provide insight into the biology and genetics of thyroid cancers, and (iii) offer guidance on the use of mouse models for testing potential therapeutics in preclinical settings. Based on research with mouse models of thyroid cancer pathogenesis involving the RTK, RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, SRC, and JAK-STAT signaling pathways, inhibitors of VEGFR, MEK, mTOR, SRC, and STAT3 have been developed as anti-thyroid cancer drugs for "bench-to-bedside" translation. In the future, mouse models of thyroid cancer will be designed to be ''humanized" and "patient-like," offering opportunities to: (i) investigate the pathogenesis of thyroid cancer through target screening based on the CRISPR/Cas system, (ii) test drugs based on new mouse models, and (iii) explore the underlying mechanisms based on multi-omics.
Collapse
Affiliation(s)
- Yuchen Jin
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Min Liu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China; Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
| | - Ri Sa
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Hao Fu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Lin Cheng
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Libo Chen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
26
|
Zhou HQ, Liu MS, Deng TB, Xie PB, Wang W, Shao T, Wu Y, Zhang P. The TGF-β/Smad Pathway Inhibitor SB431542 Enhances The Antitumor Effect Of Radiofrequency Ablation On Bladder Cancer Cells. Onco Targets Ther 2019; 12:7809-7821. [PMID: 31576139 PMCID: PMC6765330 DOI: 10.2147/ott.s212596] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
Background Despite progress achieved in bladder cancer (BC) treatment, the prognosis of patients with advanced BC (ie, metastasized from the bladder to other organs) is poor. Although mortality in cases of low-grade BC is rare, the treatment, such as a radical cystectomy, often has a serious impact on the quality of life. Thus, research is needed to identify more effective treatment strategies and this work is aiming to examine the potential application of combination of radiofrequency ablation (RFA) and SB435142, a inhibitor of transforming growth factor β (TGFβ)/Smad pathway. Methods BC cells were transplanted into nude mice (thymusdeficiency Bal B/c) to form subcutaneous tumors. The mice with subcutaneous tumors were then treated with RFA and oral administration of SB431542, an inhibitor of TGFβ/Smad signaling pathway. The antitumor effect of RFA was measured by tumor proliferation curves and micro-positron emission computed tomography (micro-PET). The effect of SB431542 on epithelial-mesenchymal transition (EMT) related regulators in subcutaneous tumor tissues formed by BC cells were examined by quantitative real-time polymerase chain reaction (qPCR) experiments. Results The SB431542 treatment enhanced the antitumor effect of RFA on subcutaneous growth of BCs. SB431542 also decreased EMT-related regulators in subcutaneous tumor tissues formed by BC cells in nude mice. Conclusion SB431542 enhances the effect of RFA on BC.
Collapse
Affiliation(s)
- Hong-Qing Zhou
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University , Qujing City 655000, Yunnan Province, People's Republic of China
| | - Ming-Sheng Liu
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University , Qujing City 655000, Yunnan Province, People's Republic of China
| | - Ti-Bin Deng
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University , Qujing City 655000, Yunnan Province, People's Republic of China
| | - Ping-Bo Xie
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University , Qujing City 655000, Yunnan Province, People's Republic of China
| | - Wei Wang
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University , Qujing City 655000, Yunnan Province, People's Republic of China
| | - Tao Shao
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University , Qujing City 655000, Yunnan Province, People's Republic of China
| | - Yao Wu
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University , Qujing City 655000, Yunnan Province, People's Republic of China
| | - Peng Zhang
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army (PLA) General Hospital/Chinese PLA Medical Academy, Beijing 100853, People's Republic of China
| |
Collapse
|
27
|
Chin VL, Lim CL. Epithelial-mesenchymal plasticity-engaging stemness in an interplay of phenotypes. Stem Cell Investig 2019; 6:25. [PMID: 31559312 DOI: 10.21037/sci.2019.08.08] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022]
Abstract
Cancer is a genetic disease which results in a functional imbalance between tumour-repressive and oncogenic signals. The WHO highlights the burden of this indomitable disease, listing it as the second leading cause of death globally. The major cause of cancer-related death is rarely the effect of the primary tumour itself, but rather, the devastating spread of cancer cells in metastases. Epithelial-mesenchymal plasticity (EMP)-termed as the ability of cells to maintain its plasticity and transit between epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) states-plays a fundamental role in cancer metastasis. These cell transitions allow them migrate from the primary tumour and invade the secondary site. EMP is associated with migration, invasion, colonisation, self-renewal and drug resistance. This review briefly elucidates the mechanism of EMP and the association between cancer stem cells (CSCs) and circulating tumour cells (CTCs), biomarkers and signalling pathways involved in EMP as well as drug resistance and therapeutic targeting.
Collapse
Affiliation(s)
- Vi Ley Chin
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Chooi Ling Lim
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Zhang Q, Liu H, Wang H, Lu M, Miao Y, Ding J, Li H, Gao X, Sun S, Zheng J. Lenvatinib promotes antitumor immunity by enhancing the tumor infiltration and activation of NK cells. Am J Cancer Res 2019; 9:1382-1395. [PMID: 31392076 PMCID: PMC6682710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/07/2019] [Indexed: 06/10/2023] Open
Abstract
Based on previous reports, the efficacy of lenvatinib against cancer is mainly attributed to its antiangiogenic activity and its ability to suppress tumor proliferation, which are mediated by targeting receptor tyrosine kinases (RTKs). However, the effects of lenvatinib on tumor immune modulation have rarely been explored. Here, we show that lenvatinib effectively inhibited murine melanoma and renal cancer, and this inhibition was associated with enhanced tumor infiltration by natural killer (NK) cells. Critically, lenvatinib-induced tumor growth inhibition was attenuated by antibody-mediated NK cell depletion or the blockade of NK cell chemotaxis with an anti-CXCR3 blocking antibody. In addition, the expression of natural cytotoxicity receptors (NCRs) by tumor-infiltrating NK cells and the expression of cytotoxic cytokines in the tumor tissue were also augmented by lenvatinib. These data thus suggest that lenvatinib may be used not only as a direct cytotoxic drug against tumor angiogenesis and proliferation but also as a potent adjunct for enhancing the efficacy of immune-based cancer therapies by enhancing the tumor infiltration and activation of NK cells.
Collapse
Affiliation(s)
- Qing Zhang
- Cancer Institute, Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
| | - Hongyan Liu
- Cancer Institute, Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
- The Second People’s Hospital of LianyungangLianyungang, Jiangsu, P. R. China
| | - Hanhan Wang
- Cancer Institute, Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
| | - Mengmeng Lu
- Cancer Institute, Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
| | - Yangna Miao
- Cancer Institute, Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
| | - Jiage Ding
- Cancer Institute, Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
| | - Xiaoge Gao
- Cancer Institute, Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
| | - Shishuo Sun
- Cancer Institute, Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, P. R. China
| |
Collapse
|
29
|
Capozzi M, De Divitiis C, Ottaiano A, von Arx C, Scala S, Tatangelo F, Delrio P, Tafuto S. Lenvatinib, a molecule with versatile application: from preclinical evidence to future development in anti-cancer treatment. Cancer Manag Res 2019; 11:3847-3860. [PMID: 31118801 PMCID: PMC6502442 DOI: 10.2147/cmar.s188316] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/28/2019] [Indexed: 12/13/2022] Open
Abstract
Lenvatinib is an emerging multi-kinase inhibitor with a preferential anti-angiogenic activity, which has shown efficacy in the treatment of renal cell carcinoma, differentiated thyroid cancer and hepatocellular carcinoma. It inhibits vascular endothelial growth factor receptor family (VEGFR1–3), fibroblast growth factor receptor family (FGFR1–4), platelet-derived growth factor receptor–alpha (PDGFRα), tyrosine-kinase receptor (KIT) and rearranged during transfection receptor (RET). In this review we have evaluated the development from bench to bedside of lenvatinib. PubMed, MEDLINE and clinicaltrials.gov are the sources of data. Furthermore, the preclinical in vitro and in vivo data, as well as efficacy and toxicity results of lenvatinib in the clinic, are presented and discussed. Treatment with lenvatinib causes side effects (hypertension, proteinuria, fatigue and diarrhea), which are predominantly related to the inhibition of angiogenesis. For these reasons, the identification of biomarkers of efficacy and resistance to lenvatinib is a key challenge in order to select responsive patients. This review provides an overview on lenvatinib's clinical use, perspectives and indications for future development.
Collapse
Affiliation(s)
- Monica Capozzi
- Department of Abdominal Oncology, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale", Napoli, Italia
| | - Chiara De Divitiis
- UOSD Oncology- AOU "San Giovanni di Dio e Ruggi D'Aragona", Salerno, Italia
| | - Alessandro Ottaiano
- SSD Innovative Therapies for Abdominal Metastases - Department of Abdominal Oncology, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale", Napoli, Italia
| | - Claudia von Arx
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Stefania Scala
- Molecular Immunology and Immunoregulation, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale", Napoli, Italia
| | - Fabiana Tatangelo
- Department of Pathology, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale", Napoli, Italia
| | - Paolo Delrio
- Department of Abdominal Oncology, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale", Napoli, Italia
| | - Salvatore Tafuto
- Department of Abdominal Oncology, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale", Napoli, Italia
| |
Collapse
|
30
|
Kim SY, Kim SM, Chang HJ, Kim BW, Lee YS, Park CS, Park KC, Chang HS. SoLAT (Sorafenib Lenvatinib alternating treatment): a new treatment protocol with alternating Sorafenib and Lenvatinib for refractory thyroid Cancer. BMC Cancer 2018; 18:956. [PMID: 30286728 PMCID: PMC6172752 DOI: 10.1186/s12885-018-4854-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
Background In the last decade, several tyrosine kinase inhibitors (TKIs), which disrupt pathways involved in the proliferation and tumorigenesis of thyroid cancer, have been extensively studied. Two different TKIs, lenvatinib and sorafenib, were recently approved by both the US FDA and European Medicine Agency. Until date, the duration of the TKI response is not sufficient and resistance eventually occurs. The goal of this study was to investigate a new treatment protocol, SoLAT, using sorafenib and lenvatinib alternatively on refractory thyroid cancer. Methods Patient-derived aggressive papillary thyroid cancer (PTC) cell lines from patients with biochemical and histologically proven aggressive RAI-refractory papillary thyroid cancer were exposed to sorafenib and lenvatinib alternatively. Human thyroid cancer cell xenografts were obtained by injecting patient-derived aggressive PTC cell lines into the flank of female BALB/c nude mice. Tumor-bearing mice were treated with sorafenib and lenvatinib alternatively. Cell viability assay, immunofluorescence analysis, confocal imaging, immunoblot analysis, flow cytometry analysis of cell cycle and a tube formation assay were performed. Results SoLAT was more effective for advanced PTC cell lines than individual treatment. Immunoblot analysis showed that SoLAT markedly increased levels of cell cycle inhibitors (p53 and p21), and pro-apoptotic factors (Apaf-1 and cleaved caspase 3) and decreased levels of positive cell cycle regulators (cyclin D1, CDK4, CDK6) and anti-apoptotic factors (p-NFκB, Bcl-2). Increased sub-G0/G1 population was observed in the SoLAT group, leading to apoptosis, cell cycle arrest, and strong inhibition of advanced PTC cell viability. SoLAT reduced the level of EMT markers such as vimentin, E-cadherin, Snail and Zeb1 by FGFR inhibition. In the xenograft model, individual treatment with sorafenib or lenvatinib did not markedly suppress patient-derived aggressive PTC cell xenograft tumors, whereas SoLAT significantly suppressed the proliferation of these tumors. Conclusions SoLAT was more effective than individual treatment with sorafenib or lenvatinib in inhibiting PTC progression by inducing cell cycle arrest. Studies using both in vitro cell culture and an in vivo xenograft model provided evidence of tumor shrinkage with SoLAT. We suggest that these effects may be due to reduced EMT-mediated drug resistance in the aggressive PTC model.
Collapse
Affiliation(s)
- Soo Young Kim
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul, 120-720, South Korea.,Department of Surgery, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea.,Yonsei Institute of Refractory Thyroid Endocrine Cancer, Yonsei University, Seoul, South Korea
| | - Seok-Mo Kim
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul, 120-720, South Korea.,Department of Surgery, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea.,Yonsei Institute of Refractory Thyroid Endocrine Cancer, Yonsei University, Seoul, South Korea
| | - Ho-Jin Chang
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul, 120-720, South Korea.,Department of Surgery, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea.,Yonsei Institute of Refractory Thyroid Endocrine Cancer, Yonsei University, Seoul, South Korea
| | - Bup-Woo Kim
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul, 120-720, South Korea.,Department of Surgery, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea.,Yonsei Institute of Refractory Thyroid Endocrine Cancer, Yonsei University, Seoul, South Korea
| | - Yong Sang Lee
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul, 120-720, South Korea.,Department of Surgery, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea.,Yonsei Institute of Refractory Thyroid Endocrine Cancer, Yonsei University, Seoul, South Korea
| | - Cheong Soo Park
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul, 120-720, South Korea.,Department of Surgery, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea.,Yonsei Institute of Refractory Thyroid Endocrine Cancer, Yonsei University, Seoul, South Korea
| | - Ki Cheong Park
- Department of Surgery, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea.
| | - Hang-Seok Chang
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul, 120-720, South Korea. .,Department of Surgery, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea. .,Yonsei Institute of Refractory Thyroid Endocrine Cancer, Yonsei University, Seoul, South Korea.
| |
Collapse
|