1
|
Lu J, Li N, Zhang W. MLC2: Physiological Functions and Potential Roles in Tumorigenesis. Cell Biochem Biophys 2025:10.1007/s12013-025-01721-6. [PMID: 40089610 DOI: 10.1007/s12013-025-01721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
The myosin regulatory light chain 2 (MLC2) is a crucial regulator of myosin activity. Its phosphorylation, mediated by various kinases, plays a vital role in maintaining normal physiological functions in skeletal muscle, myocardium, smooth muscle, and nonmuscle cells. Moreover, MLC2 has been implicated in the development of many cancers through its phosphorylation. An increasing number of studies have shown that MLC2 may influence tumor progression by modulating cancer cell growth, migration, invasion, apoptosis, and autophagy. In this paper, we provide a concise overview of the phosphorylation regulatory mechanisms of MLC2 and its roles in both physiology and tumorigenesis. Furthermore, this study proposes potential directions for future research.
Collapse
Affiliation(s)
- Jiaxue Lu
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Nan Li
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Kujirai T, Echigoya K, Kishi Y, Saeki M, Ito T, Kato J, Negishi L, Kimura H, Masumoto H, Takizawa Y, Gotoh Y, Kurumizaka H. Structural insights into how DEK nucleosome binding facilitates H3K27 trimethylation in chromatin. Nat Struct Mol Biol 2025:10.1038/s41594-025-01493-w. [PMID: 39984731 DOI: 10.1038/s41594-025-01493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 01/22/2025] [Indexed: 02/23/2025]
Abstract
Structural diversity of the nucleosome affects chromatin conformations and regulates eukaryotic genome functions. Here we identify DEK, whose function is unknown, as a nucleosome-binding protein. In embryonic neural progenitor cells, DEK colocalizes with H3 K27 trimethylation (H3K27me3), the facultative heterochromatin mark. DEK stimulates the methyltransferase activity of Polycomb repressive complex 2 (PRC2), which is responsible for H3K27me3 deposition in vitro. Cryo-electron microscopy structures of the DEK-nucleosome complexes reveal that DEK binds the nucleosome by its tripartite DNA-binding mode on the dyad and linker DNAs and interacts with the nucleosomal acidic patch by its newly identified histone-binding region. The DEK-nucleosome interaction mediates linker DNA reorientation and induces chromatin compaction, which may facilitate PRC2 activation. These findings provide mechanistic insights into chromatin structure-mediated gene regulation by DEK.
Collapse
Affiliation(s)
- Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Kenta Echigoya
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Kishi
- Laboratory of Molecular Neurobiology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Mai Saeki
- Laboratory of Molecular Neurobiology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoko Ito
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Junko Kato
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Lumi Negishi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Japan
| | - Hiroshi Masumoto
- Biomedical Research Support Center, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Sundaram R, Gandhi S, Jonak C, Vasudevan D. Characterization of the Arabidopsis thaliana chromatin remodeler DEK3 for its interaction with histones and DNA. Biochimie 2024; 227:248-261. [PMID: 39097158 DOI: 10.1016/j.biochi.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/04/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Chromatin structure and dynamics regulate all DNA-templated processes, such as transcription, replication, and repair. Chromatin binding factors, chromatin architectural proteins, and nucleosome remodelers modulate chromatin structure and dynamics and, thereby, the various DNA-dependent processes. Arabidopsis thaliana DEK3, a member of the evolutionarily conserved DEK domain-containing chromatin architectural proteins, is an important factor for chromatin structure and function, involved in transcriptional programming to regulate flowering time and abiotic stress tolerance. AtDEK3 contains an uncharacterized N-terminal domain, a middle SAF domain (winged helix-like domain), and a C-terminal DEK domain, but their role in the interaction of AtDEK3 with histones and DNA remained poorly understood. Using biochemical and biophysical analyses, we provide a comprehensive in vitro characterization of the different AtDEK3 domains for their interaction with histone H3/H4 and DNA. AtDEK3 directly interacts with histone H3/H4 tetramers through its N-terminal domain and the C-terminal DEK domain in a 1:1 stoichiometry. Upon interaction with H3/H4, the unstructured N-terminal domain of AtDEK3 undergoes a conformational change and adopts an alpha-helical conformation. In addition, the in-solution envelope structures of the AtDEK3 domains and their complex with H3/H4 have been characterized. The SAF and DEK domains associate with double-stranded and four-way junction DNA. As DEK3 possesses a histone-interacting domain at the N- and the C-terminus and a DNA-binding domain in the middle and at the C-terminus, the protein might play a complex role as a chromatin remodeler.
Collapse
Affiliation(s)
- Rajivgandhi Sundaram
- Institute of Life Sciences, Bhubaneswar, 751023, India; Manipal Academy of Higher Education, Manipal, 576104, India
| | - Surajit Gandhi
- Institute of Life Sciences, Bhubaneswar, 751023, India; Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Claudia Jonak
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Dileep Vasudevan
- Institute of Life Sciences, Bhubaneswar, 751023, India; Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, India.
| |
Collapse
|
4
|
Ray U, Thirusangu P, Jin L, Xiao Y, Pathoulas CL, Staub J, Erskine CL, Dredge K, Hammond E, Block MS, Kaufmann SH, Bakkum-Gamez JN, Shridhar V. PG545 sensitizes ovarian cancer cells to PARP inhibitors through modulation of RAD51-DEK interaction. Oncogene 2023; 42:2725-2736. [PMID: 37550562 PMCID: PMC10491494 DOI: 10.1038/s41388-023-02785-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023]
Abstract
PG545 (Pixatimod) is a highly sulfated small molecule known for its ability to inhibit heparanase and disrupt signaling mediated by heparan-binding-growth factors (HB-GF). Previous studies indicated that PG545 inhibits growth factor-mediated signaling in ovarian cancer (OC) to enhance response to chemotherapy. Here we investigated the previously unidentified mechanisms by which PG545 induces DNA damage in OC cells and found that PG545 induces DNA single- and double-strand breaks, reduces RAD51 expression in an autophagy-dependent manner and inhibits homologous recombination repair (HRR). These changes accompanied the ability of PG545 to inhibit endocytosis of the heparan-sulfate proteoglycan interacting DNA repair protein, DEK, leading to DEK sequestration in the tumor microenvironment (TME) and loss of nuclear DEK needed for HRR. As a result, PG545 synergized with poly (ADP-ribose) polymerase inhibitors (PARPis) in OC cell lines in vitro and in 55% of primary cultures of patient-derived ascites samples ex vivo. Moreover, PG545/PARPi synergy was observed in OC cells exhibiting either de novo or acquired resistance to PARPi monotherapy. PG545 in combination with rucaparib also generated increased DNA damage, increased antitumor effects and increased survival of mice bearing HRR proficient OVCAR5 xenografts compared to monotherapy treatment in vivo. Synergistic antitumor activity of the PG545/rucaparib combination was likewise observed in an immunocompetent syngeneic ID8F3 OC model. Collectively, these results suggest that targeting DEK-HSPG interactions in the TME through the use of PG545 may be a novel method of inhibiting DNA repair and sensitizing cells to PARPis.
Collapse
Affiliation(s)
- Upasana Ray
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
| | - Prabhu Thirusangu
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ling Jin
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yinan Xiao
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | | | - Julie Staub
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Keith Dredge
- Zucero Therapeutics, South Melbourne, VIC, Australia
| | | | | | - Scott H Kaufmann
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | | - Viji Shridhar
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
5
|
Zhang HM, Qi FF, Wang J, Duan YY, Zhao LL, Wang YD, Zhang TC, Liao XH. The m6A Methyltransferase METTL3-Mediated N6-Methyladenosine Modification of DEK mRNA to Promote Gastric Cancer Cell Growth and Metastasis. Int J Mol Sci 2022; 23:ijms23126451. [PMID: 35742899 PMCID: PMC9223399 DOI: 10.3390/ijms23126451] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is the fifth most common cancer and the third deadliest cancer in the world, and the occurrence and development of GC are influenced by epigenetics. Methyltransferase-like 3 (METTL3) is a prominent RNA n6-adenosine methyltransferase (m6A) that plays an important role in tumor growth by controlling the work of RNA. This study aimed to reveal the biological function and molecular mechanism of METTL3 in GC. The expression level of METTL3 in GC tissues and cells was detected by qPCR, Western blot and immunohistochemistry, and the expression level and prognosis of METTL3 were predicted in public databases. CCK-8, colony formation, transwell and wound healing assays were used to study the effect of METTL3 on GC cell proliferation and migration. In addition, the enrichment effect of METTL3 on DEK mRNA was detected by the RIP experiment, the m6A modification effect of METTL3 on DEK was verified by the MeRIP experiment and the mRNA half-life of DEK when METTL3 was overexpressed was detected. The dot blot assay detects m6A modification at the mRNA level. The effect of METTL3 on cell migration ability in vivo was examined by tail vein injection of luciferase-labeled cells. The experimental results showed that METTL3 was highly expressed in GC tissues and cells, and the high expression of METTL3 was associated with a poor prognosis. In addition, the m6A modification level of mRNA was higher in GC tissues and GC cell lines. Overexpression of METTL3 in MGC80-3 cells and AGS promoted cell proliferation and migration, while the knockdown of METTL3 inhibited cell proliferation and migration. The results of in vitro rescue experiments showed that the knockdown of DEK reversed the promoting effects of METTL3 on cell proliferation and migration. In vivo experiments showed that the knockdown of DEK reversed the increase in lung metastases caused by the overexpression of METTL3 in mice. Mechanistically, the results of the RIP experiment showed that METTL3 could enrich DEK mRNA, and the results of the MePIP and RNA half-life experiments indicated that METTL3 binds to the 3'UTR of DEK, participates in the m6A modification of DEK and promotes the stability of DEK mRNA. Ultimately, we concluded that METTL3 promotes GC cell proliferation and migration by stabilizing DEK mRNA expression. Therefore, METTL3 is a potential biomarker for GC prognosis and a therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tong-Cun Zhang
- Correspondence: (T.-C.Z.); (X.-H.L.); Tel.: +86-027-6889-7109 (T.-C.Z.); +86-027-6889-3368 (X.-H.L.)
| | - Xing-Hua Liao
- Correspondence: (T.-C.Z.); (X.-H.L.); Tel.: +86-027-6889-7109 (T.-C.Z.); +86-027-6889-3368 (X.-H.L.)
| |
Collapse
|
6
|
Yang YS, Jia XZ, Lu QY, Cai SL, Huang XT, Yang SH, Wood C, Wang YH, Zhou JJ, Chen YD, Yang JS, Yang WJ. Exosomal DEK removes chemoradiotherapy resistance by triggering quiescence exit of breast cancer stem cells. Oncogene 2022; 41:2624-2637. [PMID: 35351996 DOI: 10.1038/s41388-022-02278-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/11/2022] [Indexed: 02/07/2023]
Abstract
Tumor therapeutics often target the primary tumor bulk but fail to eradicate therapy-resistant cancer stem cells (CSCs) in quiescent state. These can then become activated to initiate recurrence and/or metastasis beyond therapy. Here, we identified and isolated chemoradiotherapy-resistant CSCs in quiescent state with high capacity of tumor-initiation and tumorsphere formation from three types of breast tumors in mice. Experiments of knockdown and rescue revealed DEK, a nuclear protein, as essential for CSC activation. Exogenous DEK was then used to trigger quiescence exit of CSCs. ChIP-seq and ATAC-seq showed that DEK directly binds to chromatin, facilitating its genome-wide accessibility. The resulting epigenetic events upregulate the expression of cellular activation-related genes including MYC targets, whereas cellular quiescence-related genes including the p53 signaling pathway are silenced. However, twinned with DEK-induced activation, formerly resistant CSCs were then destroyed by chemotherapy in vitro. In mice, traditional chemoradiotherapy concurrent with the injection of DEK-containing exosomes resulted in eradication of primary tumors together with formerly resistant CSCs without recurrence or metastasis. Our findings advance knowledge of the mechanism of quiescent CSC activation and may provide novel clinical opportunities for removal of quiescence-linked therapy resistance.
Collapse
Affiliation(s)
- Yao-Shun Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xi-Zheng Jia
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qian-Yun Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sun-Li Cai
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xue-Ting Huang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shu-Hua Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chris Wood
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yue-Hong Wang
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiao-Jiao Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yi-Ding Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jin-Shu Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei-Jun Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Yang MQ, Bai LL, Wang Z, Lei L, Zheng YW, Li ZH, Huang WJ, Liu CC, Xu HT. DEK is highly expressed in breast cancer and is associated with malignant phenotype and progression. Oncol Lett 2021; 21:440. [PMID: 33868478 PMCID: PMC8045159 DOI: 10.3892/ol.2021.12701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/10/2021] [Indexed: 01/21/2023] Open
Abstract
DEK proto-oncogene (DEK) has been demonstrated as an oncogene and is associated with the development of many types of tumor; however, the expression and role of DEK in breast cancer remain unknown. The present study aimed to determine the role of DEK in the progression of breast cancer. The expression of DEK in 110 breast cancer tissues and 50 adjacent normal breast tissues was examined using immunohistochemistry. Furthermore, DEK expression was upregulated by DEK transfection or downregulated by DEK shRNA interference in MCF7 cells. Proliferative and invasive abilities were examined in MCF7 cells using MTT assay, colony-formation assay and transwell invasion assays. The results demonstrated that DEK expression level was significantly increased in breast cancer tissues compared with normal breast tissues. Furthermore, high DEK expression was associated with high histological grade, lymph node metastasis, advanced Tumor-Node-Metastasis stage and high Ki-67 index; however, DEK expression was not associated with the expression level of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. High DEK expression indicated poor prognosis in patients with breast cancer. DEK overexpression upregulated the protein expression of β-catenin and Wnt and increased the proliferative and invasive abilities of breast cancer cells. DEK downregulation had the opposite effect. Taken together, the results from the present study demonstrated that high expression of DEK was common in patients with breast cancer and was associated with progression of the disease and poor prognosis, and that DEK overexpression promoted the proliferative and invasive abilities of breast cancer cells.
Collapse
Affiliation(s)
- Mai-Qing Yang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
- Department of Pathology, Changyi People's Hospital, Changyi, Shandong 261300, P.R. China
| | - Lin-Lin Bai
- Department of Pathology, Shenyang 242 Hospital, Shenyang, Liaoning 110034, P.R. China
| | - Zhao Wang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
- Department of Pathology, General Hospital of Heilongjiang Land Reclamation Bureau, Harbin, Heilongjiang 150088, P.R. China
| | - Lei Lei
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yi-Wen Zheng
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhi-Han Li
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wen-Jing Huang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chen-Chen Liu
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hong-Tao Xu
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
8
|
Zhang Y, Qin P, Tian L, Yan J, Zhou Y. The role of mediator complex subunit 19 in human diseases. Exp Biol Med (Maywood) 2021; 246:1681-1687. [PMID: 34038190 PMCID: PMC8719036 DOI: 10.1177/15353702211011701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Mediator is an evolutionarily conserved multi-protein complex that mediates the interaction between different proteins as a basic linker in the transcription mechanism of eukaryotes. It interacts with RNA polymerase II and participates in the process of gene expression. Mediator complex subunit 19 or regulation by oxygen 3, or lung cancer metastasis-related protein 1 is located at the head of the mediator complex; it is a multi-protein co-activator that induces the transcription of RNA polymerase II by DNA transcription factors. It is a tumor-related gene that plays an important role in transcriptional regulation, cell proliferation, and apoptosis and is closely related to the occurrence and development of the cancers of the lung, bladder, skin, etc. Here, we used the structure of mediator complex subunit 19 to review its role in tumor progression, fat metabolism, drug therapy, as well as the novel coronavirus, which has attracted much attention at present, suggesting that mediator complex subunit 19 has broad application in the occurrence and development of clinical diseases. As a tumor-related gene, the role and mechanism of mediator complex subunit 19 in the regulation of tumor growth could be of great significance for the diagnosis, prognosis, and treatment of mediator complex subunit 19 -related tumors.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Microbiology, Guilin Medical University, Guilin 541004, China.,Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
| | - Peifang Qin
- Department of Microbiology, Guilin Medical University, Guilin 541004, China.,Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
| | - Linlin Tian
- Department of Microbiology, Guilin Medical University, Guilin 541004, China.,Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
| | - Jianguo Yan
- Department of Physiology, Guilin Medical University, Guilin 541004, China
| | - Yali Zhou
- Department of Microbiology, Guilin Medical University, Guilin 541004, China.,Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
| |
Collapse
|
9
|
The potential role of DEK over-expression in the radiation response of head and neck cancer. RADIATION MEDICINE AND PROTECTION 2021. [DOI: 10.1016/j.radmp.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Qi Y, Guo L, Liu Y, Zhao T, Liu X, Zhang Y. Sevoflurane Limits Glioma Progression by Regulating Cell Proliferation, Apoptosis, Migration, and Invasion via miR-218-5p/DEK/β-Catenin Axis in Glioma. Cancer Manag Res 2021; 13:2057-2069. [PMID: 33664593 PMCID: PMC7924128 DOI: 10.2147/cmar.s265356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/09/2020] [Indexed: 12/23/2022] Open
Abstract
Purpose Sevoflurane (SEV) is a frequently used volatile anesthetic in cancer surgery. Sevoflurane treatment has been shown to suppress the migration and invasion of several human cancer cells. However, the effect of sevoflurane on glioma remains largely unclear. Methods Glioma cell lines (U251 and U343) were treated by various concentrations of sevoflurane. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), flow cytometry assay, and transwell assay were performed to detect the cell viability, apoptosis, migration and invasion. Western blot assay was employed to detect the protein levels of β-catenin, c-Myc, CyclinD1, β-catenin, N-cadherin, vimentin, and DEK. Moreover, quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine the expression level of miR-218-5p. The target interaction between miR-218-5p and DEK was predicted through bioinformatics analysis and verified by dual-luciferase reporter assay system. Results We found that sevoflurane aberrantly inhibited the abilities on viability, migration, invasion, EMT and β-catenin signaling and promoted cell apoptosis in U251 and U343 cells in a dose-dependent manner. MiR-218-5p strikingly suppressed the abilities of proliferation, migration, invasion rather than apoptosis and activation of β-catenin signaling. Sevoflurane could facilitate the miR-218-5p expression, and its suppressing effects on glioma cells were reversed by pre-treatment with miR-218-5p inhibitors or pcDNA3.1/DEK in vitro and in vivo. Silencing of miR-218-5p reverted sh-DEK and sevoflurane-induced repression on proliferation, migration, invasion, and β-catenin signaling, and promotion on apoptosis in the glioma cells. Conclusion Our data showed that sevoflurane inhibited the proliferation, migration, invasion, and enhanced the apoptosis in glioma cells through regulating miR-218-5p/DEK/β-catenin axis.
Collapse
Affiliation(s)
- Yingying Qi
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China
| | - Lina Guo
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China
| | - Yanchao Liu
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China
| | - Tonghang Zhao
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China
| | - Xianwen Liu
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China
| | - Yang Zhang
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China
| |
Collapse
|
11
|
Insulin receptor substrate 1 gene expression is strongly up-regulated by HSPB8 silencing in U87 glioma cells. Endocr Regul 2020; 54:231-243. [PMID: 33885248 DOI: 10.2478/enr-2020-0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective. The aim of the present investigation was to study the expression of genes encoding IRS1 (insulin receptor substrate 1) and some other functionally active proteins in U87 glioma cells under silencing of polyfunctional chaperone HSPB8 for evaluation of the possible significance of this protein in intergenic interactions.Methods. Silencing of HSPB8 mRNA was introduced by HSPB8 specific siRNA. The expression level of HSPB8, IRS1, HK2, GLO1, HOMER3, MYL9, NAMPT, PER2, PERP, GADD45A, and DEK genes was studied in U87 glioma cells by quantitative polymerase chain reaction.Results. It was shown that silencing of HSPB8 mRNA by specific to HSPB8 siRNA led to a strong down-regulation of this mRNA and significant modification of the expression of IRS1 and many other genes in glioma cells: strong up-regulated of HOMER3, GLO1, and PERP and down-regulated of MYL9, NAMPT, PER2, GADD45A, and DEK gene expressions. At the same time, no significant changes were detected in the expression of HK2 gene in glioma cells treated by siRNA, specific to HSPB8. Moreover, the silencing of HSPB8 mRNA enhanced the glioma cells proliferation rate.Conclusions. Results of this investigation demonstrated that silencing of HSPB8 mRNA affected the expression of IRS1 gene as well as many other genes encoding tumor growth related proteins. It is possible that the dysregulation of most of the studied genes in glioma cells after silencing of HSPB8 is reflected by a complex of intergenic interactions and that this polyfunctional chaperone is an important factor for the stability of genome function and regulatory mechanisms contributing to the tumorigenesis control.
Collapse
|
12
|
Antibody-drug conjugates targeting RON receptor tyrosine kinase as a novel strategy for treatment of triple-negative breast cancer. Drug Discov Today 2020; 25:1160-1173. [PMID: 32479905 DOI: 10.1016/j.drudis.2020.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/05/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022]
Abstract
Treatment of triple-negative breast cancer (TNBC) is a challenge to oncologists. Currently, the lack of effective therapy has fostered a major effort to discover new targets and therapeutics to combat this disease. The recepteur d'origine nantais (RON) receptor has been implicated in the pathogenesis of TNBC. Clinical studies have revealed that aberrant RON expression is crucial in regulating TNBC malignant phenotypes. Increased RON expression also has prognostic value for breast cancer progress. These features provide the rationale to target RON for TNBC treatment. In this review, we discuss the importance of RON in TNBC tumorigenesis and the development of anti-RON antibody-drug conjugates (ADCs) for clinical application. The findings from preclinical studies lay the foundation for clinical trials of this novel biotherapeutic for TNBC therapy.
Collapse
|
13
|
Yao HP, Suthe SR, Tong XM, Wang MH. Targeting RON receptor tyrosine kinase for treatment of advanced solid cancers: antibody-drug conjugates as lead drug candidates for clinical trials. Ther Adv Med Oncol 2020; 12:1758835920920069. [PMID: 32426050 PMCID: PMC7222236 DOI: 10.1177/1758835920920069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
The recepteur d'origine nantais (RON) receptor tyrosine kinase, belonging to the mesenchymal-to-epithelial transition proto-oncogene family, has been implicated in the pathogenesis of cancers derived from the colon, lung, breast, and pancreas. These findings lay the foundation for targeting RON for cancer treatment. However, development of RON-targeted therapeutics has not gained sufficient attention for the last decade. Although therapeutic monoclonal antibodies (TMABs) targeting RON have been validated in preclinical studies, results from clinical trials have met with limited success. This outcome diminishes pharmaceutical enthusiasm for further development of RON-targeted therapeutics. Recently, antibody-drug conjugates (ADCs) targeting RON have drawn special attention owing to their increased therapeutic activity. The rationale for developing anti-RON ADCs is based on the observation that cancer cells are not sufficiently addicted to RON signaling for survival. Thus, TMAB-mediated inhibition of RON signaling is ineffective for clinical application. In contrast, anti-RON ADCs combine a target-specific antibody with potent cytotoxins for cancer cell killing. This approach not only overcomes the shortcomings in TMAB-targeted therapies but also holds the promise for advancing anti-RON ADCs into clinical trials. In this review, we discuss the latest advancements in the development of anti-RON ADCs for targeted cancer therapy including drug conjugation profile, pharmacokinetic properties, cytotoxic effect in vitro, efficacy in tumor models, and toxicological activities in primates.
Collapse
Affiliation(s)
- Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sreedhar Reddy Suthe
- Cancer Biology Research Center, Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Xiang-Min Tong
- Department of Hematology, Zhejiang Provincial People’s Hospital and People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ming-Hai Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Biology Research Center, Texas Tech University Health Sciences Jerry H. Hodge School of Pharmacy, 1406 Coulter Street, Amarillo, TX 79106, USA
| |
Collapse
|
14
|
Zhang H, Yan M, Deng R, Song F, Jiang M. The silencing of DEK reduced disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 based on virus-induced gene silencing analysis in tomato. Gene 2020; 727:144245. [PMID: 31715302 DOI: 10.1016/j.gene.2019.144245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 10/25/2022]
Abstract
DEK involves in the modulation of cell proliferation, differentiation, apoptosis, migration and cell senescence. However, direct genetic evidence proving the functions of DEK in disease resistance against pathogens is still deficient. In the present study, four DEKs were identified in tomato genome and their roles in disease resistance in tomato were analyzed. The expression levels of DEKs were differently induced by Botrytis cinerea, Pseudomonas syringae pv. tomato (Pst) DC3000 and defense-related signaling molecules (such as jasmonic acid, aethylene precursor and salicylic acid). The DEKs' silencing by virus induced gene silencing led to decreased resistance against B. cinerea or Pst DC3000. The underlying mechanisms may be through the upregulation of the accumulation of reactive oxygen species (ROS) and the changed expression levels of defense-related genes by pathogen inoculation. These results indicate that DEKs involve in disease resistance against different pathogens and thus broaden the knowledge of DEK genes' function in tomato.
Collapse
Affiliation(s)
- Huijuan Zhang
- Collegue of Life Science, Taizhou University, Taizhou, China
| | - Mengjiao Yan
- Collegue of Life Science, Taizhou University, Taizhou, China
| | - Rong Deng
- Collegue of Life Science, Taizhou University, Taizhou, China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ming Jiang
- Collegue of Life Science, Taizhou University, Taizhou, China.
| |
Collapse
|
15
|
Ganz M, Vogel C, Czada C, Jörke V, Gwosch EC, Kleiner R, Pierzynska-Mach A, Zanacchi FC, Diaspro A, Kappes F, Bürkle A, Ferrando-May E. The oncoprotein DEK affects the outcome of PARP1/2 inhibition during mild replication stress. PLoS One 2019; 14:e0213130. [PMID: 31408463 PMCID: PMC6692024 DOI: 10.1371/journal.pone.0213130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/03/2019] [Indexed: 01/07/2023] Open
Abstract
DNA replication stress is a major source of genomic instability and is closely linked to tumor formation and progression. Poly(ADP-ribose)polymerases1/2 (PARP1/2) enzymes are activated in response to replication stress resulting in poly(ADP-ribose) (PAR) synthesis. PARylation plays an important role in the remodelling and repair of impaired replication forks, providing a rationale for targeting highly replicative cancer cells with PARP1/2 inhibitors. The human oncoprotein DEK is a unique, non-histone chromatin architectural protein whose deregulated expression is associated with the development of a wide variety of human cancers. Recently, we showed that DEK is a high-affinity target of PARylation and that it promotes the progression of impaired replication forks. Here, we investigated a potential functional link between PAR and DEK in the context of replication stress. Under conditions of mild replication stress induced either by topoisomerase1 inhibition with camptothecin or nucleotide depletion by hydroxyurea, we found that the effect of acute PARP1/2 inhibition on replication fork progression is dependent on DEK expression. Reducing DEK protein levels also overcomes the restart impairment of stalled forks provoked by blocking PARylation. Non-covalent DEK-PAR interaction via the central PAR-binding domain of DEK is crucial for counteracting PARP1/2 inhibition as shown for the formation of RPA positive foci in hydroxyurea treated cells. Finally, we show by iPOND and super resolved microscopy that DEK is not directly associated with the replisome since it binds to DNA at the stage of chromatin formation. Our report sheds new light on the still enigmatic molecular functions of DEK and suggests that DEK expression levels may influence the sensitivity of cancer cells to PARP1/2 inhibitors.
Collapse
Affiliation(s)
- Magdalena Ganz
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz, Germany
| | - Christopher Vogel
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz, Germany
| | - Christina Czada
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz, Germany
| | - Vera Jörke
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz, Germany
| | - Eva Christina Gwosch
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz, Germany
| | - Rebecca Kleiner
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz, Germany
| | - Agnieszka Pierzynska-Mach
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Francesca Cella Zanacchi
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
- Biophysics Institute (IBF), National Research Council (CNR), Genoa, Italy
| | - Alberto Diaspro
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Genoa, Italy
| | - Ferdinand Kappes
- Xi’an Jiaotong-Liverpool University, Dushu Lake Higher Education Town, Suzhou, China
| | - Alexander Bürkle
- Department of Biology, Molecular Toxicology Group, University of Konstanz, Konstanz, Germany
| | - Elisa Ferrando-May
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz, Germany
| |
Collapse
|