1
|
Ordulu Z, Watkins J, Ritterhouse LL. Molecular Pathology of Ovarian Epithelial Neoplasms: Predictive, Prognostic, and Emerging Biomarkers. Clin Lab Med 2024; 44:199-219. [PMID: 38821641 DOI: 10.1016/j.cll.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
This review focuses on the diagnostic, prognostic, and predictive molecular biomarkers in ovarian epithelial neoplasms in the context of their morphologic classifications. Currently, most clinically actionable molecular findings are reported in high-grade serous carcinomas; however, the data on less common tumor types are rapidly accelerating. Overall, the advances in genomic knowledge over the last decade highlight the significance of integrating molecular findings with morphology in ovarian epithelial tumors for a wide-range of clinical applications, from assistance in diagnosis to predicting response to therapy.
Collapse
Affiliation(s)
- Zehra Ordulu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02124, USA
| | - Jaclyn Watkins
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02124, USA
| | | |
Collapse
|
2
|
Lliberos C, Richardson G, Papa A. Oncogenic Pathways and Targeted Therapies in Ovarian Cancer. Biomolecules 2024; 14:585. [PMID: 38785992 PMCID: PMC11118117 DOI: 10.3390/biom14050585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the most aggressive forms of gynaecological malignancies. Survival rates for women diagnosed with OC remain poor as most patients are diagnosed with advanced disease. Debulking surgery and platinum-based therapies are the current mainstay for OC treatment. However, and despite achieving initial remission, a significant portion of patients will relapse because of innate and acquired resistance, at which point the disease is considered incurable. In view of this, novel detection strategies and therapeutic approaches are needed to improve outcomes and survival of OC patients. In this review, we summarize our current knowledge of the genetic landscape and molecular pathways underpinning OC and its many subtypes. By examining therapeutic strategies explored in preclinical and clinical settings, we highlight the importance of decoding how single and convergent genetic alterations co-exist and drive OC progression and resistance to current treatments. We also propose that core signalling pathways such as the PI3K and MAPK pathways play critical roles in the origin of diverse OC subtypes and can become new targets in combination with known DNA damage repair pathways for the development of tailored and more effective anti-cancer treatments.
Collapse
Affiliation(s)
- Carolina Lliberos
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia;
- Neil Beauglehall Department of Medical Oncology Research, Cabrini Health, Malvern, VIC 3144, Australia
| | - Gary Richardson
- Neil Beauglehall Department of Medical Oncology Research, Cabrini Health, Malvern, VIC 3144, Australia
| | - Antonella Papa
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia;
| |
Collapse
|
3
|
Ottenbourgs T, Van Nieuwenhuysen E. Novel Endocrine Therapeutic Opportunities for Estrogen Receptor-Positive Ovarian Cancer-What Can We Learn from Breast Cancer? Cancers (Basel) 2024; 16:1862. [PMID: 38791941 PMCID: PMC11119209 DOI: 10.3390/cancers16101862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Low-grade serous ovarian cancer (LGSOC) is a rare ovarian malignancy primarily affecting younger women and is characterized by an indolent growth pattern. It exhibits indolent growth and high estrogen/progesterone receptor expression, suggesting potential responsiveness to endocrine therapy. However, treatment efficacy remains limited due to the development of endocrine resistance. The mechanisms of resistance, whether primary or acquired, are still largely unknown and present a significant hurdle in achieving favorable treatment outcomes with endocrine therapy in these patients. In estrogen receptor-positive breast cancer, mechanisms of endocrine resistance have been largely explored and novel treatment strategies to overcome resistance have emerged. Considering the shared estrogen receptor positivity in LGSOC and breast cancer, we wanted to explore whether there are any parallel mechanisms of resistance and whether we can extend endocrine breast cancer treatments to LGSOC. This review aims to highlight the underlying molecular mechanisms possibly driving endocrine resistance in ovarian cancer, while also exploring the available therapeutic opportunities to overcome this resistance. By unraveling the potential pathways involved and examining emerging strategies, this review explores valuable insights for advancing treatment options and improving patient outcomes in LGSOC, which has limited therapeutic options available.
Collapse
Affiliation(s)
- Tine Ottenbourgs
- Gynaecological Oncology Laboratory, KU Leuven, Leuven Cancer Institute, 3000 Leuven, Belgium;
| | - Els Van Nieuwenhuysen
- Department of Gynaecology and Obstetrics, University Hospitals Leuven, BGOG and Leuven Cancer Institute, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Wang Q, Cao SH, Li YY, Zhang JB, Yang XH, Zhang B. Advances in precision therapy of low-grade serous ovarian cancer: A review. Medicine (Baltimore) 2024; 103:e34306. [PMID: 38669365 PMCID: PMC11049748 DOI: 10.1097/md.0000000000034306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/19/2023] [Indexed: 04/28/2024] Open
Abstract
Low-grade serous ovarian carcinoma (LGSOC) is a rare subtype of ovarian cancer that accounts for approximately 6% to 10% of serous ovarian cancers. The clinical treatment of LGSOC is similar to that of high-grade serous ovarian carcinoma, however, its clinical and molecular characteristics are different from those of high-grade serous ovarian carcinoma. This article reviews the research on gene diagnosis, surgical treatment, chemotherapy, and biological therapy of LGSOC, providing reference for clinical diagnosis and treatment of LGSOC. Surgery is the cornerstone of LGSOC treatment and maximum effort must be made to achieve R0 removal. Although LGSOC is not sensitive to chemotherapy, postoperative platinum-based combination chemotherapy remains the first-line treatment option for LGSOC. Additional clinical trials are needed to confirm the clinical benefits of chemotherapy and explore new chemotherapy protocols. Hormone and targeted therapies may also play important roles. Some patients, particularly those with residual lesions after treatment, may benefit from hormone maintenance therapy after chemotherapy. Targeted therapies, such as MEKi, show good application prospects and are expected to change the treatment pattern of LGSOC. Continuing to further study the genomics of LGSOC, identify its specific gene changes, and combine traditional treatment methods with precision targeted therapy based on second-generation sequencing may be the direction for LGSOC to overcome the treatment bottleneck. In future clinical work, comprehensive genetic testing should be carried out for LGSOC patients to accumulate data for future scientific research, in order to find more effective methods and drugs for the treatment of LGSOC.
Collapse
Affiliation(s)
- Qing Wang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Sheng-Han Cao
- Graduate School of Bengbu Medical University, Bengbu, Anhui, China
| | - Yan-Yu Li
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Jing-Bo Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Xin-Hui Yang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Bei Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| |
Collapse
|
5
|
Stružinská I, Hájková N, Hojný J, Krkavcová E, Michálková R, Bui QH, Matěj R, Laco J, Drozenová J, Fabian P, Škapa P, Špůrková Z, Cibula D, Frühauf F, Jirásek T, Zima T, Méhes G, Kendall Bártů M, Němejcová K, Dundr P. Somatic Genomic and Transcriptomic Characterization of Primary Ovarian Serous Borderline Tumors and Low-Grade Serous Carcinomas. J Mol Diagn 2024; 26:257-266. [PMID: 38280423 DOI: 10.1016/j.jmoldx.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/23/2023] [Accepted: 12/19/2023] [Indexed: 01/29/2024] Open
Abstract
Low-grade serous carcinoma (LGSC) may develop from serous borderline tumor (SBT) tissue, where the micropapillary type (mSBT) presents the highest risk for progression. The sensitivity of LGSC to standard chemotherapy is limited, so alternative therapeutic approaches, including targeted treatment, are needed. However, knowledge about the molecular landscape of LGSC and mSBT is limited. A sample set of 137 pathologically well-defined cases (LGSC, 97; mSBT, 40) was analyzed using capture DNA next-generation sequencing (727 genes) and RNA next-generation sequencing (147 genes) to show the landscape of somatic mutations, gene fusions, expression pattern, and prognostic and predictive relevance. Class 4/5 mutations in the main driver genes (KRAS, BRAF, NRAS, ERBB2, USP9X) were detected in 48% (14/29) of mSBT cases and 63% (47/75) of LGSC cases. The USP9X mutation was detected in only 17% of LGSC cases. RNA next-generation sequencing revealed gene fusions in 6 of 64 LGSC cases (9%) and 2 of 33 mSBT cases (9%), and a heterogeneous expression profile across LGSC and mSBT. No molecular characteristics were associated with greater survival. The somatic genomic and transcriptomic profiles of 35 mSBT and 85 LGSC cases are compared for the first time. Candidate oncogenic gene fusions involving BRAF, FGFR2, or NF1 as a fusion partner were identified. Molecular testing of LGSC may be used in clinical practice to reveal therapeutically significant targets.
Collapse
Affiliation(s)
- Ivana Stružinská
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Nikola Hájková
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jan Hojný
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Eva Krkavcová
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Romana Michálková
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Quang Hiep Bui
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Radoslav Matěj
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic; Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic; Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic
| | - Jan Laco
- The Fingerland Department of Pathology, Faculty of Medicine, Charles University and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jana Drozenová
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Pavel Fabian
- Department of Oncological Pathology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Petr Škapa
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Zuzana Špůrková
- Department of Pathology, Bulovka Hospital, Prague, Czech Republic
| | - David Cibula
- Department of Obstetrics and Gynecology, Gynecologic Oncology Center, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Filip Frühauf
- Department of Obstetrics and Gynecology, Gynecologic Oncology Center, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tomáš Jirásek
- Department of Pathology, Center PATOS, Regional Hospital Liberec, and Faculty of Health Studies, Technical University of Liberec, Liberec, Czech Republic
| | - Tomáš Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Michaela Kendall Bártů
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Kristýna Němejcová
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavel Dundr
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| |
Collapse
|
6
|
Grisham RN, Vergote I, Banerjee S, Drill E, Kalbacher E, Mirza MR, Romero I, Vuylsteke P, Coleman RL, Hilpert F, Oza AM, Westermann A, Oehler MK, Pignata S, Aghajanian C, Colombo N, Cibula D, Moore KN, del Campo JM, Berger R, Marth C, Sehouli J, O'Malley DM, Churruca C, Kristensen G, Clamp A, Farley J, Iyer G, Ray-Coquard I, Monk BJ. Molecular Results and Potential Biomarkers Identified from the Phase 3 MILO/ENGOT-ov11 Study of Binimetinib versus Physician Choice of Chemotherapy in Recurrent Low-Grade Serous Ovarian Cancer. Clin Cancer Res 2023; 29:4068-4075. [PMID: 37581616 PMCID: PMC10570675 DOI: 10.1158/1078-0432.ccr-23-0621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/25/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
PURPOSE We present the results of a post hoc tumor tissue analysis from the phase 3 MILO/ENGOT-ov11 study (NCT01849874). PATIENTS AND METHODS Mutation/copy-number analysis was performed on tissue obtained pre-randomization. The Kaplan-Meier method was used to estimate progression-free survival (PFS). Unbiased univariate analysis, Cox regression, and binary logistic regression were used to test associations between mutation status and outcomes, including PFS and binary response by local RECIST 1.1. RESULTS MILO/ENGOT-ov11 enrolled 341 patients, ranging in age from 22 to 79, from June, 2013 to April, 2016. Patients were randomized 2:1 to binimetinib or physician's choice of chemotherapy (PCC). The most commonly altered gene was KRAS (33%). In 135 patients treated with binimetinib with response rate (RR) data, other detected MAPK pathway alterations included: NRAS (n = 11, 8.1%), BRAF V600E (n = 8, 5.9%), RAF1 (n = 2, 1.5%), and NF1 (n = 7, 5.2%). In those with and without MAPK pathway alterations, the RRs with binimetinib were 41% and 13%, respectively. PFS was significantly longer in patients with, compared with those without, MAPK pathway alterations treated with binimetinib [HR, 0.5; 95% confidence interval (CI) 0.31-0.79]. There was a nonsignificant trend toward PFS improvement in PCC-treated patients with MAPK pathway alterations compared with those without (HR, 0.82; 95% CI, 0.43-1.59). CONCLUSIONS Although this hypothesis-generating analysis is limited by multiple testing, higher RRs and longer PFS were seen in patients with low-grade serous ovarian cancer (LGSOC) treated with binimetinib, and to a lesser extent in those treated with PCC, who harbored MAPK pathway alterations. Somatic tumor testing should be routinely considered in patients with LGSOC and used as a future stratification factor.
Collapse
Affiliation(s)
- Rachel N. Grisham
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical Center, New York, New York
| | - Ignace Vergote
- Belgium and Luxemburg Gynaecological Oncology Group, University Hospitals Leuven, Leuven, Belgium
| | - Susana Banerjee
- Royal Marsden National Health Service Foundation Trust and Institute of Cancer Research, London, United Kingdom
| | - Esther Drill
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical Center, New York, New York
| | - Elsa Kalbacher
- Centre Hospitalier Régional et Universitaire de Besançon, CHRU de Besançon, Besançon, France
| | - Mansoor Raza Mirza
- Nordic Society of Gynaecological Oncology and Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ignacio Romero
- Servicio de Oncologıa Medica, Fundacion Instituto Valenciano de Oncologıa, Valencia, Spain
| | - Peter Vuylsteke
- Medical Oncology, CHU Université Catholique de Louvain Namur, Sainte-Elisabeth, Namur, Belgium
- Internal Medicine Department, University of Botswana, Gaborone, Botswana
| | | | - Felix Hilpert
- Onkologisches Therapiezentrum am Krankenhaus Jerusalem, Hamburg, Germany
| | - Amit M. Oza
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Anneke Westermann
- Dutch Gynaecological Oncology Group, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Martin K. Oehler
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Sandro Pignata
- Department of Urology and Gynecology, Istituto Nazionale Tumori Fondazione G. Pascale, Napoli, Italy
| | - Carol Aghajanian
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical Center, New York, New York
| | - Nicoletta Colombo
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Gynecologic Oncology Program, European Institute of Oncology IRCCS, Milan, Italy
| | - David Cibula
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - Kathleen N. Moore
- Stephenson Cancer Center at The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | - Regina Berger
- University Clinic for Gynaecology and Obstetrics, Medical University of Innsbruck, Innsbruck, Austria, and Arbeitsgemeinschaft Gynäkologische Onkologie (AGO)-Austria
| | - Christian Marth
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Austrian AGO, Innsbruck, Austria
| | - Jalid Sehouli
- Center for Oncological Surgery, European Competence Center for Ovarian Cancer Campus Virchow Klinikum and Benjamin Franklin Charité Comprehensive Cancer Center, Medical University of Berlin, Berlin, Germany
| | - David M. O'Malley
- The Ohio State University Comprehensive Cancer Center—James Cancer Hospital and Solove Research Institute, Columbus, Ohio
| | - Cristina Churruca
- Medical Oncology Service, Donostia University Hospital, San Sebastian, Spain
| | - Gunnar Kristensen
- Department for Gynecologic Oncology and Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Andrew Clamp
- Department of Medical Oncology, The Christie National Health Service Foundation Trust, and University of Manchester, Manchester, United Kingdom
| | - John Farley
- Department of Obstetrics and Gynecology, Dignity Health Cancer Institute at St. Joseph's Hospital and Medical Center, Creighton University School of Medicine at St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Gopa Iyer
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical Center, New York, New York
| | - Isabelle Ray-Coquard
- Centre Léon Bérard, Netsarc Network, Université Claude Bernard Lyon 1, Lyon, France
| | - Bradley J. Monk
- Arizona Oncology (US Oncology Network), University of Arizona College of Medicine, Creighton University School of Medicine, Phoenix, Arizona
| |
Collapse
|
7
|
Grisham RN, Slomovitz BM, Andrews N, Banerjee S, Brown J, Carey MS, Chui H, Coleman RL, Fader AN, Gaillard S, Gourley C, Sood AK, Monk BJ, Moore KN, Ray-Coquard I, Shih IM, Westin SN, Wong KK, Gershenson DM. Low-grade serous ovarian cancer: expert consensus report on the state of the science. Int J Gynecol Cancer 2023; 33:1331-1344. [PMID: 37591609 PMCID: PMC10511962 DOI: 10.1136/ijgc-2023-004610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
Compared with high-grade serous carcinoma, low-grade serous carcinoma of the ovary or peritoneum is a less frequent epithelial ovarian cancer type that is poorly sensitive to chemotherapy and affects younger women, many of whom endure years of ineffective treatments and poor quality of life. The pathogenesis of this disease and its management remain incompletely understood. However, recent advances in the molecular characterization of the disease and identification of novel targeted therapies with activity in low-grade serous carcinoma offer the promise of improved outcomes. To update clinicians regarding recent scientific and clinical trial advancements and discuss unanswered questions related to low-grade serous carcinoma diagnosis and treatment, a panel of experts convened for a workshop in October 2022 to develop a consensus document addressing pathology, translational research, epidemiology and risk, clinical management, and ongoing research. In addition, the patient perspective was discussed. The recommendations developed by this expert panel-presented in this consensus document-will guide practitioners in all settings regarding the clinical management of women with low-grade serous carcinoma and discuss future opportunities to improve research and patient care.
Collapse
Affiliation(s)
- Rachel N Grisham
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York, USA
| | - Brian M Slomovitz
- Department of Gynecologic Oncology, Mount Sinai Medical Center, Miami Beach, Florida, USA
- Florida International University, Miami, Florida, USA
| | - Nicole Andrews
- STAAR Ovarian Cancer Foundation, Western Springs, Illinois, USA
| | | | - Jubilee Brown
- Department of Gynecologic Oncology, Levine Cancer Institute at Atrium Health, Wake Forest University, Charlotte, North Carolina, USA
| | - Mark S Carey
- Division of Gynecologic Oncology, Vancouver Coastal Health, Vancouver, British Columbia, Canada
| | - Herman Chui
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert L Coleman
- Sarah Cannon Research Institute (SCRI), Nashville, Tennessee, USA
| | - Amanda N Fader
- Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Stephanie Gaillard
- Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Charlie Gourley
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, UK
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bradley J Monk
- Division of Gynecologic Oncology, Honor Health, University of Arizona, Creighton University, Phoenix, Arizona, USA
| | - Kathleen N Moore
- Department of Gynecologic Oncology, Stephenson Cancer Center at the University of Oklahoma Health Sciences, Oklahoma City, Oklahoma, USA
| | - Isabelle Ray-Coquard
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Ie-Ming Shih
- Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kwong-Kwok Wong
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David M Gershenson
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
8
|
Doutel D, Davidson B, Nitschke Pettersen IK, Torgunrud A. Molecular characteristics of low-grade serous carcinoma in effusions. Cytopathology 2023; 34:99-105. [PMID: 36609991 DOI: 10.1111/cyt.13207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/04/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The molecular characteristics of low-grade serous carcinoma (LGSC) in serous effusions have not been studied previously. The present study analysed the molecular profile of LGSC at this anatomical site. METHODS Specimens consisted of a series of 17 serous effusions (15 peritoneal, 2 pleural) from 16 patients, of which 15 were LGSC and 2 serous borderline tumour (SBT) who later progressed to LGSC. For comparative purposes, 9 surgical specimens from 6 patients with LGSC were analysed. Fresh-frozen cell pellets and surgical specimens underwent targeted next-generation sequencing covering 50 unique genes. RESULTS Mutations were found in tumours from 14 of the 22 patients, of whom 4 had 2 different mutations and 10 had a single mutation. Overall, the most common mutations were in KRAS (n = 3) and BRAF (n = 3), followed by NRAS (n = 2), CDK2NA (n = 2), TP53 (n = 2), ATM (n = 2). Mutations in MET, STK11, ERBB2 and FLT3 were found in one case each. Patient-matched specimens had the same molecular profile. Both effusions with TP53 mutation had concomitant ATM mutation, and both stained immunohistochemically with a wild-type pattern. The absence of mutations was associated with a trend for shorter overall survival in univariate analysis (p = 0.072). CONCLUSIONS The molecular alterations in LGSCs in serous effusions are consistent with those found in solid tumours, with frequent alterations in the mitogen-activated protein kinase pathway. Mutations in LGSC may be a marker of better outcomes.
Collapse
Affiliation(s)
- Delfim Doutel
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ben Davidson
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Annette Torgunrud
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
9
|
Musacchio L, Califano D, Bartoletti M, Arenare L, Lorusso D, Losito NS, Cormio G, Greggi S, Raspagliesi F, Valabrega G, Salutari V, Pisano C, Spina A, Russo D, Del Sesto M, Canzonieri V, Ferraù F, Zannoni GF, Loizzi V, Ghizzoni V, Casanova C, Tuninetti V, Ducceschi M, Del Vecchio V, Scalone S, Priolo D, Perrone F, Scambia G, Pignata S. Clinical characteristics and molecular aspects of low-grade serous ovarian and peritoneal cancer: a multicenter, observational, retrospective analysis of MITO Group (MITO 22). Br J Cancer 2022; 127:1479-1486. [DOI: 10.1038/s41416-022-01897-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
|
10
|
Patient-derived tumor models are attractive tools to repurpose drugs for ovarian cancer treatment: Pre-clinical updates. Oncotarget 2022; 13:553-575. [PMID: 35359749 PMCID: PMC8959092 DOI: 10.18632/oncotarget.28220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/08/2022] [Indexed: 11/29/2022] Open
Abstract
Despite advances in understanding of ovarian cancer biology, the progress in translation of research findings into new therapies is still slow. It is associated in part with limitations of commonly used cancer models such as cell lines and genetically engineered mouse models that lack proper representation of diversity and complexity of actual human tumors. In addition, the development of de novo anticancer drugs is a lengthy and expensive process. A promising alternative to new drug development is repurposing existing FDA-approved drugs without primary oncological purpose. These approved agents have known pharmacokinetics, pharmacodynamics, and toxicology and could be approved as anticancer drugs quicker and at lower cost. To successfully translate repurposed drugs to clinical application, an intermediate step of pre-clinical animal studies is required. To address challenges associated with reliability of tumor models for pre-clinical studies, there has been an increase in development of patient-derived xenografts (PDXs), which retain key characteristics of the original patient’s tumor, including histologic, biologic, and genetic features. The expansion and utilization of clinically and molecularly annotated PDX models derived from different ovarian cancer subtypes could substantially aid development of new therapies or rapid approval of repurposed drugs to improve treatment options for ovarian cancer patients.
Collapse
|
11
|
Ordulu Z, Watkins J, Ritterhouse LL. Molecular Pathology of Ovarian Epithelial Neoplasms: Predictive, Prognostic, and Emerging Biomarkers. Surg Pathol Clin 2021; 14:415-428. [PMID: 34373093 DOI: 10.1016/j.path.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This review focuses on the diagnostic, prognostic, and predictive molecular biomarkers in ovarian epithelial neoplasms in the context of their morphologic classifications. Currently, most clinically actionable molecular findings are reported in high-grade serous carcinomas; however, the data on less common tumor types are rapidly accelerating. Overall, the advances in genomic knowledge over the last decade highlight the significance of integrating molecular findings with morphology in ovarian epithelial tumors for a wide-range of clinical applications, from assistance in diagnosis to predicting response to therapy.
Collapse
Affiliation(s)
- Zehra Ordulu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02124, USA
| | - Jaclyn Watkins
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02124, USA
| | - Lauren L Ritterhouse
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02124, USA.
| |
Collapse
|
12
|
Li Y, Jaiswal SK, Kaur R, Alsaadi D, Liang X, Drews F, DeLoia JA, Krivak T, Petrykowska HM, Gotea V, Welch L, Elnitski L. Differential gene expression identifies a transcriptional regulatory network involving ER-alpha and PITX1 in invasive epithelial ovarian cancer. BMC Cancer 2021; 21:768. [PMID: 34215221 PMCID: PMC8254236 DOI: 10.1186/s12885-021-08276-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/23/2021] [Indexed: 12/16/2022] Open
Abstract
Background The heterogeneous subtypes and stages of epithelial ovarian cancer (EOC) differ in their biological features, invasiveness, and response to chemotherapy, but the transcriptional regulators causing their differences remain nebulous. Methods In this study, we compared high-grade serous ovarian cancers (HGSOCs) to low malignant potential or serous borderline tumors (SBTs). Our aim was to discover new regulatory factors causing distinct biological properties of HGSOCs and SBTs. Results In a discovery dataset, we identified 11 differentially expressed genes (DEGs) between SBTs and HGSOCs. Their expression correctly classified 95% of 267 validation samples. Two of the DEGs, TMEM30B and TSPAN1, were significantly associated with worse overall survival in patients with HGSOC. We also identified 17 DEGs that distinguished stage II vs. III HGSOC. In these two DEG promoter sets, we identified significant enrichment of predicted transcription factor binding sites, including those of RARA, FOXF1, BHLHE41, and PITX1. Using published ChIP-seq data acquired from multiple non-ovarian cell types, we showed additional regulatory factors, including AP2-gamma/TFAP2C, FOXA1, and BHLHE40, bound at the majority of DEG promoters. Several of the factors are known to cooperate with and predict the presence of nuclear hormone receptor estrogen receptor alpha (ER-alpha). We experimentally confirmed ER-alpha and PITX1 presence at the DEGs by performing ChIP-seq analysis using the ovarian cancer cell line PEO4. Finally, RNA-seq analysis identified recurrent gene fusion events in our EOC tumor set. Some of these fusions were significantly associated with survival in HGSOC patients; however, the fusion genes are not regulated by the transcription factors identified for the DEGs. Conclusions These data implicate an estrogen-responsive regulatory network in the differential gene expression between ovarian cancer subtypes and stages, which includes PITX1. Importantly, the transcription factors associated with our DEG promoters are known to form the MegaTrans complex in breast cancer. This is the first study to implicate the MegaTrans complex in contributing to the distinct biological trajectories of malignant and indolent ovarian cancer subtypes. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08276-8.
Collapse
Affiliation(s)
- Yichao Li
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA
| | - Sushil K Jaiswal
- Translational Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rupleen Kaur
- Translational Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dana Alsaadi
- Translational Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaoyu Liang
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA
| | - Frank Drews
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA
| | - Julie A DeLoia
- Present address: Dignity Health Global Education, Roanoke, Virginia, USA
| | - Thomas Krivak
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh Medical School, Pittsburgh, PA, USA.,Present address: The Western Pennsylvania Hospital, Pittsburgh, PA, USA
| | - Hanna M Petrykowska
- Translational Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Valer Gotea
- Translational Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lonnie Welch
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA
| | - Laura Elnitski
- Translational Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
13
|
Mori S, Gotoh O, Kiyotani K, Low SK. Genomic alterations in gynecological malignancies: histotype-associated driver mutations, molecular subtyping schemes, and tumorigenic mechanisms. J Hum Genet 2021; 66:853-868. [PMID: 34092788 DOI: 10.1038/s10038-021-00940-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023]
Abstract
There are numerous histological subtypes (histotypes) of gynecological malignancies, with each histotype considered to largely reflect a feature of the "cell of origin," and to be tightly linked with the clinical behavior and biological phenotype of the tumor. The recent advances in massive parallel sequencing technologies have provided a more complete picture of the range of the genomic alterations that can persist within individual tumors, and have highlighted the types and frequencies of driver-gene mutations and molecular subtypes often associated with these histotypes. Several large-scale genomic cohorts, including the Cancer Genome Atlas (TCGA), have been used to characterize the genomic features of a range of gynecological malignancies, including high-grade serous ovarian carcinoma, uterine corpus endometrial carcinoma, uterine cervical carcinoma, and uterine carcinosarcoma. These datasets have also been pivotal in identifying clinically relevant molecular targets and biomarkers, and in the construction of molecular subtyping schemes. In addition, the recent widespread use of clinical sequencing for the more ubiquitous types of gynecological cancer has manifested in a series of large genomic datasets that have allowed the characterization of the genomes, driver mutations, and histotypes of even rare cancer types, with sufficient statistical power. Here, we review the field of gynecological cancer, and seek to describe the genomic features by histotype. We also will demonstrate how these are linked with clinicopathological attributes and highlight the potential tumorigenic mechanisms.
Collapse
Affiliation(s)
- Seiichi Mori
- Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Osamu Gotoh
- Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazuma Kiyotani
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Siew Kee Low
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
14
|
Indini A, Rijavec E, Ghidini M, Cortellini A, Grossi F. Targeting KRAS in Solid Tumors: Current Challenges and Future Opportunities of Novel KRAS Inhibitors. Pharmaceutics 2021; 13:pharmaceutics13050653. [PMID: 34064352 PMCID: PMC8147792 DOI: 10.3390/pharmaceutics13050653] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Activating mutations in RAS family proteins are found in ~25% of all human cancers. Different solid tumors are correlated with mutations in certain isoforms of RAS, with Kirsten RAS (KRAS) being the most frequently mutated isoform. Historically, KRAS has been acknowledged as “undruggable”, largely because the RAS proteins do not appear to present suitable pockets to which small inhibitory molecules can bind. However, this scenario has changed over the last years with the advent of novel KRAS inhibitors. In this review, we describe the role of KRAS mutation across different solid tumors, providing data on novel KRAS inhibitors currently under development and an updated overview of ongoing research in this field. A literature search was performed to select papers, abstracts, and oral presentation on KRAS inhibitory strategies in KRAS mutated solid tumors. Overall, the most promising therapeutic results have been obtained with molecules targeting KRAS G12C, thus paving the way for a significant therapeutic improvement in non-small cell lung cancer. Unfortunately, KRAS G12C mutation is rather uncommon in other solid tumors, namely pancreatic ductal adenocarcinoma and colorectal cancer. Several combination strategies are currently under evaluation in clinical trials, in order to bypass the resistance mechanisms responsible for the intrinsic resistance of mutated KRAS to the main therapeutic strategies adopted to date. Results suggest that the therapeutic scenario of KRAS has started to change, and further research will bring therapeutic results in this field.
Collapse
Affiliation(s)
- Alice Indini
- Medical Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.I.); (E.R.); (M.G.)
| | - Erika Rijavec
- Medical Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.I.); (E.R.); (M.G.)
| | - Michele Ghidini
- Medical Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.I.); (E.R.); (M.G.)
| | - Alessio Cortellini
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Department of Surgery and Cancer, Imperial College London, Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London W120NN, UK
| | - Francesco Grossi
- Medical Oncology Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, 21100 Varese, Italy
- Correspondence: or
| |
Collapse
|
15
|
Ward MP. Extracellular vesicles in ovarian cancer - A role in venous thromboembolism? THROMBOSIS UPDATE 2021. [DOI: 10.1016/j.tru.2021.100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
16
|
Mutational spectrum in clinically aggressive low-grade serous carcinoma/serous borderline tumors of the ovary-Clinical significance of BRCA2 gene variants in genomically stable tumors. Gynecol Oncol 2021; 161:762-768. [PMID: 33773808 DOI: 10.1016/j.ygyno.2021.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/15/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The mutational spectra of low-grade serous carcinomas (LGSCs) and serous borderline tumors (SBTs) of the ovary are poorly characterized. We present 17 cases of advanced or recurrent LGSC/SBT patients who underwent molecular profiling. METHODS Thirteen LGSCs and four SBTs underwent targeted gene panel testing by massively parallel sequencing. Microsatellite stability and tumor mutation burdens (TMBs) were determined based on panel sequencing data. RESULTS The mean TMB was 5.2 mutations/megabase (range 3-10) in 14 cases. Twelve of twelve (12/12) cases were microsatellite stable. Clear driver mutations were identified in 11 cases, namely KRAS (5/17), BRAF (2/17), NRAS (2/17) and ERBB2 (2/17). Five cases harbored BRCA2 alterations (allele fractions: 44-51%), including two classified as likely benign/benign variants, and three classified as variants of uncertain significance (VUSs), with two variants being confirmed to be germline. The three BRCA2 VUSs were missense variants that were assessed to be of unlikely clinical significance, based on family cancer history and expected impact on protein function. Two patients received PARP inhibitors during their disease course, with neither of the patients demonstrating appreciable response. CONCLUSIONS The mutational spectra in 17 clinically aggressive SBT/LGSC cases demonstrate genomically stable tumors, frequently driven by the RTK/RAS/MAPK pathway. While BRCA2 variants were identified, our data demonstrate BRCA2 gene variants are at most VUSs and of dubious clinical significance, in contrast to disease-associated BRCA1/2 variants that may be identified in high-grade serous carcinoma. Germline testing and PARP inhibitors are thus expected to provide limited benefit to patients with LGSC/SBTs.
Collapse
|
17
|
Cummings M, Freer C, Orsi NM. Targeting the tumour microenvironment in platinum-resistant ovarian cancer. Semin Cancer Biol 2021; 77:3-28. [PMID: 33607246 DOI: 10.1016/j.semcancer.2021.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/09/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Ovarian cancer typically presents at an advanced stage, and although the majority of cases initially respond well to platinum-based therapies, chemoresistance almost always occurs leading to a poor long-term prognosis. While various cellular autonomous mechanisms contribute to intrinsic or acquired platinum resistance, the tumour microenvironment (TME) plays a central role in resistance to therapy and disease progression by providing cancer stem cell niches, promoting tumour cell metabolic reprogramming, reducing chemotherapy drug perfusion and promoting an immunosuppressive environment. As such, the TME is an attractive therapeutic target which has been the focus of intense research in recent years. This review provides an overview of the unique ovarian cancer TME and its role in disease progression and therapy resistance, highlighting some of the latest preclinical and clinical data on TME-targeted therapies. In particular, it focuses on strategies targeting cancer-associated fibroblasts, tumour-associated macrophages, cancer stem cells and cancer cell metabolic vulnerabilities.
Collapse
Affiliation(s)
- M Cummings
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, United Kingdom
| | - C Freer
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, United Kingdom
| | - N M Orsi
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, United Kingdom; St James's Institute of Oncology, Bexley Wing, Beckett Street, Leeds, LS9 7TF, United Kingdom.
| |
Collapse
|
18
|
Shrestha R, Llaurado Fernandez M, Dawson A, Hoenisch J, Volik S, Lin YY, Anderson S, Kim H, Haegert AM, Colborne S, Wong NKY, McConeghy B, Bell RH, Brahmbhatt S, Lee CH, DiMattia GE, Le Bihan S, Morin GB, Collins CC, Carey MS. Multiomics Characterization of Low-Grade Serous Ovarian Carcinoma Identifies Potential Biomarkers of MEK Inhibitor Sensitivity and Therapeutic Vulnerability. Cancer Res 2021; 81:1681-1694. [PMID: 33441310 DOI: 10.1158/0008-5472.can-20-2222] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/12/2020] [Accepted: 01/11/2021] [Indexed: 11/16/2022]
Abstract
Low-grade serous ovarian carcinoma (LGSOC) is a rare tumor subtype with high case fatality rates in patients with metastatic disease. There is a pressing need to develop effective treatments using newly available preclinical models for therapeutic discovery and drug evaluation. Here, we use multiomics integration of whole-exome sequencing, RNA sequencing, and mass spectrometry-based proteomics on 14 LGSOC cell lines to elucidate novel biomarkers and therapeutic vulnerabilities. Comparison of LGSOC cell line data with LGSOC tumor data enabled predictive biomarker identification of MEK inhibitor (MEKi) efficacy, with KRAS mutations found exclusively in MEKi-sensitive cell lines and NRAS mutations found mostly in MEKi-resistant cell lines. Distinct patterns of Catalogue of Somatic Mutations in Cancer mutational signatures were identified in MEKi-sensitive and MEKi-resistant cell lines. Deletions of CDKN2A/B and MTAP genes were more frequent in cell lines than tumor samples and possibly represent key driver events in the absence of KRAS/NRAS/BRAF mutations. These LGSOC cell lines were representative models of the molecular aberrations found in LGSOC tumors. For prediction of in vitro MEKi efficacy, proteomic data provided better discrimination than gene expression data. Condensin, minichromosome maintenance, and replication factor C protein complexes were identified as potential treatment targets in MEKi-resistant cell lines. This study suggests that CDKN2A/B or MTAP deficiency may be exploited using synthetically lethal treatment strategies, highlighting the importance of using proteomic data as a tool for molecular drug prediction. Multiomics approaches are crucial to improving our understanding of the molecular underpinnings of LGSOC and applying this information to develop new therapies. SIGNIFICANCE: These findings highlight the utility of global multiomics to characterize LGSOC cell lines as research models, to determine biomarkers of MEKi resistance, and to identify potential novel therapeutic targets.
Collapse
Affiliation(s)
- Raunak Shrestha
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Marta Llaurado Fernandez
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy Dawson
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joshua Hoenisch
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stanislav Volik
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Yen-Yi Lin
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shawn Anderson
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Hannah Kim
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anne M Haegert
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Shane Colborne
- Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Nelson K Y Wong
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology & Laboratory Medicine, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Brian McConeghy
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Robert H Bell
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | | | - Cheng-Han Lee
- Department of Pathology & Laboratory Medicine, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Gabriel E DiMattia
- Translational Ovarian Cancer Research Program, London Health Science Centre, London, Ontario, Canada
| | | | - Gregg B Morin
- Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin C Collins
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada. .,Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark S Carey
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
19
|
Morphological and molecular heterogeneity of epithelial ovarian cancer: Therapeutic implications. EJC Suppl 2020; 15:1-15. [PMID: 33240438 PMCID: PMC7573476 DOI: 10.1016/j.ejcsup.2020.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 12/11/2022] Open
Abstract
Ovarian epithelial cancer (OEC) is the most lethal gynecologic malignancy. Despite current chemotherapeutic and surgical options, this high lethality can be attributed to multiple factors, including late-stage presentation. In order to optimize OEC treatment, it is important to highlight that it is composed of five main subtypes: high-grade serous ovarian carcinoma (HGSOC), low-grade serous ovarian carcinoma (LGSOC), endometrioid ovarian carcinoma (EOC), ovarian clear cell carcinoma (CCOC), and mucinous ovarian carcinoma (MOC). These subtypes differ in their precursor lesions, as well as in epidemiological, morphological, molecular and clinical features. OEC is one of the tumours in which most pathogenic germline mutations have been identified. Accordingly, up to 20% OC show alterations in BRCA1/2 genes, and also, although with a lower frequency, in other low penetrance genes associated with homologous recombination deficiency (HRD), mismatch repair genes (Lynch syndrome) and TP53. The most important prognostic factor is the 2014 FIGO staging, while older age is also associated with worse survival. HGSOC in all stages and CCC and MOC in advanced stages have the worse prognosis among histological types. Molecular markers have emerged as prognostic factors, particularly mutations in BRCA1/2, which are associated with a better outcome. Regarding treatment, whereas a proportion of HGSOC is sensible to platinum-based treatment and PARP inhibitors due to HRD, the rest of the histological types are relatively chemoresistant. New treatments based in specific molecular alterations are being tested in different histological types. In addition, immunotherapy could be an option, especially for EOC carrying mismatch repair deficiency or POLE mutations. The five different histological types have different precursor lesions and epidemiological, morphological, genetic, epigenetic and clinical features. Histological type is an important prognostic factor. Drugs targeting homologous recombination deficiency have been approved for treatment. The use of immunotherapy is limited due to lack of predictive biomarkers
Collapse
|
20
|
Opposite Macrophage Polarization in Different Subsets of Ovarian Cancer: Observation from a Pilot Study. Cells 2020; 9:cells9020305. [PMID: 32012728 PMCID: PMC7072171 DOI: 10.3390/cells9020305] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 02/08/2023] Open
Abstract
The role of the innate immune system in ovarian cancer is gaining importance. The relevance of tumor-associated macrophages (TAM) is insufficiently understood. In this pilot project, comprising the immunofluorescent staining of 30 biopsies taken from 24 patients with ovarian cancer, we evaluated the presence of total TAM (cluster of differentiation (CD) 68 expression), M1 (major histocompatibility complex (MHC) II expression), and M2 (anti-mannose receptor C type 1 (MRC1) expression), and the blood vessel diameter. We observed a high M1/M2 ratio in low-grade ovarian cancer compared to high-grade tumors, more total TAM and M2 in metastatic biopsies, and a further increase in total TAM and M2 at interval debulking, without beneficial effects of bevacizumab. The blood vessel diameter was indicative for M2 tumor infiltration (Spearman correlation coefficient of 0.65). These data mainly reveal an immune beneficial environment in low-grade ovarian cancer in contrast to high-grade serous ovarian cancer, where immune suppression is not altered by neoadjuvant therapy.
Collapse
|
21
|
Pauly N, Ehmann S, Ricciardi E, Ataseven B, Bommert M, Heitz F, Prader S, Schneider S, du Bois A, Harter P, Baert T. Low-grade Serous Tumors: Are We Making Progress? Curr Oncol Rep 2020; 22:8. [PMID: 31989304 DOI: 10.1007/s11912-020-0872-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW This review provides an overview of the current clinical standard in low-grade serous ovarian cancer (LGSOC). The available evidence for surgery and standard treatments is elaborated. In addition, we discuss recent findings and novel treatments for LGSOC. RECENT FINDINGS Two large multicenter trials studying MEK inhibitors in LGSOC have been presented in the last year. Binimetinib demonstrated an activity in LGSOC, especially in KRAS-mutated disease. Trametinib was associated with an improved progression-free survival in relapsed LGSOC. Based on the current results, MEK inhibitors could be an alternative treatment for LGSOC. Surgery is an important step in the treatment of LGSOC. Hormonal therapy and bevacizumab can be beneficial, next to chemotherapy. Targeted treatments, such as the MEK-inhibitor trametinib, seem to be efficient and should be introduced into clinical practice.
Collapse
Affiliation(s)
- Nina Pauly
- Gynaecology and Gynaecological Oncology, Kliniken Essen-Mitte, Henricistraße 92, 45136, Essen, Germany
| | - Sarah Ehmann
- Gynaecology and Gynaecological Oncology, Kliniken Essen-Mitte, Henricistraße 92, 45136, Essen, Germany
| | - Enzo Ricciardi
- Gynaecology and Gynaecological Oncology, Kliniken Essen-Mitte, Henricistraße 92, 45136, Essen, Germany
| | - Beyhan Ataseven
- Gynaecology and Gynaecological Oncology, Kliniken Essen-Mitte, Henricistraße 92, 45136, Essen, Germany.,Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Mareike Bommert
- Gynaecology and Gynaecological Oncology, Kliniken Essen-Mitte, Henricistraße 92, 45136, Essen, Germany
| | - Florian Heitz
- Gynaecology and Gynaecological Oncology, Kliniken Essen-Mitte, Henricistraße 92, 45136, Essen, Germany
| | - Sonia Prader
- Gynaecology and Gynaecological Oncology, Kliniken Essen-Mitte, Henricistraße 92, 45136, Essen, Germany
| | - Stephanie Schneider
- Gynaecology and Gynaecological Oncology, Kliniken Essen-Mitte, Henricistraße 92, 45136, Essen, Germany
| | - Andreas du Bois
- Gynaecology and Gynaecological Oncology, Kliniken Essen-Mitte, Henricistraße 92, 45136, Essen, Germany
| | - Philipp Harter
- Gynaecology and Gynaecological Oncology, Kliniken Essen-Mitte, Henricistraße 92, 45136, Essen, Germany
| | - Thaïs Baert
- Gynaecology and Gynaecological Oncology, Kliniken Essen-Mitte, Henricistraße 92, 45136, Essen, Germany. .,Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven, Belgium.
| |
Collapse
|
22
|
High Frequency of PIK3CA Mutations in Low-Grade Serous Ovarian Carcinomas of Japanese Patients. Diagnostics (Basel) 2019; 10:diagnostics10010013. [PMID: 31892193 PMCID: PMC7168240 DOI: 10.3390/diagnostics10010013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 12/26/2022] Open
Abstract
The frequency of KRAS/BRAF mutations associated with low-grade serous ovarian carcinoma (LGSC)/serous borderline tumors (SBTs) in Japan is unknown. We aimed to identify genetic variations in KRAS, BRAF, PIK3CA, and ERBB2 in LGSC/SBT/serous cystadenomas (SCAs) in a Japanese population. We performed a mutation analysis (by Sanger sequencing) of 33 cases of LGSC/SBT/SCA and 4 cases of LGSC with synchronous SBTs using microdissected paraffin-embedded sections. Immunohistochemistry of p53 and ARID1A was also performed. The frequency of oncogenic mutations in PIK3CA was 60.0% (6/10) in LGSCs, 63.6% (7/11) in SBTs, and 8.3% (1/12) in SCAs. All cases harbored wild-type KRAS. The frequency of BRAF mutations was 20.0% (2/10) in LGSCs, whereas all SBTs and SCAs harbored the wild-type allele. The frequency of ERBB2 mutations was 30.0% (3/10) in LGSCs, 0.0% (0/11) in SBTs, and 16.7% (2/12) in SCAs. ARID1A staining was positive in all cases. p53 staining was positive in 0% (0/10) LGSCs, 9.1% (1/11) SBTs, and 0.0% (0/12) SCAs. One LGSC case had two PIK3CA mutations (G1633A and G3149A) in both LGSC and SBT lesions, but a BRAF mutation was detected only in an LGSC lesion. These results suggest that, compared with the values in Western populations (16-54%), the KRAS mutation frequency in LGSCs/SBTs is lower and that of PIK3CA mutations in LGSCs/SBTs is much higher in Japanese populations. Therefore, the main carcinogenesis signaling pathways may be different between Japanese and Western LGSCs. Molecular therapies targeting the PIK3CA/AKT pathway may be effective in LGSCs in Japan.
Collapse
|
23
|
Colombo I, Garg S, Danesh A, Bruce J, Shaw P, Tan Q, Quevedo R, Braunstein M, Oza AM, Pugh T, Lheureux S. Heterogeneous alteration of the ERBB3-MYC axis associated with MEK inhibitor resistance in a KRAS-mutated low-grade serous ovarian cancer patient. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a004341. [PMID: 31836588 PMCID: PMC6913142 DOI: 10.1101/mcs.a004341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
Low-grade serous ovarian cancer (LGSOC) is relatively chemoresistant, and no precision therapy is approved for this indication. Despite promising results in phase II trials, MEK inhibitors have failed to show improved progression-free survival in a phase III trial when compared to physician's choice chemotherapy. We report for the first time temporal changes in the tumor genome assessed in sequential tumor samples of a 48-yr-old patient with a KRAS-mutated LGSOC treated with the MEK inhibitor binimetinib. After an initial long-lasting partial response, rapidly progressive brain metastasis occurred, ultimately leading to patient death. Our study demonstrates that novel genomic alterations accumulated during the course of treatment as a result of therapeutic pressures led to MEK inhibitor resistance and, ultimately, disease evolution with an aggressive behavior observed in this patient. In particular, we describe the presence of ERBB3 amplification and aberrant ERBB3–MYC signaling as a potential mechanism of acquired MEK inhibitor resistance in a patient with LGSOC, which is similar to previous observations in KRAS-mutated colon and lung cancers. Our study highlights the need for an individualized approach to better understand tumor genome evolution and suggests that LGSOC patients may derive improved therapeutic benefit by using a combinatorial strategy used in other cancers in order to overcome emergent resistance to targeted therapies.
Collapse
Affiliation(s)
- Ilaria Colombo
- Bras Family Drug Development Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario M5G 1Z5, Canada
| | - Swati Garg
- Bras Family Drug Development Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario M5G 1Z5, Canada
| | - Arnavaz Danesh
- Princess Margaret Genomics Centre, University Health Network, Toronto, Ontario M5G 1Z5, Canada
| | - Jeffrey Bruce
- Princess Margaret Genomics Centre, University Health Network, Toronto, Ontario M5G 1Z5, Canada
| | - Patricia Shaw
- Affiliate Scientist, University Health Network, Toronto, Ontario M5G 1Z5, Canada
| | - Qian Tan
- Bras Family Drug Development Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario M5G 1Z5, Canada
| | - Rene Quevedo
- Princess Margaret Genomics Centre, University Health Network, Toronto, Ontario M5G 1Z5, Canada
| | - Marsela Braunstein
- Bras Family Drug Development Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario M5G 1Z5, Canada
| | - Amit M Oza
- Bras Family Drug Development Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario M5G 1Z5, Canada
| | - Trevor Pugh
- Princess Margaret Genomics Centre, University Health Network, Toronto, Ontario M5G 1Z5, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1Z5, Canada
| | - Stephanie Lheureux
- Bras Family Drug Development Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario M5G 1Z5, Canada
| |
Collapse
|
24
|
Voutsadakis IA. Low-grade serous ovarian carcinoma: an evolution toward targeted therapy. Int J Gynecol Cancer 2019; 30:1619-1626. [PMID: 31780569 DOI: 10.1136/ijgc-2019-000832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 11/04/2022] Open
Abstract
Low-grade serous ovarian carcinoma and its high-grade serous ovarian carcinoma counterpart differ in their precursor lesions, molecular profile, natural history, and response to therapies. As such, low-grade serous ovarian carcinoma needs to be studied separately from high-grade serous ovarian carcinoma, despite challenges stemming from its rarity. A deeper understanding of the pathogenesis of low-grade serous ovarian carcinoma and the most common molecular defects and pathways involved in the carcinogenesis of the ovarian epithelium from normal to serous borderline ovarian tumors to low-grade serous ovarian carcinoma will help develop better therapies. By adopting targeted approaches there may be an opportunity to integrate novel therapies without the need for robust numbers in clinical trials. This manuscript will discuss low-grade serous ovarian carcinoma and focus on the arising treatments being developed with an improved understanding of the pathogenesis of this disease.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Section of Internal Medicine Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada
| |
Collapse
|