1
|
Hayrapetyan L, Roth SM, Quintin A, Hovhannisyan L, Medo M, Riedo R, Ott JG, Albers J, Aebersold DM, Zimmer Y, Medová M. HPV and p53 Status as Precision Determinants of Head and Neck Cancer Response to DNA-PKcs Inhibition in Combination with Irradiation. Mol Cancer Ther 2025; 24:214-229. [PMID: 39513374 PMCID: PMC11791480 DOI: 10.1158/1535-7163.mct-23-0794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 07/15/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Major risk factors of head and neck squamous cell carcinoma (HNSCC) are tobacco use and human papillomavirus (HPV). HPV E6 oncoprotein leads to p53 degradation, whereas HPV-negative cancers are frequently associated with TP53 mutations. Peposertib is a potent and selective, orally administered small-molecule inhibitor of the catalytic subunit of the DNA-dependent kinase (DNA-PKcs), a key regulator of nonhomologous end joining (NHEJ). NHEJ inhibition along with irradiation (IR)-induced DNA double-strand breaks has the potential to increase antitumor treatment efficacy. In this study, we investigated the responses of a panel of HNSCC models with distinct HPV and p53 status to treatments with IR, DNA-PKcs inhibition, and their combination in vitro and in vivo. IR-induced DNA damage combined with peposertib administration shortly before IR results in decreased cell viability and proliferation and causes DNA repair delay in all studied HNSCC cell lines. However, our data confirm that the actual cell fate upon this treatment is determined by cellular p53 and/or HPV status. Cells lacking functional p53 due to its degradation by HPV or due to a loss-of-function mutation are arrested in the G2/M phase of the cell cycle and eliminated by apoptosis, whereas p53-proficient HNSCC cell lines preferentially undergo senescence. This is also recapitulated in vivo, where HPV+ UD-SCC-2 xenografts display stronger and more durable responses to the combined treatment as compared with p53 wild-type UM-SCC-74A tumors. In conclusion, DNA-PKcs inhibitor peposertib should be further studied as a potential radiosensitizer for HNSCCs, taking into consideration the genetic background and the HPV status of a particular tumor.
Collapse
Affiliation(s)
- Liana Hayrapetyan
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Selina M. Roth
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Aurélie Quintin
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland
| | - Lusine Hovhannisyan
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Matúš Medo
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland
| | - Rahel Riedo
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland
| | - Julien G. Ott
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
| | - Joachim Albers
- Research Unit Oncology, The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Daniel M. Aebersold
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
| | - Yitzhak Zimmer
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland
| | - Michaela Medová
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Coelho D, Estêvão D, Oliveira MJ, Sarmento B. Radioresistance in rectal cancer: can nanoparticles turn the tide? Mol Cancer 2025; 24:35. [PMID: 39885557 PMCID: PMC11784129 DOI: 10.1186/s12943-025-02232-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025] Open
Abstract
Rectal cancer accounts for over 35% of the worldwide colorectal cancer burden representing a distinctive subset of cancers from those arising in the colon. Colorectal cancers exhibit a continuum of traits that differ with their location in the large intestine. Due to anatomical and molecular differences, rectal cancer is treated differently from colon cancer, with neoadjuvant chemoradiotherapy playing a pivotal role in the control of the locally advanced disease. However, radioresistance remains a major obstacle often correlated with poor prognosis. Multifunctional nanomedicines offer a promising approach to improve radiotherapy response rates, as well as to increase the intratumoral concentration of chemotherapeutic agents, such as 5-Fluorouracil. Here, we revise the main molecular differences between rectal and colon tumors, exploring the complex orchestration beyond rectal cancer radioresistance and the most promising nanomedicines reported in the literature to improve neoadjuvant therapy response rates.
Collapse
Affiliation(s)
- Diogo Coelho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen 208, Porto, 4200‑135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, Porto, 4200‑135, Portugal
- IUCS - Instituto Universitário de Ciências da Saúde, CESPU, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Diogo Estêvão
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen 208, Porto, 4200‑135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, Porto, 4200‑135, Portugal
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Cancer Research Institute, Ghent University, Ghent, Belgium
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, Porto, 4200-319, Portugal
| | - Maria José Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen 208, Porto, 4200‑135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, Porto, 4200‑135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, Porto, 4200-319, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen 208, Porto, 4200‑135, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, Porto, 4200‑135, Portugal.
- IUCS - Instituto Universitário de Ciências da Saúde, CESPU, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal.
| |
Collapse
|
3
|
Liu H, Liu J, Guan X, Zhao Z, Cheng P, Chen H, Jiang Z, Wang X. Titin gene mutations enhance radiotherapy efficacy via modulation of tumour immune microenvironment in rectum adenocarcinoma. Clin Transl Med 2025; 15:e70123. [PMID: 39748197 PMCID: PMC11695211 DOI: 10.1002/ctm2.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/11/2024] [Accepted: 11/24/2024] [Indexed: 01/04/2025] Open
Abstract
OBJECTIVE This study investigates the impact of Titin (TTN) gene mutations on radiotherapy sensitivity in rectum adenocarcinoma (READ) by examining changes in the tumour immune microenvironment. METHODS Data on gene expression and mutations in READ were obtained from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. Bioinformatics analysis explored the correlation between TTN mutations and immune cell infiltration. In vitro, lentiviral vectors were used to assess TTN mutations' effects on ANKRD1 expression in two READ cell lines. ANKRD1 was overexpressed, and clonogenic assays evaluated radiotherapy sensitivity. Flow cytometry, immunofluorescence, and comet assays examined mutations' impact on cell cycle, apoptosis, and DNA damage response (DDR). An in vivo mouse model and formalin-fixed paraffin-embedded samples from locally advanced rectal cancer (LARC) patients before and after radiotherapy were analyzed, followed by prognostic evaluation. RESULTS Bioinformatics revealed that TTN mutations increase radiation sensitivity in LARC by slowing cell proliferation, promoting apoptosis, and reducing DDR. TTN mutations also inhibit ANKRD1 expression via JUN disruption and enhance CD4/CD8 T-cell infiltration, improving anti-tumour immunity and outcomes. Observations from the clinical study showed a substantial decline in ANKRD1 expression levels alongside a notable surge in the counts of CD4+ and CD8+ T cells after undergoing radiotherapy. Patients with TTN mutations, low ANKRD1 expression, and high densities of CD4+ and CD8+ T cells had longer 3-year disease-free survival in READ. CONCLUSION Our findings reveal that TTN mutations can serve as biomarkers for enhanced radiotherapy sensitivity in READ. By altering the tumour's immune microenvironment, these mutations may provide a novel target for personalized radiotherapy strategies, potentially improving therapeutic outcomes in patients with READ. HIGHLIGHTS The association between TTN mutations and tumour mutation burden, as well as immune cell infiltration in READ, is examined. TTN mutations enhance the radiation sensitivity of READ cells and weaken DNA damage repair in response to radiation. TTN mutations increase the radiation sensitivity of READ cells by inhibiting ANKRD1. The infiltration of CD8+ and CD4+ T cells induced by TTN mutations is essential for anti-tumour immunity. TTN mutations serve as a biomarker for the pathological response to preoperative radiotherapy in READ.
Collapse
Affiliation(s)
- Hengchang Liu
- Department of Colorectal SurgeryNational Cancer Center/National Clinical Research Center of Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jialiang Liu
- Department of Colorectal SurgeryNational Cancer Center/National Clinical Research Center of Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xu Guan
- Department of Colorectal SurgeryNational Cancer Center/National Clinical Research Center of Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhixun Zhao
- Department of Colorectal SurgeryNational Cancer Center/National Clinical Research Center of Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Pu Cheng
- Department of Colorectal SurgeryNational Cancer Center/National Clinical Research Center of Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Haipeng Chen
- Department of Colorectal SurgeryNational Cancer Center/National Clinical Research Center of Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zheng Jiang
- Department of Colorectal SurgeryNational Cancer Center/National Clinical Research Center of Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xishan Wang
- Department of Colorectal SurgeryNational Cancer Center/National Clinical Research Center of Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
4
|
Zhang Y, Qian H, Cheng X, Zhou T, Zhong C, Tian F, Sun Q. Effect of FOLFOX regimen combined with cetuximab treatment on the efficacy and tumor markers of advanced colon cancer patients. Am J Transl Res 2024; 16:5676-5683. [PMID: 39544802 PMCID: PMC11558370 DOI: 10.62347/kenb9486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/02/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE To evaluate the efficacy of FOLFOX regimen combined with cetuximab in the treatment of advanced colon cancer. METHODS This retrospective study involved 60 patients with primary colon cancer who were treated in the PLA Navy Anqing Hospital from January 2022 to February 2023. According to their treatment regimen, the patients were divided into a treatment group that received FOLFOX4 combined with cetuximab (n=30), and a control group treated with cetuximab alone (n=30). The general data of the two groups were compared, and the short-term response rate was assessed by comparing the proportions of complete remission (CR), partial remission (PR), stable disease (SD) and progressive disease (PD) between the two groups. In addition, the progression free survival (PFS) and overall survival (OS) were compared between the two groups, along with the adverse reactions and changes in serum tumor marker (CEA and CA19-9) levels. RESULT The observation group showed a significantly higher short-term effective rate (CR+PR) compared to the control group (56.67% vs. 23.33%). The PFS and OS of the observation group were markedly longer compared to the control group. In terms of adverse reactions, the incidence of neutropenia, thrombocytopenia, nausea, vomiting, and diarrhea was similar between the two groups; however, the incidence of rash in the observation group was higher. After the treatment, the serum CEA and CA19-9 levels decreased markedly in both groups, and the observation group demonstrated obviously lower levels than the control group (P<0.001). Similarly, the decreases in VEGF-A and VEGFR2 levels in the observation group were more significant than those in the control group (all P<0.001). CONCLUSION Despite inducing rash, which is controllable, the combined therapy of FOLFOX and cetuximab significantly improves short-term efficacy, reduces the levels of CEA, CA19-9, VEGF-A and VEGFR2, and extends the PFS and OS of patients, which can be served as an effective treatment strategy for advanced colon cancer.
Collapse
Affiliation(s)
- Yang Zhang
- Internal Medicine Department of Oncology, The PLA Navy Anqing Hospital Anqing 246000, Anhui, China
| | - Hong Qian
- Internal Medicine Department of Oncology, The PLA Navy Anqing Hospital Anqing 246000, Anhui, China
| | - Xiaofei Cheng
- Internal Medicine Department of Oncology, The PLA Navy Anqing Hospital Anqing 246000, Anhui, China
| | - Ting Zhou
- Internal Medicine Department of Oncology, The PLA Navy Anqing Hospital Anqing 246000, Anhui, China
| | - Cheng Zhong
- Internal Medicine Department of Oncology, The PLA Navy Anqing Hospital Anqing 246000, Anhui, China
| | - Feng Tian
- Internal Medicine Department of Oncology, The PLA Navy Anqing Hospital Anqing 246000, Anhui, China
| | - Qi Sun
- Internal Medicine Department of Oncology, The PLA Navy Anqing Hospital Anqing 246000, Anhui, China
| |
Collapse
|
5
|
Collins VJ, Ludwig KR, Nelson AE, Rajan SS, Yeung C, Vulikh K, Isanogle KA, Mendoza A, Difilippantonio S, Karim BO, Caplen NJ, Heske CM. Enhancing Standard of Care Chemotherapy Efficacy Using DNA-Dependent Protein Kinase (DNA-PK) Inhibition in Preclinical Models of Ewing Sarcoma. Mol Cancer Ther 2024; 23:1109-1123. [PMID: 38657228 PMCID: PMC11293986 DOI: 10.1158/1535-7163.mct-23-0641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/26/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Disruption of DNA damage repair via impaired homologous recombination is characteristic of Ewing sarcoma (EWS) cells. We hypothesize that this disruption results in increased reliance on nonhomologous end joining to repair DNA damage. In this study, we investigated if pharmacologic inhibition of the enzyme responsible for nonhomologous end joining, the DNA-PK holoenzyme, alters the response of EWS cells to genotoxic standard of care chemotherapy. We used analyses of cell viability and proliferation to investigate the effects of clinical DNA-PK inhibitors (DNA-PKi) in combination with six therapeutic or experimental agents for EWS. We performed calculations of synergy using the Loewe additivity model. Immunoblotting evaluated treatment effects on DNA-PK, DNA damage, and apoptosis. Flow cytometric analyses evaluated effects on cell cycle and fate. We used orthotopic xenograft models to interrogate tolerability, drug mechanism, and efficacy in vivo. DNA-PKi demonstrated on-target activity, reducing phosphorylated DNA-PK levels in EWS cells. DNA-PKi sensitized EWS cell lines to agents that function as topoisomerase 2 (TOP2) poisons and enhanced the DNA damage induced by TOP2 poisons. Nanomolar concentrations of single-agent TOP2 poisons induced G2M arrest and little apoptotic response while adding DNA-PKi-mediated apoptosis. In vivo, the combination of AZD7648 and etoposide had limited tolerability but resulted in enhanced DNA damage, apoptosis, and EWS tumor shrinkage. The combination of DNA-PKi with standard of care TOP2 poisons in EWS models is synergistic, enhances DNA damage and cell death, and may form the basis of a promising future therapeutic strategy for EWS.
Collapse
Affiliation(s)
- Victor J. Collins
- Translational Sarcoma Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Katelyn R. Ludwig
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ariana E. Nelson
- Translational Sarcoma Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Soumya Sundara Rajan
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Choh Yeung
- Translational Sarcoma Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ksenia Vulikh
- Molecular Histopathology Lab, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Kristine A. Isanogle
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Arnulfo Mendoza
- Translational Sarcoma Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Baktiar O. Karim
- Molecular Histopathology Lab, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Natasha J. Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Christine M. Heske
- Translational Sarcoma Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
6
|
Dai L, Yu P, Fan H, Xia W, Zhao Y, Zhang P, Zhang JZH, Zhang H, Chen Y. Identification and Validation of New DNA-PKcs Inhibitors through High-Throughput Virtual Screening and Experimental Verification. Int J Mol Sci 2024; 25:7982. [PMID: 39063224 PMCID: PMC11277333 DOI: 10.3390/ijms25147982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
DNA-PKcs is a crucial protein target involved in DNA repair and response pathways, with its abnormal activity closely associated with the occurrence and progression of various cancers. In this study, we employed a deep learning-based screening and molecular dynamics (MD) simulation-based pipeline, identifying eight candidates for DNA-PKcs targets. Subsequent experiments revealed the effective inhibition of DNA-PKcs-mediated cell proliferation by three small molecules (5025-0002, M769-1095, and V008-1080). These molecules exhibited anticancer activity with IC50 (inhibitory concentration at 50%) values of 152.6 μM, 30.71 μM, and 74.84 μM, respectively. Notably, V008-1080 enhanced homology-directed repair (HDR) mediated by CRISPR/Cas9 while inhibiting non-homologous end joining (NHEJ) efficiency. Further investigations into the structure-activity relationships unveiled the binding sites and critical interactions between these small molecules and DNA-PKcs. This is the first application of DeepBindGCN_RG in a real drug screening task, and the successful discovery of a novel DNA-PKcs inhibitor demonstrates its efficiency as a core component in the screening pipeline. Moreover, this study provides important insights for exploring novel anticancer therapeutics and advancing the development of gene editing techniques by targeting DNA-PKcs.
Collapse
Affiliation(s)
- Liujiang Dai
- Department of Physiology, Guangxi University of Chinese Medicine, Nanning 530200, China
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Pengfei Yu
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Hongjie Fan
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Wei Xia
- Faculty of Synthetic Biology and Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yaopeng Zhao
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - John Z. H. Zhang
- Faculty of Synthetic Biology and Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Haiping Zhang
- Faculty of Synthetic Biology and Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yang Chen
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
7
|
Ji J, Dragojevic S, Callaghan CM, Smith EJ, Talele S, Zhang W, Connors MA, Mladek AC, Hu Z, Bakken KK, Sarkaria PP, Carlson BL, Burgenske DM, Decker PA, Rashid MA, Jang MH, Gupta SK, Eckel-Passow JE, Elmquist WF, Sarkaria JN. Differential Distribution of the DNA-PKcs Inhibitor Peposertib Selectively Radiosensitizes Patient-derived Melanoma Brain Metastasis Xenografts. Mol Cancer Ther 2024; 23:662-671. [PMID: 38224566 PMCID: PMC11063760 DOI: 10.1158/1535-7163.mct-23-0552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/26/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
Radioresistance of melanoma brain metastases limits the clinical utility of conventionally fractionated brain radiation in this disease, and strategies to improve radiation response could have significant clinical impact. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is critical for repair of radiation-induced DNA damage, and inhibitors of this kinase can have potent effects on radiation sensitivity. In this study, the radiosensitizing effects of the DNA-PKcs inhibitor peposertib were evaluated in patient-derived xenografts of melanoma brain metastases (M12, M15, M27). In clonogenic survival assays, peposertib augmented radiation-induced killing of M12 cells at concentrations ≥100 nmol/L, and a minimum of 16 hours exposure allowed maximal sensitization. This information was integrated with pharmacokinetic modeling to define an optimal dosing regimen for peposertib of 125 mpk dosed just prior to and 7 hours after irradiation. Using this drug dosing regimen in combination with 2.5 Gy × 5 fractions of radiation, significant prolongation in median survival was observed in M12-eGFP (104%; P = 0.0015) and M15 (50%; P = 0.03), while more limited effects were seen in M27 (16%, P = 0.04). These data support the concept of developing peposertib as a radiosensitizer for brain metastases and provide a paradigm for integrating in vitro and pharmacokinetic data to define an optimal radiosensitizing regimen for potent DNA repair inhibitors.
Collapse
Affiliation(s)
- Jianxiong Ji
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Sonja Dragojevic
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Emily J. Smith
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Surabhi Talele
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Wenjuan Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | | | - Ann C. Mladek
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Zeng Hu
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Brett L. Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Paul A. Decker
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Mohammad Abdur Rashid
- RWJ-Neurosurgery, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Mi-hyeon Jang
- RWJ-Neurosurgery, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Shiv K. Gupta
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - William F. Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
8
|
Liu H, Huang R, Shan J, Xie X, Wang C, Hu P, Sun X. Artemis as Predictive Biomarker of Responsiveness to Preoperative Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer. Curr Oncol 2024; 31:535-546. [PMID: 38248122 PMCID: PMC10814650 DOI: 10.3390/curroncol31010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
The aim of this study was to identify Artemis as a predictive biomarker for guiding preoperative chemoradiotherapy in locally advanced rectal cancer. The resection specimens were collected from 50 patients with rectal cancer who underwent preoperative chemoradiotherapy. Artemis expression in biopsy tissues was evaluated using immunohistochemical staining according to the percentage of positively stained cells combined with staining intensity. Among the 50 patients, 36 (72%) had a weakly positive Artemis protein expression, 10 (20%) had a moderately positive expression, and 4 (8%) showed a strongly positive expression. The criteria of magnetic resonance imaging tumor regression grade (mrTRG) and pathological rectal cancer regression grade (RCRG) were used to assess the tumor response to chemoradiotherapy. Correlation analysis shows that there is a significant negative correlation between high Artemis immunoscore and treatment response (r = -0.532, p < 0.001). The results imply that high Artemis expression was associated with poor treatment response. Our study suggested a potential role of Artemis as a predictive biomarker of the tumor response to preoperative chemoradiotherapy in patients with locally advanced rectal cancer.
Collapse
Affiliation(s)
- Hai Liu
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (H.L.); (R.H.); (J.S.); (X.X.)
| | - Runying Huang
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (H.L.); (R.H.); (J.S.); (X.X.)
| | - Jingjing Shan
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (H.L.); (R.H.); (J.S.); (X.X.)
| | - Xuyun Xie
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (H.L.); (R.H.); (J.S.); (X.X.)
| | - Chongwei Wang
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China;
| | - Peng Hu
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China;
| | - Xiaonan Sun
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (H.L.); (R.H.); (J.S.); (X.X.)
| |
Collapse
|
9
|
Zhang YJ, Yi DH. CDK1-SRC Interaction-Dependent Transcriptional Activation of HSP90AB1 Promotes Antitumor Immunity in Hepatocellular Carcinoma. J Proteome Res 2023; 22:3714-3729. [PMID: 37949475 DOI: 10.1021/acs.jproteome.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
This study aimed to analyze multiomics data and construct a regulatory network involving kinases, transcription factors, and immune genes in hepatocellular carcinoma (HCC) prognosis. The researchers used transcriptomic, proteomic, and clinical data from TCGA and GEO databases to identify immune genes associated with HCC. Statistical analysis, meta-analysis, and protein-protein interaction analyses were performed to identify key immune genes and their relationships. In vitro and in vivo experiments validated the CDK1-SRC-HSP90AB1 network's effects on HCC progression and antitumor immunity. A prognostic risk model was developed using clinicopathological features and immune infiltration. The immune genes LPA, BIRC5, HSP90AB1, ROBO1, and CCL20 were identified as the key prognostic factors. The CDK1-SRC-HSP90AB1 network promoted HCC cell proliferation and migration, with HSP90AB1 being transcriptionally activated by the CDK1-SRC interaction. Manipulating SRC or HSP90AB1 reversed the effects of CDK1 and SRC on HCC. The CDK1-SRC-HSP90AB1 network also influenced HCC tumor formation and antitumor immunity. Overall, this study highlights the importance of the CDK1-SRC-HSP90AB1 network as a crucial immune-regulatory network in the HCC prognosis.
Collapse
Affiliation(s)
- Yi-Jie Zhang
- Department of Hepatobiliary and Organ Transplantation, The First Affiliated Hospital of China Medical University, Shenyang 110001, P. R. China
- The Key Laboratory of Organ Transplantation of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang 110001, P. R. China
| | - De-Hui Yi
- Department of Hepatobiliary and Organ Transplantation, The First Affiliated Hospital of China Medical University, Shenyang 110001, P. R. China
- The Key Laboratory of Organ Transplantation of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang 110001, P. R. China
| |
Collapse
|
10
|
Waldeck K, Van Zuylekom J, Cullinane C, Gulati T, Simpson KJ, Tothill RW, Blyth B, Hicks RJ. A genome-wide CRISPR/Cas9 screen identifies DNA-PK as a sensitiser to 177Lutetium-DOTA-octreotate radionuclide therapy. Theranostics 2023; 13:4745-4761. [PMID: 37771787 PMCID: PMC10526672 DOI: 10.7150/thno.84628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/17/2023] [Indexed: 09/30/2023] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) using 177Lutetium-DOTA-octreotate (LuTate) for neuroendocrine tumours (NET) is now an approved treatment available in many countries, though primary or secondary resistance continue to limit its effectiveness or durability. We hypothesised that a genome-wide CRISPR/Cas9 screen would identify key mediators of response to LuTate and gene targets that might offer opportunities for novel combination therapies for NET patients. Methods: We utilised a genome-wide CRISPR-Cas9 screen in LuTate-treated cells to identify genes that impact on the sensitivity or resistance of cells to LuTate. Hits were validated through single-gene knockout. LuTate-resistant cells were assessed to confirm LuTate uptake and retention, and persistence of somatostatin receptor 2 (SSTR2) expression. Gene knockouts conferring LuTate sensitivity were further characterised by pharmacological sensitisation using specific inhibitors and in vivo analysis of the efficacy of these inhibitors in combination with LuTate. Results: The CRISPR-Cas9 screen identified several potential targets for both resistance and sensitivity to PRRT. Two gene knockouts which conferred LuTate resistance in vitro, ARRB2 and MVP, have potential mechanisms related to LuTate binding and retention, and modulation of DNA-damage repair (DDR) pathways, respectively. The screen showed that sensitivity to LuTate treatment in vitro can be conferred by the loss of a variety of genes involved in DDR pathways, with loss of genes involved in Non-Homologous End-Joining (NHEJ) being the most lethal. Loss of the key NHEJ gene, PRKDC (DNA-PK), either by gene loss or inhibition by two different inhibitors, resulted in significantly reduced cell survival upon exposure of cells to LuTate. In SSTR2-positive xenograft-bearing mice, the combination of nedisertib (a DNA-PK specific inhibitor) and LuTate produced a more robust control of tumour growth and increased survival compared to LuTate alone. Conclusions: DDR pathways are critical for sensing and repairing radiation-induced DNA damage, and our study shows that regulation of DDR pathways may be involved in both resistance and sensitivity to PRRT. Additionally, the use of a DNA-PK inhibitor in combination with LuTate PRRT significantly improves the efficacy of the treatment in pre-clinical models, providing further evidence for the clinical efficacy of this combination.
Collapse
Affiliation(s)
- Kelly Waldeck
- Models of Cancer Translational Research Centre, Research Division, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria, Australia, 3000
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia, 3010
| | - Jessica Van Zuylekom
- Models of Cancer Translational Research Centre, Research Division, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria, Australia, 3000
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia, 3010
| | - Carleen Cullinane
- Models of Cancer Translational Research Centre, Research Division, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria, Australia, 3000
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia, 3010
| | - Twishi Gulati
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia, 3010
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria, Australia, 3000
| | - Kaylene J. Simpson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia, 3010
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria, Australia, 3000
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia, 3010
| | - Richard W. Tothill
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia, 3010
- Department of Clinical Pathology and University of Melbourne Centre for Cancer Research, The University of Melbourne, Parkville, Victoria, Australia, 3010
| | - Benjamin Blyth
- Models of Cancer Translational Research Centre, Research Division, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria, Australia, 3000
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia, 3010
| | - Rodney J. Hicks
- St Vincent's Hospital Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia, 3010
| |
Collapse
|
11
|
Gu L, Hickey RJ, Malkas LH. Therapeutic Targeting of DNA Replication Stress in Cancer. Genes (Basel) 2023; 14:1346. [PMID: 37510250 PMCID: PMC10378776 DOI: 10.3390/genes14071346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/30/2023] Open
Abstract
This article reviews the currently used therapeutic strategies to target DNA replication stress for cancer treatment in the clinic, highlighting their effectiveness and limitations due to toxicity and drug resistance. Cancer cells experience enhanced spontaneous DNA damage due to compromised DNA replication machinery, elevated levels of reactive oxygen species, loss of tumor suppressor genes, and/or constitutive activation of oncogenes. Consequently, these cells are addicted to DNA damage response signaling pathways and repair machinery to maintain genome stability and support survival and proliferation. Chemotherapeutic drugs exploit this genetic instability by inducing additional DNA damage to overwhelm the repair system in cancer cells. However, the clinical use of DNA-damaging agents is limited by their toxicity and drug resistance often arises. To address these issues, the article discusses a potential strategy to target the cancer-associated isoform of proliferating cell nuclear antigen (caPCNA), which plays a central role in the DNA replication and damage response network. Small molecule and peptide agents that specifically target caPCNA can selectively target cancer cells without significant toxicity to normal cells or experimental animals.
Collapse
Affiliation(s)
- Long Gu
- Department of Molecular Diagnostics & Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Robert J Hickey
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Linda H Malkas
- Department of Molecular Diagnostics & Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
12
|
Tirilomi A, Elakad O, Yao S, Li Y, Hinterthaner M, Danner BC, Ströbel P, Tirilomis T, Bohnenberger H, von Hammerstein-Equord A. Expression and prognostic impact of DNA-PK in human lung cancer. Medicine (Baltimore) 2023; 102:e33143. [PMID: 36862864 PMCID: PMC9981429 DOI: 10.1097/md.0000000000033143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Among all cancer patient's lung cancer is the leading cause of death. Prognostic biomarkers continue to be investigated for the detection and stratification of lung cancer for clinical use. The DNA-dependent protein kinase is involved in mechanisms of DNA damage repair. Deregulation and overexpression of DNA-dependent protein kinase is associated with poor prognosis in various tumor entities. In this study, we investigated the expression of DNA-dependent protein kinase in relation to clinicopathological features and overall survival in patients with lung cancer. By immunohistochemistry, expression of DNA-dependent protein kinase was analyzed in 205 cases of lung cancer; 95 cases of adenocarcinoma, 83 cases of squamous cell lung carcinoma and 27 cases of small cell lung cancer and correlated with clinicopathological characteristics as well as patient's overall survival. In patients with adenocarcinoma, a significant correlation between strong expression of DNA-dependent protein kinase and worse overall survival was found. No significant association was observed in patients with squamous cell lung carcinoma and small cell lung cancer. Strong detection of DNA-dependent protein kinase expression was most evident in small cell lung cancer (81.48 %), followed by squamous cell lung carcinoma (62.65 %) and adenocarcinoma (61.05 %). In our study, expression of DNA-dependent protein kinase was associated with poor overall survival in patients with adenocarcinoma. DNA-dependent protein kinase could serve as a new prognostic biomarker.
Collapse
Affiliation(s)
- Anna Tirilomi
- Department of Cardio-Thoracic and Vascular Surgery, University Medical Center, Göttingen, Germany
| | - Omar Elakad
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Sha Yao
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Yuchan Li
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Marc Hinterthaner
- Department of Cardio-Thoracic and Vascular Surgery, University Medical Center, Göttingen, Germany
| | - Bernhard C. Danner
- Department of Cardio-Thoracic and Vascular Surgery, University Medical Center, Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Theodor Tirilomis
- Department of Cardio-Thoracic and Vascular Surgery, University Medical Center, Göttingen, Germany
| | | | - Alexander von Hammerstein-Equord
- Department of Cardio-Thoracic and Vascular Surgery, University Medical Center, Göttingen, Germany
- * Correspondence: Alexander von Hammerstein-Equord, Department of Cardio-Thoracic and Vascular Surgery, University Medical Center, Robert-Koch-Str. 40, Göttingen 37075, Germany (e-mail: )
| |
Collapse
|
13
|
Targeting the DNA damage response for cancer therapy. Biochem Soc Trans 2023; 51:207-221. [PMID: 36606678 PMCID: PMC9988002 DOI: 10.1042/bst20220681] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023]
Abstract
The DNA damage response (DDR) is an elegant system, coordinating DNA repair with cell cycle checkpoints, that evolved to protect living organisms from the otherwise fatal levels of DNA damage inflicted by endogenous and environmental sources. Since many agents used to treat cancer; radiotherapy and cytotoxic chemotherapy, work by damaging DNA the DDR represents a mechanism of resistance. The original rational for the development of drugs to inhibit the DDR was to overcome this mechanism of resistance but clinical studies using this approach have not led to improvements in the therapeutic index. A more exciting approach is to exploit cancer-specific defects in the DDR, that represent vulnerabilities in the tumour and an opportunity to selectively target the tumour. PARP inhibitors (PARPi) selectively kill homologous recombination repair defective (HRD, e.g. through BRCA mutation) cells. This approach has proven successful clinically and there are now six PARPi approved for cancer therapy. Drugs targeting other aspects of the DDR are under pre-clinical and clinical evaluation as monotherapy agents and in combination studies. For this promising approach to cancer therapy to be fully realised reliable biomarkers are needed to identify tumours with the exploitable defect for monotherapy applications. The possibility that some combinations may result in toxicity to normal tissues also needs to be considered. A brief overview of the DDR, the development of inhibitors targeting the DDR and the current clinical status of such drugs is described here.
Collapse
|
14
|
Lazo PA. Targeting Histone Epigenetic Modifications and DNA Damage Responses in Synthetic Lethality Strategies in Cancer? Cancers (Basel) 2022; 14:cancers14164050. [PMID: 36011043 PMCID: PMC9406467 DOI: 10.3390/cancers14164050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 12/18/2022] Open
Abstract
Synthetic lethality strategies are likely to be integrated in effective and specific cancer treatments. These strategies combine different specific targets, either in similar or cooperating pathways. Chromatin remodeling underlies, directly or indirectly, all processes of tumor biology. In this context, the combined targeting of proteins associated with different aspects of chromatin remodeling can be exploited to find new alternative targets or to improve treatment for specific individual tumors or patients. There are two major types of proteins, epigenetic modifiers of histones and nuclear or chromatin kinases, all of which are druggable targets. Among epigenetic enzymes, there are four major families: histones acetylases, deacetylases, methylases and demethylases. All these enzymes are druggable. Among chromatin kinases are those associated with DNA damage responses, such as Aurora A/B, Haspin, ATM, ATR, DNA-PK and VRK1-a nucleosomal histone kinase. All these proteins converge on the dynamic regulation chromatin organization, and its functions condition the tumor cell viability. Therefore, the combined targeting of these epigenetic enzymes, in synthetic lethality strategies, can sensitize tumor cells to toxic DNA-damage-based treatments, reducing their toxicity and the selective pressure for tumor resistance and increasing their immunogenicity, which will lead to an improvement in disease-free survival and quality of life.
Collapse
Affiliation(s)
- Pedro A. Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain;
- Instituto de Investigación Biomédica de Salamanca-IBSAL, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
15
|
Monge-Cadet J, Moyal E, Supiot S, Guimas V. DNA repair inhibitors and radiotherapy. Cancer Radiother 2022; 26:947-954. [PMID: 35987813 DOI: 10.1016/j.canrad.2022.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022]
Abstract
Radiotherapy (RT) is one of the main cancer treatments and grows in importance due to improved techniques. DNA damage caused by ionizing radiation creates DNA strand breaks that trigger an intervention of DNA repair pathways involving numerous proteins and enzymes. In recent years, we have identified DNA repair inhibitors as targets for inhibiting cellular repair systems and thus causing cell death. Combining RT with these DNA repair inhibitors appears to be a new approach for cancer treatment, but safety and real efficiency of this combination in practice is unclear. Numerous trials are underway in various diseases and initial results are promising overall, yet remain controversial.
Collapse
Affiliation(s)
- J Monge-Cadet
- Radiothérapie, institut universitaire du cancer de Toulouse, 1, avenue Irène-Joliot-Curie, 31100 Toulouse, France.
| | - E Moyal
- Radiothérapie, institut universitaire du cancer de Toulouse, 1, avenue Irène-Joliot-Curie, 31100 Toulouse, France
| | - S Supiot
- Radiothérapie, institut de cancérologie de l'Ouest, boulevard Professeur Jacques-Monod, 44800 Saint-Herblain, France
| | - V Guimas
- Radiothérapie, institut de cancérologie de l'Ouest, boulevard Professeur Jacques-Monod, 44800 Saint-Herblain, France
| |
Collapse
|
16
|
Matsumoto Y. Development and Evolution of DNA-Dependent Protein Kinase Inhibitors toward Cancer Therapy. Int J Mol Sci 2022; 23:ijms23084264. [PMID: 35457081 PMCID: PMC9032228 DOI: 10.3390/ijms23084264] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/04/2022] Open
Abstract
DNA double-strand break (DSB) is considered the most deleterious type of DNA damage, which is generated by ionizing radiation (IR) and a subset of anticancer drugs. DNA-dependent protein kinase (DNA-PK), which is composed of a DNA-PK catalytic subunit (DNA-PKcs) and Ku80-Ku70 heterodimer, acts as the molecular sensor for DSB and plays a pivotal role in DSB repair through non-homologous end joining (NHEJ). Cells deficient for DNA-PKcs show hypersensitivity to IR and several DNA-damaging agents. Cellular sensitivity to IR and DNA-damaging agents can be augmented by the inhibition of DNA-PK. A number of small molecules that inhibit DNA-PK have been developed. Here, the development and evolution of inhibitors targeting DNA-PK for cancer therapy is reviewed. Significant parts of the inhibitors were developed based on the structural similarity of DNA-PK to phosphatidylinositol 3-kinases (PI3Ks) and PI3K-related kinases (PIKKs), including Ataxia-telangiectasia mutated (ATM). Some of DNA-PK inhibitors, e.g., NU7026 and NU7441, have been used extensively in the studies for cellular function of DNA-PK. Recently developed inhibitors, e.g., M3814 and AZD7648, are in clinical trials and on the way to be utilized in cancer therapy in combination with radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Yoshihisa Matsumoto
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|