1
|
Schaft N, Dörrie J. The Role of Non-coding RNAs in Tumorigenesis, Diagnosis/Prognosis, and Therapeutic Strategies for Cutaneous Melanoma. Methods Mol Biol 2025; 2883:79-107. [PMID: 39702705 DOI: 10.1007/978-1-0716-4290-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
RNA is a substance with various biological functions. It serves as blueprint for proteins and shuttles information from the genes to the protein factories of the cells. However, these factories-the ribosomes-are also composed mainly of RNA, whose purpose is not storing information but enzymatic action. In addition, there is a cornucopia of RNA molecules within our cells that form a complex regulatory network, connected with all aspects of cellular development and maintenance. These non-coding RNAs can be used for diagnostics and therapeutic strategies in cancer. In this chapter we give an overview of recent developments in non-coding RNA-based diagnostics and therapies for cutaneous melanoma. It is not meant to be comprehensive; however, it describes examples based on some of the most recent publications in this field.
Collapse
Affiliation(s)
- Niels Schaft
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, CCC WERA, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Deutsches Zentrum Immuntherapie (DZI), Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| | - Jan Dörrie
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, CCC WERA, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Deutsches Zentrum Immuntherapie (DZI), Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| |
Collapse
|
2
|
Ma Y, Wang T, Zhang X, Wang P, Long F. The role of circular RNAs in regulating resistance to cancer immunotherapy: mechanisms and implications. Cell Death Dis 2024; 15:312. [PMID: 38697964 PMCID: PMC11066075 DOI: 10.1038/s41419-024-06698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Cancer immunotherapy has rapidly transformed cancer treatment, yet resistance remains a significant hurdle, limiting its efficacy in many patients. Circular RNAs (circRNAs), a novel class of non-coding RNAs, have emerged as pivotal regulators of gene expression and cellular processes. Increasing evidence indicates their involvement in modulating resistance to cancer immunotherapy. Notably, certain circRNAs function as miRNA sponges or interact with proteins, influencing the expression of immune-related genes, including crucial immune checkpoint molecules. This, in turn, shapes the tumor microenvironment and significantly impacts the response to immunotherapy. In this comprehensive review, we explore the evolving role of circRNAs in orchestrating resistance to cancer immunotherapy, with a specific focus on their mechanisms in influencing immune checkpoint gene expression. Additionally, we underscore the potential of circRNAs as promising therapeutic targets to augment the effectiveness of cancer immunotherapy. Understanding the role of circRNAs in cancer immunotherapy resistance could contribute to the development of new therapeutic strategies to overcome resistance and improve patient outcomes.
Collapse
Affiliation(s)
- Yu Ma
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Ting Wang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Xudong Zhang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Pinghan Wang
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610032, China
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610032, China.
| |
Collapse
|
3
|
Wang S, Xiong Y, Zhang Y, Wang H, Chen M, Li J, Luo P, Luo YH, Hecht M, Frey B, Gaipl U, Li X, Zhao Q, Ma H, Zhou JG. TCCIA: a comprehensive resource for exploring CircRNA in cancer immunotherapy. J Immunother Cancer 2024; 12:e008040. [PMID: 38212124 PMCID: PMC10806567 DOI: 10.1136/jitc-2023-008040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Immunotherapies targeting immune checkpoints have gained increasing attention in cancer treatment, emphasizing the need for predictive biomarkers. Circular RNAs (circRNAs) have emerged as critical regulators of tumor immunity, particularly in the PD-1/PD-L1 pathway, and have shown potential in predicting immunotherapy efficacy. Yet, the detailed roles of circRNAs in cancer immunotherapy are not fully understood. While existing databases focus on either circRNA profiles or immunotherapy cohorts, there is currently no platform that enables the exploration of the intricate interplay between circRNAs and anti-tumor immunotherapy. A comprehensive resource combining circRNA profiles, immunotherapy responses, and clinical outcomes is essential to advance our understanding of circRNA-mediated tumor-immune interactions and to develop effective biomarkers. METHODS To address these gaps, we constructed The Cancer CircRNA Immunome Atlas (TCCIA), the first database that combines circRNA profiles, immunotherapy response data, and clinical outcomes across multicancer types. The construction of TCCIA involved applying standardized preprocessing to the raw sequencing FASTQ files, characterizing circRNA profiles using an ensemble approach based on four established circRNA detection tools, analyzing tumor immunophenotypes, and compiling immunotherapy response data from diverse cohorts treated with immune checkpoint blockades (ICBs). RESULTS TCCIA encompasses over 4,000 clinical samples obtained from 25 cohorts treated with ICBs along with other treatment modalities. The database provides researchers and clinicians with a cloud-based platform that enables interactive exploration of circRNA data in the context of ICB. The platform offers a range of analytical tools, including browse of identified circRNAs, visualization of circRNA abundance and correlation, association analysis between circRNAs and clinical variables, assessment of the tumor immune microenvironment, exploration of tumor molecular signatures, evaluation of treatment response or prognosis, and identification of altered circRNAs in immunotherapy-sensitive and resistant tumors. To illustrate the utility of TCCIA, we showcase two examples, including circTMTC3 and circMGA, by employing analysis of large-scale melanoma and bladder cancer cohorts, which unveil distinct impacts and clinical implications of different circRNA expression in cancer immunotherapy. CONCLUSIONS TCCIA represents a significant advancement over existing resources, providing a comprehensive platform to investigate the role of circRNAs in immuno-oncology.
Collapse
Affiliation(s)
- Shixiang Wang
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yi Xiong
- Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yihao Zhang
- Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Haitao Wang
- Center for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, People's Republic of China
| | - Minjun Chen
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| | - Jianfeng Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, People's Republic of China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yung-Hung Luo
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Markus Hecht
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Homburg, Germany
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Udo Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Xuejun Li
- Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Hu Ma
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| | - Jian-Guo Zhou
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Roccuzzo G, Bongiovanni E, Tonella L, Pala V, Marchisio S, Ricci A, Senetta R, Bertero L, Ribero S, Berrino E, Marchiò C, Sapino A, Quaglino P, Cassoni P. Emerging prognostic biomarkers in advanced cutaneous melanoma: a literature update. Expert Rev Mol Diagn 2024; 24:49-66. [PMID: 38334382 DOI: 10.1080/14737159.2024.2314574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
INTRODUCTION Over the past two years, the scientific community has witnessed an exponential growth in research focused on identifying prognostic biomarkers for melanoma, both in pre-clinical and clinical settings. This surge in studies reflects the need of developing effective prognostic indicators in the field of melanoma. AREAS COVERED The aim of this work is to review the scientific literature on the most recent findings on the development or validation of prognostic biomarkers in melanoma, in the attempt of providing both clinicians and researchers with an updated broad synopsis of prognostic biomarkers in cutaneous melanoma. EXPERT OPINION While the field of prognostic biomarkers in melanoma appears promising, there are several complexities and limitations to address. The interdependence of clinical, histological, and molecular features requires accurate classification of different biomarker families. Correlation does not imply causation, and adjustments for confounding factors are often overlooked. In this scenario, large-scale studies based on high-quality clinical trial data can provide more reliable evidence. It is essential to avoid oversimplification by focusing on a single biomarker, as the interactions among multiple factors contribute to define the disease course and patient's outcome. Furthermore, implementing well-supported evidence in real-life settings can help advance prognostic biomarker research in melanoma.
Collapse
Affiliation(s)
- Gabriele Roccuzzo
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Eleonora Bongiovanni
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Luca Tonella
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Valentina Pala
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Sara Marchisio
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alessia Ricci
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Rebecca Senetta
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Simone Ribero
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Enrico Berrino
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Caterina Marchiò
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Anna Sapino
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Pietro Quaglino
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|