1
|
Zhang K, Qian J. Top-down modulation on depth processing: Visual searches for metric and ordinal depth information show a pattern of dissociation. Psychon Bull Rev 2023; 30:1380-1387. [PMID: 36510093 DOI: 10.3758/s13423-022-02232-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2022] [Indexed: 12/14/2022]
Abstract
Depending on the goal, one can selectively process the metric depth or the ordinal depth information in the same scene. It is unknown whether the metric depth and ordinal depth information are processed through a shared or different underlying mechanisms. Here, we investigated the processing of the metric depth and ordinal depth using visual search. Items were presented at multiple depth planes defined by the binocular disparity, with one item per depth plane. In the metric-search task, participants were required to search for the target on a particular depth plane, among one to three distractors. In the ordinal-search task, the target was specified by its depth order indicated by numbers (smaller numbers indicated nearer depth planes). We found that the ordinal search was faster and more accurate than the metric search, and the data showed a pattern of dissociation. Metric search, but not ordinal search, was slowed when the target and distractors were closer in depth, while ordinal search was slower for the middle than the edge positions but metric search was unaffected. These two opposite effects suggest that metric depth and ordinal depth may be processed differently.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Psychology, Sun Yat-Sen University, Guangzhou, 510006, China
- Department of Psychology, Shaoxing University, Shaoxing, China
| | - Jiehui Qian
- Department of Psychology, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
van der Waal C, Embrechts E, Loureiro-Chaves R, Gebruers N, Truijen S, Saeys W. Lateropulsion with active pushing in stroke patients: its link with lesion location and the perception of verticality. A systematic review. Top Stroke Rehabil 2023; 30:281-297. [PMID: 35102816 DOI: 10.1080/10749357.2022.2026563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Lateropulsion with active Pushing (LwP) is characterized by impairments in postural control. Previous research suggests an association between LwP, lesion location and verticality misperception. This first-ever systematic review evaluates the association between LwP, lesion location and the perception of verticality (PROSPERO: CRD42020159248). METHODS PubMed, Web of Science, REHABDATA, Embase, Cochrane Library and PEDro were systematically searched on December 16, 2021. Studies were included when examining lesion location or perception of verticality (Subjective Haptic, Visual or Postural Vertical) in supratentorial stroke patients showing LwP. Two reviewers independently screened and assessed risk of bias using the Newcastle Ottawa Scale. Data were qualitatively analyzed and extracted. RESULTS Nineteen studies were included, examining a total of 340 LwP patients. Lesions in: the thalamus, internal capsule, inferior parietal lobule at the junction of the postcentral gyrus, the posterior insula and the superior temporal gyrus, were associated with LwP. Whereas all studies examining the Subjective Postural and Haptic Vertical (haptic only examined once) reported a significant increased deviation in LwP patients, inconsistent results were found for the Subjective Visual Vertical. Furthermore, the Subjective Visual and Postural Vertical showed inconsistent results for magnitude, direction and variability of this deviation. DISCUSSION A complex brain network, rather than only one brain region, seems responsible for body control with respect to gravity. A disruption within this network might lead to a bias in the construction of a correct internal reference frame, crucial for perceiving verticality. There was an association of LwP with verticality misperception in all three modalities.
Collapse
Affiliation(s)
- Charlotte van der Waal
- Research Group MOVANT, Department of Rehabilitation Sciences & Physiotherapy, University of Antwerp, Wilrijk, Belgium
| | - Elissa Embrechts
- Research Group MOVANT, Department of Rehabilitation Sciences & Physiotherapy, University of Antwerp, Wilrijk, Belgium
| | - Renata Loureiro-Chaves
- Research Group MOVANT, Department of Rehabilitation Sciences & Physiotherapy, University of Antwerp, Wilrijk, Belgium
| | - Nick Gebruers
- Research Group MOVANT, Department of Rehabilitation Sciences & Physiotherapy, University of Antwerp, Wilrijk, Belgium
| | - Steven Truijen
- Research Group MOVANT, Department of Rehabilitation Sciences & Physiotherapy, University of Antwerp, Wilrijk, Belgium
| | - Wim Saeys
- Research Group MOVANT, Department of Rehabilitation Sciences & Physiotherapy, University of Antwerp, Wilrijk, Belgium.,Department of Neurorehabilitation, RevArte Rehabilitation Hospital, Edegem, Belgium
| |
Collapse
|
3
|
Zhiznevskiy D, Zamergrad M, Levin O. The role of cognitive impairment in the development of balance disorders in cerebrovascular diseases. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:51-58. [DOI: 10.17116/jnevro202212211251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Wilkerson GB, Nabhan DC, Perry TS. A Novel Approach to Assessment of Perceptual-Motor Efficiency and Training-Induced Improvement in the Performance Capabilities of Elite Athletes. Front Sports Act Living 2021; 3:729729. [PMID: 34661098 PMCID: PMC8517233 DOI: 10.3389/fspor.2021.729729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Standard clinical assessments of mild traumatic brain injury are inadequate to detect subtle abnormalities that can be revealed by sophisticated diagnostic technology. An association has been observed between sport-related concussion (SRC) and subsequent musculoskeletal injury, but the underlying neurophysiological mechanism is not currently understood. A cohort of 16 elite athletes (10 male, 6 female), which included nine individuals who reported a history of SRC (5 male, 4 female) that occurred between 4 months and 8 years earlier, volunteered to participate in a 12-session program for assessment and training of perceptual-motor efficiency. Performance metrics derived from single- and dual-task whole-body lateral and diagonal reactive movements to virtual reality targets in left and right directions were analyzed separately and combined in various ways to create composite representations of global function. Intra-individual variability across performance domains demonstrated very good SRC history classification accuracy for the earliest 3-session phase of the program (Reaction Time Dispersion AUC = 0.841; Deceleration Dispersion AUC = 0.810; Reaction Time Discrepancy AUC = 0.825, Deceleration Discrepancy AUC = 0.794). Good earliest phase discrimination was also found for Composite Asymmetry between left and right movement directions (AUC = 0.778) and Excursion Average distance beyond the minimal body displacement necessary for virtual target deactivation (AUC = 0.730). Sensitivity derived from Youden's Index for the 6 global factors ranged from 67 to 89% and an identical specificity value of 86% for all of them. Median values demonstrated substantial improvement from the first 3-session phase to the last 3-session phase for Composite Asymmetry and Excursion Average. The results suggest that a Composite Asymmetry value ≥ 0.15 and an Excursion Average value ≥ 7 m, provide reasonable qualitative approximations for clinical identification of suboptimal perceptual-motor performance. Despite acknowledged study limitations, the findings support a hypothesized relationship between whole-body reactive agility performance and functional connectivity among brain networks subserving sensory perception, cognitive decision-making, and motor execution. A complex systems approach appears to perform better than traditional data analysis methods for detection of subtle perceptual-motor impairment, which has the potential to advance both clinical management of SRC and training for performance enhancement.
Collapse
Affiliation(s)
- Gary B Wilkerson
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Dustin C Nabhan
- Oslo Sports Trauma Research Center, Norwegian School of Sport Science, Oslo, Norway
| | - Tyler S Perry
- Orthopedics and Sports Medicine, Emory Healthcare, Atlanta, GA, United States
| |
Collapse
|
5
|
Neurofunctional Symmetries and Asymmetries during Voluntary out-of- and within-Body Vivid Imagery Concurrent with Orienting Attention and Visuospatial Detection. Symmetry (Basel) 2021. [DOI: 10.3390/sym13081549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We explored whether two visual mental imagery experiences may be differentiated by electroencephalographic (EEG) and performance interactions with concurrent orienting external attention (OEA) to stimulus location and subsequent visuospatial detection. We measured within-subject (N = 10) event-related potential (ERP) changes during out-of-body imagery (OBI)—vivid imagery of a vertical line outside of the head/body—and within-body imagery (WBI)—vivid imagery of the line within one’s own head. Furthermore, we measured ERP changes and line offset Vernier acuity (hyperacuity) performance concurrent with those imagery, compared to baseline detection without imagery. Relative to OEA baseline, OBI yielded larger N200 and P300, whereas WBI yielded larger P50, P100, N400, and P800. Additionally, hyperacuity dropped significantly when concurrent with both imagery types. Partial least squares analysis combined behavioural performance, ERPs, and/or event-related EEG band power (ERBP). For both imagery types, hyperacuity reduction correlated with opposite frontal and occipital ERP amplitude and polarity changes. Furthermore, ERP modulation and ERBP synchronizations for all EEG frequencies correlated inversely with hyperacuity. Dipole Source Localization Analysis revealed unique generators in the left middle temporal gyrus (WBI) and in the right frontal middle gyrus (OBI), whereas the common generators were in the left precuneus and middle occipital cortex (cuneus). Imagery experiences, we conclude, can be identified by symmetric and asymmetric combined neurophysiological-behavioural patterns in interactions with the width of attentional focus.
Collapse
|
6
|
Horses show individual level lateralisation when inspecting an unfamiliar and unexpected stimulus. PLoS One 2021; 16:e0255688. [PMID: 34351986 PMCID: PMC8341651 DOI: 10.1371/journal.pone.0255688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/22/2021] [Indexed: 11/21/2022] Open
Abstract
Animals must attend to a diverse array of stimuli in their environments. The emotional valence and salience of a stimulus can affect how this information is processed in the brain. Many species preferentially attend to negatively valent stimuli using the sensory organs on the left side of their body and hence the right hemisphere of their brain. Here, we investigated the lateralisation of visual attention to the rapid appearance of a stimulus (an inflated balloon) designed to induce an avoidance reaction and a negatively valent emotional state in 77 Italian saddle horses. Horses’ eyes are laterally positioned on the head, and each eye projects primarily to the contralateral hemisphere, allowing eye use to be a proxy for preferential processing in one hemisphere of the brain. We predicted that horses would inspect the novel and unexpected stimulus with their left eye and hence right hemisphere. We found that horses primarily inspected the balloon with one eye, and most horses had a preferred eye to do so, however, we did not find a population level tendency for this to be the left or the right eye. The strength of this preference tended to decrease over time, with the horses using their non-preferred eye to inspect the balloon increasingly as the trial progressed. Our results confirm a lateralised eye use tendency when viewing negatively emotionally valent stimuli in horses, in agreement with previous findings. However, there was not any alignment of lateralisation at the group level in our sample, suggesting that the expression of lateralisation in horses depends on the sample population and testing context.
Collapse
|
7
|
Fernández A, Pinal D, Díaz F, Zurrón M. Working memory load modulates oscillatory activity and the distribution of fast frequencies across frontal theta phase during working memory maintenance. Neurobiol Learn Mem 2021; 183:107476. [PMID: 34087476 DOI: 10.1016/j.nlm.2021.107476] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/13/2021] [Accepted: 05/30/2021] [Indexed: 02/06/2023]
Abstract
Working memory (WM) is a keystone of our cognitive abilities. Increasing load has been shown to dampen its performance and affect oscillatory neural activity in different frequency bands. Nevertheless, mixed results regarding fast frequencies activity and a lack of research on WM load modulations of cross-frequency phase-amplitude coupling mechanisms preclude a better understanding of the impact of increased WM load levels on brain activity as well as inter-regional communication and coordination supporting WM processes. Hence, we analyzed the EEG activity of 25 participants while performing a delayed-matching-to-sample (DMS) WM task with three WM load levels. Current density power and distribution at the source level for theta, beta, and gamma frequencies during the task's delay period were compared for each pair of WM load conditions. Results showed maximal increases of theta activity in frontal areas and of fast frequencies' activity in posterior regions with WM load, showing the involvement of frontal theta activity in WM maintenance and the control of attentional resources and visual processing by beta and gamma activity. To study whether WM load modulates communication between cortical areas, posterior beta and gamma amplitudes distribution across frontal theta phase was also analysed for those areas showing the largest significant WM load modulations. Higher beta activity amplitude at bilateral cuneus and right middle occipital gyrus, and higher gamma activity amplitude at bilateral posterior cingulate were observed during frontal theta phase peak in low than high memory load conditions. Moreover, greater fast beta amplitude at the right postcentral gyrus was observed during theta phase trough at right middle frontal gyrus in high than low memory load conditions. These results show that WM load modulates whether interregional communication occurs during theoretically optimal or non-optimal time windows, depending on the demands of frontal control of posterior areas required to perform the task successfully.
Collapse
Affiliation(s)
- Alba Fernández
- Cognitive Neuroscience Laboratory, Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela, Santiago de Compostela, Galiza, Spain.
| | - Diego Pinal
- Psychological Neuroscience Lab, Escola de psicologia, Universidade do Minho, Portugal
| | - Fernando Díaz
- Cognitive Neuroscience Laboratory, Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela, Santiago de Compostela, Galiza, Spain
| | - Montserrat Zurrón
- Cognitive Neuroscience Laboratory, Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela, Santiago de Compostela, Galiza, Spain
| |
Collapse
|
8
|
Hamami Y, van der Kuil MNA, Mumma J, van der Ham IJM. Cognitive processing of spatial relations in Euclidean diagrams. Acta Psychol (Amst) 2020; 205:103019. [PMID: 32145463 DOI: 10.1016/j.actpsy.2020.103019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 11/08/2019] [Accepted: 01/20/2020] [Indexed: 11/19/2022] Open
Abstract
The cognitive processing of spatial relations in Euclidean diagrams is central to the diagram-based geometric practice of Euclid's Elements. In this study, we investigate this processing through two dichotomies among spatial relations-metric vs topological and exact vs co-exact-introduced by Manders in his seminal epistemological analysis of Euclid's geometric practice. To this end, we carried out a two-part experiment where participants were asked to judge spatial relations in Euclidean diagrams in a visual half field task design. In the first part, we tested whether the processing of metric vs topological relations yielded the same hemispheric specialization as the processing of coordinate vs categorical relations. In the second part, we investigated the specific performance patterns for the processing of five pairs of exact/co-exact relations, where stimuli for the co-exact relations were divided into three categories depending on their distance from the exact case. Regarding the processing of metric vs topological relations, hemispheric differences were found for only a few of the stimuli used, which may indicate that other processing mechanisms might be at play. Regarding the processing of exact vs co-exact relations, results show that the level of agreement among participants in judging co-exact relations decreases with the distance from the exact case, and this for the five pairs of exact/co-exact relations tested. The philosophical implications of these empirical findings for the epistemological analysis of Euclid's diagram-based geometric practice are spelled out and discussed.
Collapse
Affiliation(s)
- Yacin Hamami
- Centre for Logic and Philosophy of Science, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Milan N A van der Kuil
- Department Health, Medical and Neuropsychology, Leiden University, Leiden, the Netherlands
| | - John Mumma
- Philosophy Department, California State University of San Bernardino, San Bernardino, CA, USA
| | - Ineke J M van der Ham
- Department Health, Medical and Neuropsychology, Leiden University, Leiden, the Netherlands
| |
Collapse
|
9
|
Ruotolo F, Ruggiero G, Raemaekers M, Iachini T, van der Ham I, Fracasso A, Postma A. Neural correlates of egocentric and allocentric frames of reference combined with metric and non-metric spatial relations. Neuroscience 2019; 409:235-252. [DOI: 10.1016/j.neuroscience.2019.04.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 03/28/2019] [Accepted: 04/09/2019] [Indexed: 01/08/2023]
|
10
|
Thalamocortical network: a core structure for integrative multimodal vestibular functions. Curr Opin Neurol 2019; 32:154-164. [DOI: 10.1097/wco.0000000000000638] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Cattaneo Z, Rinaldi L, Geraci C, Cecchetto C, Papagno C. Spatial biases in deaf, blind, and deafblind individuals as revealed by a haptic line bisection task. Q J Exp Psychol (Hove) 2018; 71:2325-2333. [PMID: 30362405 DOI: 10.1177/1747021817741288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, we investigated whether auditory deprivation leads to a more balanced bilateral control of spatial attention in the haptic space. We tested four groups of participants: early deaf, early blind, deafblind, and control (normally hearing and sighted) participants. Using a haptic line bisection task, we found that while normally hearing individuals (even when blind) showed a significant tendency to bisect to the left of the veridical midpoint (i.e., pseudoneglect), deaf individuals did not show any significant directional bias. This was the case of both deaf signers and non-signers, in line with prior findings obtained using a visual line bisection task. Interestingly, deafblind individuals also erred significantly to the left, resembling the pattern of early blind and control participants. Overall, these data critically suggest that deafness induces changes in the hemispheric asymmetry subtending the orientation of spatial attention also in the haptic modality. Moreover, our findings indicate that what counterbalances the right-hemisphere dominance in the control of spatial attention is not the lack of auditory input per se, nor sign language use, but rather the heavier reliance on visual experience induced by early auditory deprivation.
Collapse
Affiliation(s)
- Zaira Cattaneo
- 1 Department of Psychology, University of Milano-Bicocca, Milano, Italy
- 2 Brain Connectivity Center, IRCCS Mondino, Pavia, Italy
| | - Luca Rinaldi
- 1 Department of Psychology, University of Milano-Bicocca, Milano, Italy
- 3 NeuroMI, University of Milano-Bicocca, Milano, Italy
| | - Carlo Geraci
- 4 Institut Jean Nicod, Département d'études cognitives, ENS, EHESS, CNRS, PSL Research University, Paris, France
| | - Carlo Cecchetto
- 1 Department of Psychology, University of Milano-Bicocca, Milano, Italy
- 5 Structures Formelles du Langage, Université Paris 8/CNRS, Paris, France
| | - Costanza Papagno
- 1 Department of Psychology, University of Milano-Bicocca, Milano, Italy
- 6 CIMeC and CeRiN, University of Trento, Rovereto, Italy
| |
Collapse
|
12
|
Brandt T, Dieterich M. Functional and structural benefits of separately operating right and left thalamo-cortical networks. J Neurol 2018; 265:98-100. [PMID: 29556715 DOI: 10.1007/s00415-018-8824-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 10/17/2022]
Affiliation(s)
- Thomas Brandt
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians Universität, Marchioninistr. 15, 81377, Munich, Germany.
| | - Marianne Dieterich
- Department of Neurology and German Center for Vertigo and Balance Disorders, Ludwig-Maximilians Universität, Munich, Germany.,Munich Center for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
13
|
|
14
|
van der Ham IJM, Brummelman J, Aerts ME, de Haan AM, Dijkerman HC. Lateralized pointing does not cause a cognitive bias. Cogn Process 2017; 19:17-25. [PMID: 28871445 DOI: 10.1007/s10339-017-0833-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 08/30/2017] [Indexed: 10/18/2022]
Abstract
Lateralized pointing has been shown to cause not only a shift in visuo-motor midline, but also a shift in non-lateralized spatial attention. Non-lateralized cognitive consequences of lateralized pointing have been reported for local and global visuospatial processing. Here, we evaluate these findings and examine this effect for categorical and coordinate spatial relation processing, for which the attentional processes are thought to be highly similar to local and global visuospatial processing, respectively. Participants performed a commonly used working memory task to assess categorical and coordinate spatial relation processing. Lateralized pointing with either the left or the right hand, to either the left or the right side was introduced as a manipulation, as well as a new control condition without any pointing. Performance on the spatial relation task was measured before and after pointing. The results suggest that non-lateralized consequences of lateralized pointing cannot be generalized to other cognitive tasks relying on attentional processing. Further examination of lateralized pointing is recommended before drawing further conclusions concerning its impact on non-lateralized cognition.
Collapse
Affiliation(s)
- Ineke J M van der Ham
- Department of Health, Medical, and Neuropsychology, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, The Netherlands.
| | - Jantina Brummelman
- Department of Experimental Psychology, Helmholtz Institute Utrecht University, Utrecht, The Netherlands
| | - Marie Elise Aerts
- Department of Experimental Psychology, Helmholtz Institute Utrecht University, Utrecht, The Netherlands
| | - Alyanne M de Haan
- Department of Experimental Psychology, Helmholtz Institute Utrecht University, Utrecht, The Netherlands
| | - H Chris Dijkerman
- Department of Experimental Psychology, Helmholtz Institute Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
15
|
Mäntylä T, Coni V, Kubik V, Todorov I, Del Missier F. Time takes space: selective effects of multitasking on concurrent spatial processing. Cogn Process 2017; 18:229-235. [PMID: 28315969 PMCID: PMC5527076 DOI: 10.1007/s10339-017-0799-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/09/2017] [Indexed: 11/28/2022]
Abstract
Many everyday activities require coordination and monitoring of complex relations of future goals and deadlines. Cognitive offloading may provide an efficient strategy for reducing control demands by representing future goals and deadlines as a pattern of spatial relations. We tested the hypothesis that multiple-task monitoring involves time-to-space transformational processes, and that these spatial effects are selective with greater demands on coordinate (metric) than categorical (nonmetric) spatial relation processing. Participants completed a multitasking session in which they monitored four series of deadlines, running on different time scales, while making concurrent coordinate or categorical spatial judgments. We expected and found that multitasking taxes concurrent coordinate, but not categorical, spatial processing. Furthermore, males showed a better multitasking performance than females. These findings provide novel experimental evidence for the hypothesis that efficient multitasking involves metric relational processing.
Collapse
Affiliation(s)
- Timo Mäntylä
- Department of Psychology, Stockholm University, Stockholm, Sweden.
| | - Valentina Coni
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Veit Kubik
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Ivo Todorov
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Fabio Del Missier
- Department of Psychology, Stockholm University, Stockholm, Sweden
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
16
|
Erbil N, Yagcioglu S. Connectivity measures in the Poffenberger paradigm indicate hemispheric asymmetries. FUNCTIONAL NEUROLOGY 2017; 31:249-256. [PMID: 28072385 DOI: 10.11138/fneur/2016.31.4.249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Poffenberger paradigm is a well-known measure of interhemispheric transfer delays, calculated on the basis of the crossed vs uncrossed reaction time difference (CUD). However, the proper interpretation of CUD is extensively debated in the literature. In this study we used connectivity measures in an attempt to interpret CUD from the perspective of functional connectivity. Accordingly, we tried to define functional couplings in the Poffenberger paradigm; we used a simple choice version of the paradigm, and included a stimulation only (SO) condition for comparison. As an index of functional coupling we employed partial directed coherence, exploiting bilateral grouping of the electrodes to compute intra-and interhemispheric connection weight ratios (CWRs). Our findings indicated modulations in functional weights in relation to the SO condition, rather than the crossed and uncrossed conditions, such that the response executed by the right hemisphere yielded a decrease in intra-, yet an increase in interhemispheric CWRs, whereas the left hemisphere interactions showed connectivity patterns similar to the SO condition irrespective of the side of movement. Overall, our results suggest modulation of connectivity in the same/similar system, which was found to be optimized, in terms of hemispheric asymmetries, to different tasks.
Collapse
|
17
|
Yuan L, Uttal D, Franconeri S. Are Categorical Spatial Relations Encoded by Shifting Visual Attention between Objects? PLoS One 2016; 11:e0163141. [PMID: 27695104 PMCID: PMC5047635 DOI: 10.1371/journal.pone.0163141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 09/02/2016] [Indexed: 11/19/2022] Open
Abstract
Perceiving not just values, but relations between values, is critical to human cognition. We tested the predictions of a proposed mechanism for processing categorical spatial relations between two objects-the shift account of relation processing-which states that relations such as 'above' or 'below' are extracted by shifting visual attention upward or downward in space. If so, then shifts of attention should improve the representation of spatial relations, compared to a control condition of identity memory. Participants viewed a pair of briefly flashed objects and were then tested on either the relative spatial relation or identity of one of those objects. Using eye tracking to reveal participants' voluntary shifts of attention over time, we found that when initial fixation was on neither object, relational memory showed an absolute advantage for the object following an attention shift, while identity memory showed no advantage for either object. This result is consistent with the shift account of relation processing. When initial fixation began on one of the objects, identity memory strongly benefited this fixated object, while relational memory only showed a relative benefit for objects following an attention shift. This result is also consistent, although not as uniquely, with the shift account of relation processing. Taken together, we suggest that the attention shift account provides a mechanistic explanation for the overall results. This account can potentially serve as the common mechanism underlying both linguistic and perceptual representations of spatial relations.
Collapse
Affiliation(s)
- Lei Yuan
- Department of Psychology, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| | - David Uttal
- Department of Psychology, Northwestern University, Evanston, Illinois, United States of America
| | - Steven Franconeri
- Department of Psychology, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
18
|
Functional neural correlates of figure copy and recall task performances in cognitively impaired individuals: an 18F-FDG-PET study. Neuroreport 2016; 26:1077-82. [PMID: 26509549 DOI: 10.1097/wnr.0000000000000476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Figure copy and recall tasks from the Benton Visual Retention Test (BVRT) and the Consortium to Establish a Registry of Alzheimer's Disease (CERAD) neuropsychological battery are used widely to assess visuospatial function in cognitively impaired (CI) individuals. We aimed to identify functional neural correlates of figure copy and recall task performances as measured by the BVRT and the CERAD constructional praxis (CP) and CP recall (CR) in CI individuals. Both tasks were administered to 64 CI individuals with early or prodromal stage Alzheimer's disease and 36 cognitively normal individuals. Voxel-wise correlations between test scores and regional cerebral glucose metabolism (rCMglc) measured by fluorine-18 fluorodeoxyglucose PET in CI participants were analyzed. BVRT figure copy task performance was associated with rCMglc of the bilateral posterior brain regions including the parieto-temporo-occipital regions, whereas the BVRT figure recall task performance was predominantly correlated with rCMglc of the left parietal and temporo-occipital regions. Meanwhile, CERAD CP performance was associated mainly with rCMglc of the left prefrontal and temporo-occipital areas as well as in the bilateral parietal regions, whereas CERAD CR performance was correlated with rCMglc of the right prefrontal, parietal, and temporal regions. In conclusion, the functional neural correlates of the two tasks were markedly different, suggesting that these tasks might measure different visuospatial functions. Our findings contribute toward understanding the functional neuroanatomical aspects of these tasks, which is useful for both interpreting the task results as well as for more sophisticated utilization of these tasks for probing specific neuroanatomical functions.
Collapse
|
19
|
Ruotolo F, Iachini T, Ruggiero G, van der Ham IJM, Postma A. Frames of reference and categorical/coordinate spatial relations in a "what was where" task. Exp Brain Res 2016; 234:2687-96. [PMID: 27180248 PMCID: PMC4978766 DOI: 10.1007/s00221-016-4672-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/05/2016] [Indexed: 11/30/2022]
Abstract
The aim of this study was to explore how people use egocentric (i.e., with respect to their body) and allocentric (i.e., with respect to another element in the environment) references in combination with coordinate (metric) or categorical (abstract) spatial information to identify a target element. Participants were asked to memorize triads of 3D objects or 2D figures, and immediately or after a delay of 5 s, they had to verbally indicate what was the object/figure: (1) closest/farthest to them (egocentric coordinate task); (2) on their right/left (egocentric categorical task); (3) closest/farthest to another object/figure (allocentric coordinate task); (4) on the right/left of another object/figure (allocentric categorical task). Results showed that the use of 2D figures favored categorical judgments over the coordinate ones with either an egocentric or an allocentric reference frame, whereas the use of 3D objects specifically favored egocentric coordinate judgments rather than the allocentric ones. Furthermore, egocentric judgments were more accurate than allocentric judgments when the response was Immediate rather than delayed and 3D objects rather than 2D figures were used. This pattern of results is discussed in the light of the functional roles attributed to the frames of reference and spatial relations by relevant theories of visuospatial processing.
Collapse
Affiliation(s)
- Francesco Ruotolo
- Helmholtz Institute, Experimental Psychology, Utrecht University, Utrecht, The Netherlands. .,Laboratory of Cognitive Science and Immersive Virtual Reality, Department of Psychology, Second University of Naples, Caserta, Italy.
| | - Tina Iachini
- Laboratory of Cognitive Science and Immersive Virtual Reality, Department of Psychology, Second University of Naples, Caserta, Italy
| | - Gennaro Ruggiero
- Laboratory of Cognitive Science and Immersive Virtual Reality, Department of Psychology, Second University of Naples, Caserta, Italy
| | - Ineke J M van der Ham
- Faculty of Social and Behavioral Sciences, Leiden University, Leiden, The Netherlands
| | - Albert Postma
- Helmholtz Institute, Experimental Psychology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
20
|
The effect of physical activity on spatial perception and attention in early childhood. COGNITIVE DEVELOPMENT 2015. [DOI: 10.1016/j.cogdev.2015.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Falasca NW, D'Ascenzo S, Di Domenico A, Onofrj M, Tommasi L, Laeng B, Franciotti R. Hemispheric lateralization in top-down attention during spatial relation processing: a Granger causal model approach. Eur J Neurosci 2015; 41:914-24. [PMID: 25704649 DOI: 10.1111/ejn.12846] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/16/2014] [Accepted: 12/31/2014] [Indexed: 11/29/2022]
Abstract
Magnetoencephalography was recorded during a matching-to-sample plus cueing paradigm, in which participants judged the occurrence of changes in either categorical (CAT) or coordinate (COO) spatial relations. Previously, parietal and frontal lobes were identified as key areas in processing spatial relations and it was shown that each hemisphere was differently involved and modulated by the scope of the attention window (e.g. a large and small cue). In this study, Granger analysis highlighted the patterns of causality among involved brain areas--the direction of information transfer ran from the frontal to the visual cortex in the right hemisphere, whereas it ran in the opposite direction in the left side. Thus, the right frontal area seems to exert top-down influence, supporting the idea that, in this task, top-down signals are selectively related to the right side. Additionally, for CAT change preceded by a small cue, the right frontal gyrus was not involved in the information transfer, indicating a selective specialization of the left hemisphere for this condition. The present findings strengthen the conclusion of the presence of a remarkable hemispheric specialization for spatial relation processing and illustrate the complex interactions between the lateralized parts of the neural network. Moreover, they illustrate how focusing attention over large or small regions of the visual field engages these lateralized networks differently, particularly in the frontal regions of each hemisphere, consistent with the theory that spatial relation judgements require a fronto-parietal network in the left hemisphere for categorical relations and on the right hemisphere for coordinate spatial processing.
Collapse
Affiliation(s)
- N W Falasca
- BIND - Behavioral Imaging and Neural Dynamics Center, University of Chieti-Pescara, Chieti, Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Vendetti MS, Johnson EL, Lemos CJ, Bunge SA. Hemispheric differences in relational reasoning: novel insights based on an old technique. Front Hum Neurosci 2015; 9:55. [PMID: 25709577 PMCID: PMC4321644 DOI: 10.3389/fnhum.2015.00055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/20/2015] [Indexed: 11/13/2022] Open
Abstract
Relational reasoning, or the ability to integrate multiple mental relations to arrive at a logical conclusion, is a critical component of higher cognition. A bilateral brain network involving lateral prefrontal and parietal cortices has been consistently implicated in relational reasoning. Some data suggest a preferential role for the left hemisphere in this form of reasoning, whereas others suggest that the two hemispheres make important contributions. To test for a hemispheric asymmetry in relational reasoning, we made use of an old technique known as visual half-field stimulus presentation to manipulate whether stimuli were presented briefly to one hemisphere or the other. Across two experiments, 54 neurologically healthy young adults performed a visuospatial transitive inference task. Pairs of colored shapes were presented rapidly in either the left or right visual hemifield as participants maintained central fixation, thereby isolating initial encoding to the contralateral hemisphere. We observed a left-hemisphere advantage for encoding a series of ordered visuospatial relations, but both hemispheres contributed equally to task performance when the relations were presented out of order. To our knowledge, this is the first study to reveal hemispheric differences in relational encoding in the intact brain. We discuss these findings in the context of a rich literature on hemispheric asymmetries in cognition.
Collapse
Affiliation(s)
- Michael S Vendetti
- Helen Wills Neuroscience Institute, University of California at Berkeley , Berkeley, CA , USA
| | - Elizabeth L Johnson
- Helen Wills Neuroscience Institute, University of California at Berkeley , Berkeley, CA , USA ; Department of Psychology, University of California at Berkeley , Berkeley, CA , USA
| | - Connor J Lemos
- Department of Psychology, University of California at Berkeley , Berkeley, CA , USA
| | - Silvia A Bunge
- Helen Wills Neuroscience Institute, University of California at Berkeley , Berkeley, CA , USA ; Department of Psychology, University of California at Berkeley , Berkeley, CA , USA
| |
Collapse
|