1
|
Kaufman MJ, Meloni EG. Xenon gas as a potential treatment for opioid use disorder, alcohol use disorder, and related disorders. Med Gas Res 2025; 15:234-253. [PMID: 39812023 DOI: 10.4103/mgr.medgasres-d-24-00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/26/2024] [Indexed: 01/16/2025] Open
Abstract
Xenon gas is considered to be a safe anesthetic and imaging agent. Research on its other potentially beneficial effects suggests that xenon may have broad efficacy for treating health disorders. A number of reviews on xenon applications have been published, but none have focused on substance use disorders. Accordingly, we review xenon effects and targets relevant to the treatment of substance use disorders, with a focus on opioid use disorder and alcohol use disorder. We report that xenon inhaled at subsedative concentrations inhibits conditioned memory reconsolidation and opioid withdrawal symptoms. We review work by others reporting on the antidepressant, anxiolytic, and analgesic properties of xenon, which could diminish negative affective states and pain. We discuss research supporting the possibility that xenon could prevent analgesic- or stress-induced opioid tolerance and, by so doing could reduce the risk of developing opioid use disorder. The rapid kinetics, favorable safety and side effect profiles, and multitargeting capability of xenon suggest that it could be used as an ambulatory on-demand treatment to rapidly attenuate maladaptive memory, physical and affective withdrawal symptoms, and pain drivers of substance use disorders when they occur. Xenon may also have human immunodeficiency virus and oncology applications because its effects relevant to substance use disorders could be exploited to target human immunodeficiency virus reservoirs, human immunodeficiency virus protein-induced abnormalities, and cancers. Although xenon is expensive, low concentrations exert beneficial effects, and gas separation, recovery, and recycling advancements will lower xenon costs, increasing the economic feasibility of its therapeutic use. More research is needed to better understand the remarkable repertoire of effects of xenon and its potential therapeutic applications.
Collapse
Affiliation(s)
- Marc J Kaufman
- McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | | |
Collapse
|
2
|
Isgate SB, Budge KE, Byrnes EM, Vassoler FM. Paternal morphine alters offspring circulating beta-endorphin and corticosterone responses to oxycodone and cocaine. Neuropharmacology 2025; 265:110271. [PMID: 39694232 DOI: 10.1016/j.neuropharm.2024.110271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND The opioid epidemic is leading to increased opioid use in adolescent populations. A growing body of evidence suggests that taking opioids during adolescence can disrupt normal development and impact future offspring. This study investigates the impact of paternal morphine exposure during adolescence on the hypothalamic-pituitary-adrenal (HPA) axis and release of endorphins in the offspring. METHODS Male rats were administered morphine once a day from postnatal day (PND)30-39 using an increasing dosing regimen (5-25 mg/kg/day increasing every other day). They were mated during adulthood to drug naïve females. Their offspring were assessed for circulating beta-endorphin (βE) and corticosterone levels on PND30 (a timepoint prior to puberty in both sexes) in response to an acute injection of saline, oxycodone (1 mg/kg, i.p.) or cocaine (10 mg/kg, i.p.). At PND60, naïve littermates were catheterized so that a within-subjects design could be implemented to measure βE and corticosterone in response to saline, oxycodone, or cocaine. RESULTS In males, βE levels in the plasma were increased in Mor-F1 males compared to Sal-F1 males regardless of the acute injection. This elevation was observed at PND30 and PND60. There were no differences in female circulating βE. In terms of corticosterone, male Mor-F1 offspring had blunted corticosterone at PND30, but elevated corticosterone in response to oxycodone at PND60. The females also tended towards lower corticosterone prior to puberty but had significantly elevated levels of circulating corticosterone following an acute cocaine injection. CONCLUSION Paternal morphine exposure during adolescence induces sex- and drug-specific changes in secreted hormone responses in offspring. The alterations in βE and corticosterone levels suggest mechanisms through which adolescent opioid exposure can impact endocrine functions of future offspring. These findings contribute to the understanding of intergenerational transmission of substance use effects.
Collapse
Affiliation(s)
- Sara B Isgate
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Kerri E Budge
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Elizabeth M Byrnes
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Fair M Vassoler
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA.
| |
Collapse
|
3
|
Cam Y, Kocum CG, Houska TK, Konrad ER, Schweizer TA, Will MJ. Palatable feeding effects on expression and reinstatement of morphine conditioned place preference in male and female rats. Behav Brain Res 2025; 477:115320. [PMID: 39489431 DOI: 10.1016/j.bbr.2024.115320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
While many environmental factors are known to play a factor in the recovery and risk of relapse for individuals with opioid use disorder (OUD), the role of diet has been relatively unexplored. Individuals with OUD demonstrate unhealthy diet choices with an exaggerated craving for palatable "junk food," yet this relationship has not been well characterized. The present study begins to examine this relationship by first determining the influence of palatable food access on the expression of conditioned rewarding properties of acute morphine exposure in male and female rats. Following the establishment of morphine conditioned place preference (CPP) in all rats, morphine CPP expression was assessed following intra-accumbens (Acb) administration of the µ-opioid receptor agonist D-Ala2,NMe-Phe4,Glyol5-enkephalin (DAMGO) + 20 min access to no diet (ND) or high-fat (HF), in counter-balanced order. Next, all rats received 12 sessions of extinction training before CPP expression was first assessed following no treatment, then again following counter-balanced ND and HF treatments. The results showed that both male and female rats expressed similar levels of morphine CPP. Subsequent examination of morphine CPP expression revealed that HF treatment significantly reduced morphine CPP expression in males, but not females, compared to ND treatment. Neither HF or ND treatment produced morphine CPP reinstatement in either males or females following extinction. In summary, the impact of palatable feeding on the expression of conditioned drug seeking may be sex-specific and more sensitive prior to extinction.
Collapse
MESH Headings
- Animals
- Male
- Female
- Morphine/pharmacology
- Morphine/administration & dosage
- Extinction, Psychological/drug effects
- Extinction, Psychological/physiology
- Rats
- Analgesics, Opioid/pharmacology
- Rats, Sprague-Dawley
- Reward
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Feeding Behavior/drug effects
- Feeding Behavior/physiology
- Narcotics/pharmacology
- Narcotics/administration & dosage
- Conditioning, Operant/drug effects
- Conditioning, Operant/physiology
- Sex Characteristics
- Diet, High-Fat
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/agonists
Collapse
Affiliation(s)
- Yonca Cam
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Courtney G Kocum
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Tabitha K Houska
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Ella R Konrad
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Tim A Schweizer
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Matthew J Will
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
4
|
Dye CN, Webb AI, Fankhauser MP, Singleton JJ, Kalathil A, Ringland A, Leuner B, Lenz KM. Peripartum buprenorphine and oxycodone exposure impair maternal behavior and increase neuroinflammation in new mother rats. Brain Behav Immun 2025; 124:264-279. [PMID: 39612963 PMCID: PMC11793016 DOI: 10.1016/j.bbi.2024.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/06/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
7 % of pregnant people use opioids. Opioid use during pregnancy can negatively impact maternal and offspring health. Medications for opioid use disorder (MOUD), commonly buprenorphine, are the recommended treatment for opioid use disorder during pregnancy to prevent cycles of withdrawal and relapse. In addition to effects on opioid receptors, opioids have strong binding affinity to toll-like receptor (TLR) 4, an immune cell receptor, and thereby impact neuroinflammatory signaling. We have previously shown that neuroimmune alterations are important for the display of maternal behavior. Here, we used a rodent model to assess the impact of chronic peripartum opioid exposure or MOUD on maternal caregiving and neuroinflammation in the postpartum brain. Female rats were exposed to vehicle (VEH), buprenorphine (BUP) to model MOUD, or oxycodone (OXY), to model peripartum drug use, before, during, and after pregnancy. Opioid exposure reduced gestation length and maternal weight gain. Postpartum maternal caretaking behaviors, including pup retrieval, huddling and nursing, and pup-directed sniffing and licking, were reduced in opioid-exposed mothers. Following behavioral testing, tissue was collected from brain regions important for maternal caretaking, including the prefrontal cortex (PFC), nucleus accumbens (NAc), preoptic area (POA), amygdala (AMY), and periaqueductal grey (PAG). Immunofluorescent labeling showed that BUP increased astrocyte labeling, while OXY increased microglia labeling in the PAG, but not other regions. Gene expression analysis also showed regional and treatment differences in immune transcripts. BUP and OXY increased TLR4 in the PFC. BUP increased TNF in the NAc but decreased IL1β in the POA. OXY increased CD68 in the POA, and IL1β, TNF, and TLR4 in the PAG. Together, these results provide novel evidence of peripartum neuroimmune alterations following chronic opioid exposure that could be mediating maternal care deficits. This work provides a foundation to explore the extent to which modulation of neuroimmune activation may be a potential intervention for caregiving deficits in mothers exposed to opioids during pregnancy.
Collapse
Affiliation(s)
- Courtney N Dye
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Aliyah I Webb
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | | | | | - Aravind Kalathil
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Amanda Ringland
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Benedetta Leuner
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Psychology, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Kathryn M Lenz
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Psychology, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Yi W, Chen W, Lan B, Yan L, Hu X, Wu J. A U-shaped relationship between chronic academic stress and the dynamics of reward processing. Neuroimage 2024; 300:120849. [PMID: 39265955 DOI: 10.1016/j.neuroimage.2024.120849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024] Open
Abstract
Despite the potential link between stress-induced reward dysfunctions and the development of mental problems, limited human research has investigated the specific impacts of chronic stress on the dynamics of reward processing. Here we aimed to investigate the relationship between chronic academic stress and the dynamics of reward processing (i.e., reward anticipation and reward consumption) using event-related potential (ERP) technology. Ninety healthy undergraduates who were preparing for the National Postgraduate Entrance Examination (NPEE) participated in the study and completed a two-door reward task, their chronic stress levels were assessed via the Perceived Stress Scale (PSS). The results showed that a lower magnitude of reward elicited more negative amplitudes of cue-N2 during the anticipatory phase, and reward omission elicited more negative amplitudes of FRN compared to reward delivery especially in high reward conditions during the consummatory phase. More importantly, the PSS score exhibited a U-shaped relationship with cue-N2 amplitudes regardless of reward magnitude during the anticipatory phase; and FRN amplitudes toward reward omission in high reward condition during the consummatory phase. These findings suggest that individuals exposed to either low or high levels of chronic stress, as opposed to moderate stress levels, exhibited a heightened reward anticipation, and an augmented violation of expectations or affective response when faced with relatively more negative outcomes.
Collapse
Affiliation(s)
- Wei Yi
- School of Psychology, Shenzhen University, 3688#, Nanhai Avenue, Nanshan District, Shenzhen 518060, China
| | - Wangxiao Chen
- School of Psychology, Shenzhen University, 3688#, Nanhai Avenue, Nanshan District, Shenzhen 518060, China
| | - Biqi Lan
- School of Psychology, Shenzhen University, 3688#, Nanhai Avenue, Nanshan District, Shenzhen 518060, China
| | - Linlin Yan
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Xiaoqing Hu
- Department of Psychology, The University of Hong Kong, Room 6.62, Jocky Club Tower, Pokfulam, Hong Kong, China
| | - Jianhui Wu
- School of Psychology, Shenzhen University, 3688#, Nanhai Avenue, Nanshan District, Shenzhen 518060, China.
| |
Collapse
|
6
|
Kroll SL, Meier P, Mayo LM, Gertsch J, Quednow BB. Endocannabinoids and related lipids linked to social exclusion in individuals with chronic non-medical prescription opioid use. Neuropsychopharmacology 2024; 49:1630-1639. [PMID: 38773316 PMCID: PMC11319498 DOI: 10.1038/s41386-024-01881-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/10/2024] [Accepted: 04/29/2024] [Indexed: 05/23/2024]
Abstract
Opioid-related overdose deaths are still on the rise in North America, emphasizing the need to better understand the underlying neurobiological mechanisms regarding the development of opioid use disorder (OUD). Recent evidence from preclinical and clinical studies indicate that the endocannabinoid system (ECS) may play a crucial role in stress and reward, both involved in the development and maintenance of substance use disorders. Animal models demonstrate a specific crosstalk between the ECS and the endogenous opioid system. However, translational studies in humans are scarce. Here, we investigated basal plasma levels of the endocannabinoids anandamide (AEA) and 2-arachidonoyglycerol (2-AG), and eight endocannabinoid-related lipids, including oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), as well as whole blood fatty acid amide hydrolase (FAAH) activity in chronic non-medical prescription opioid users (NMPOU; n = 21) compared to opioid-naïve healthy controls (n = 29) considering age, sex, and cannabis use as potential confounders. Additionally, the association of endocannabinoids and related lipids with the participants' response to experimentally induced social exclusion was examined. We found significantly elevated basal AEA, OEA, and PEA levels in NMPOU compared to controls, but no differences in FAAH activity, 2-AG, or other endocannabinoid-related lipids. Within NMPOU, higher AEA levels were associated with lower perception of social exclusion. Robust positive correlations within N-acylethanolamines (i.e., AEA, OEA, and PEA) indicate strong metabolic associations. Together with our recent findings of elevated basal 2-AG levels in dependent cocaine users, present results indicate substance-specific alterations of the ECS that may have implications in the search for novel therapeutic interventions for these populations.
Collapse
Affiliation(s)
- Sara L Kroll
- Social and Affective Neuropsychopharmacology, Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.
- Experimental and Clinical Pharmacopsychology, Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland.
| | - Philip Meier
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Leah M Mayo
- Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, and Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland
| |
Collapse
|
7
|
Scanes CG, Pierzchała-Koziec K. Research Note: Morphine influences circulating and tissue concentrations of met-enkephalin and proenkephalin (PENK) expression and plasma concentrations of corticosterone in chickens. Poult Sci 2024; 103:103712. [PMID: 38603935 PMCID: PMC11017350 DOI: 10.1016/j.psj.2024.103712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
The effects of the administration of the opioid agonist, morphine, on plasma and tissue concentrations of Met-enkephalin were determined in 14 wk old female chickens. In addition, effects of morphine on proenkephalin (PENK) expression were examined. Plasma concentrations of Met-enkephalin were reduced 10 minutes after morphine administration. Plasma concentrations of peptides that contain Met-enkephalin motifs were decreased 30 minutes after morphine administration. Tissue concentrations of Met-enkephalin tended to be depressed following morphine administration. Adrenal concentrations of PENK peptides containing Met-enkephalin motifs were decreased in chickens challenged with morphine. Expression of PENK in the anterior pituitary gland and adrenal glands were decreased in morphine treated compared to control pullets. In contrast, plasma concentrations of corticosterone were elevated 10 min after morphine treatment. Morphine also induced changes in mu (µ) opioid receptors and delta (δ) opioid receptors in both anterior pituitary tissue and adrenal tissues.
Collapse
Affiliation(s)
- Colin G Scanes
- Department of Biological Science, University of Wisconsin Milwaukee, Milwaukee, WI 53211, USA.
| | | |
Collapse
|
8
|
Abstract
Although there is little direct evidence supporting that stress affects cancer incidence, it does influence the evolution, dissemination and therapeutic outcomes of neoplasia, as shown in human epidemiological analyses and mouse models. The experience of and response to physiological and psychological stressors can trigger neurological and endocrine alterations, which subsequently influence malignant (stem) cells, stromal cells and immune cells in the tumour microenvironment, as well as systemic factors in the tumour macroenvironment. Importantly, stress-induced neuroendocrine changes that can regulate immune responses have been gradually uncovered. Numerous stress-associated immunomodulatory molecules (SAIMs) can reshape natural or therapy-induced antitumour responses by engaging their corresponding receptors on immune cells. Moreover, stress can cause systemic or local metabolic reprogramming and change the composition of the gastrointestinal microbiota which can indirectly modulate antitumour immunity. Here, we explore the complex circuitries that link stress to perturbations in the cancer-immune dialogue and their implications for therapeutic approaches to cancer.
Collapse
Affiliation(s)
- Yuting Ma
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.
| | - Guido Kroemer
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Zhang L, Verwer RWH, van Heerikhuize J, Lucassen PJ, Nathanielsz PW, Hol EM, Aronica E, Dhillo WS, Meynen G, Swaab DF. Progesterone receptor distribution in the human hypothalamus and its association with suicide. Acta Neuropathol Commun 2024; 12:16. [PMID: 38263257 PMCID: PMC10807127 DOI: 10.1186/s40478-024-01733-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024] Open
Abstract
The human hypothalamus modulates mental health by balancing interactions between hormonal fluctuations and stress responses. Stress-induced progesterone release activates progesterone receptors (PR) in the human brain and triggers alterations in neuropeptides/neurotransmitters. As recent epidemiological studies have associated peripheral progesterone levels with suicide risks in humans, we mapped PR distribution in the human hypothalamus in relation to age and sex and characterized its (co-) expression in specific cell types. The infundibular nucleus (INF) appeared to be the primary hypothalamic structure via which progesterone modulates stress-related neural circuitry. An elevation of the number of pro-opiomelanocortin+ (POMC, an endogenous opioid precursor) neurons in the INF, which was due to a high proportion of POMC+ neurons that co-expressed PR, was related to suicide in patients with mood disorders (MD). MD donors who died of legal euthanasia were for the first time enrolled in a postmortem study to investigate the molecular signatures related to fatal suicidal ideations. They had a higher proportion of PR co-expressing POMC+ neurons than MD patients who died naturally. This indicates that the onset of endogenous opioid activation in MD with suicide tendency may be progesterone-associated. Our findings may have implications for users of progesterone-enriched contraceptives who also have MD and suicidal tendencies.
Collapse
Affiliation(s)
- Lin Zhang
- Neuropsychiatric Disorders Lab, Neuroimmunology Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Ronald W H Verwer
- Neuropsychiatric Disorders Lab, Neuroimmunology Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Joop van Heerikhuize
- Neuropsychiatric Disorders Lab, Neuroimmunology Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter W Nathanielsz
- Department of Animal Science, College of Agriculture and Natural Resources, University of Wyoming, Laramie, USA
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Waljit S Dhillo
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Gerben Meynen
- Faculty of Humanities, VU University Amsterdam, Amsterdam, the Netherlands
- Willem Pompe Institute for Criminal Law and Criminology and Utrecht Centre for Accountability and Liability Law (UCALL), Utrecht University, Utrecht, the Netherlands
| | - Dick F Swaab
- Neuropsychiatric Disorders Lab, Neuroimmunology Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands.
- Netherlands Institute for Neuroscience, Dept. Neuropsychiatric Disorders, University of Amsterdam, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Perdue T, Carlson R, Daniulaityte R, Silverstein SM, Bluthenthal RN, Valdez A, Cepeda A. Characterizing prescription opioid, heroin, and fentanyl initiation trajectories: A qualitative study. Soc Sci Med 2024; 340:116441. [PMID: 38061222 DOI: 10.1016/j.socscimed.2023.116441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 01/23/2024]
Abstract
We understand the current crisis of overdose deaths to be driven by widespread opioid use, characterized by distinct 'waves' of drug use. The first wave was driven by prescription opioids, the second by heroin, and the third by illicit, non-pharmaceutical fentanyl and fentanyl analogues (henceforth, fentanyl). The purpose of this study is to describe opioid initiation within each of the three waves from the perspective of people who use illicit opioids, with a focus on emerging pathways into fentanyl use. The authors recruited sixty people reporting past-30-day illicit opioid use in Dayton, Ohio. Participants completed a brief survey and a semi-structured in-depth qualitative interview, conducted from March to November 2020 with a total of 13 in-person and 47 virtual interviews. The qualitative interviews were transcribed in their entirety and analyzed thematically using NVivo 12. We noted supply-side changes as influencing trajectories in all three waves. However, we also noted differences in the experiences of prescription opioid and heroin initiation, with these trajectories influenced by pharmacological effects, pain management, curiosity, intergenerational use, pricing, and peers. In comparison, most participants were unaware that they were initiating fentanyl, and many reported overdosing with their first use of fentanyl. We identified a trajectory into fentanyl with limited to no prior heroin use among a few participants. The increased risk of overdose with initiation into fentanyl use further emphasizes the need for an expansion of naloxone distribution and the implementation of more comprehensive measures, such as overdose prevention centers, drug testing, and a safer supply. Further research on the dynamics of the ongoing overdose death crisis in the era of fentanyl and the 4th wave of the overdose crisis is critical in developing responsive prevention and intervention strategies.
Collapse
Affiliation(s)
- Tasha Perdue
- John Glenn College of Public Affairs, The Ohio State University, Columbus, OH, United States.
| | - Robert Carlson
- Center for Interventions, Treatment, and Addictions Research, Department of Population and Public Health Sciences, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Raminta Daniulaityte
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Sydney M Silverstein
- Center for Interventions, Treatment, and Addictions Research, Department of Population and Public Health Sciences, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Ricky N Bluthenthal
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, United States
| | - Avelardo Valdez
- Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, United States
| | - Alice Cepeda
- Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
11
|
Felicione NJ, Blank MD, Wright CD, McNeil DW. Pain, Fear, Anxiety, and Stress: Relations to the Endogenous Opioid System. ADVANCES IN NEUROBIOLOGY 2024; 35:157-182. [PMID: 38874723 DOI: 10.1007/978-3-031-45493-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Pain, fear, stress, and anxiety are separate yet interrelated phenomena. Each of these concepts has an extensive individual body of research, with some more recent work focusing on points of conceptual overlap. The role of the endogenous opioid system in each of these phenomena is only beginning to be examined and understood. Research examining the ways in which endogenous opioids (e.g., beta-endorphin; βE) may mediate the relations among pain, fear, stress, and anxiety is even more nascent. This chapter explores the extant evidence for endogenous opioid activity as an underpinning mechanism of these related constructs, with an emphasis on research examining βE.
Collapse
|
12
|
Derman RC, Matthew Lattal K. Acute stress persistently alters instrumental motivation without affecting appetitive Pavlovian conditioning, extinction, or contextual renewal. Neurobiol Learn Mem 2023; 202:107771. [PMID: 37182757 PMCID: PMC10404028 DOI: 10.1016/j.nlm.2023.107771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
In two experiments, we adapted the stress-enhanced fear learning approach to evaluate the persistent effects of acute stress on appetitive learning and motivation in adult male Long Evans rats. In Experiment 1, we found that exposure to a battery of footshocks in one context had no effect on the acquisition, extinction, or contextual renewal of an appetitive Pavlovian discrimination in different contexts. However, when rats were subsequently trained to respond on a progressive ratio instrumental schedule, rats with a history of shock showed lower response rates and progressive ratio break points. Extinction of the shock-associated context had little effect on progressive ratio responding. In Experiment 2, we replicated this instrumental responding deficit with a continuous reinforcement schedule when the Pavlovian phases did not intervene in the time between shock and instrumental testing. Our findings here demonstrate that highly stressful acute experiences produce long-lasting deficits in instrumental motivation for food in male rats.
Collapse
Affiliation(s)
- Rifka C Derman
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| |
Collapse
|
13
|
Kinoshita M, Olsson E, Borys F, Bruschettini M. Opioids for procedural pain in neonates. Cochrane Database Syst Rev 2023; 6:CD015056. [PMID: 37350685 PMCID: PMC10292809 DOI: 10.1002/14651858.cd015056.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
BACKGROUND Neonates might be exposed to numerous painful procedures due to diagnostic reasons, therapeutic interventions, or surgical procedures. Options for pain management include opioids, non-pharmacological interventions, and other drugs. Morphine, fentanyl, and remifentanil are the opioids most often used in neonates. However, negative impact of opioids on the structure and function of the developing brain has been reported. OBJECTIVES To evaluate the benefits and harms of opioids in term or preterm neonates exposed to procedural pain, compared to placebo or no drug, non-pharmacological intervention, other analgesics or sedatives, other opioids, or the same opioid administered by a different route. SEARCH METHODS We used standard, extensive Cochrane search methods. The latest search date was December 2021. SELECTION CRITERIA We included randomized controlled trials conducted in preterm and term infants of a postmenstrual age (PMA) up to 46 weeks and 0 days exposed to procedural pain where opioids were compared to 1) placebo or no drug; 2) non-pharmacological intervention; 3) other analgesics or sedatives; 4) other opioids; or 5) the same opioid administered by a different route. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were pain assessed with validated methods and any harms. We used a fixed-effect model with risk ratio (RR) for dichotomous data and mean difference (MD) for continuous data, and their confidence intervals (CI). We used GRADE to assess the certainty of the evidence for each outcome. MAIN RESULTS We included 13 independent studies (enrolling 823 newborn infants): seven studies compared opioids to no treatment or placebo (the main comparison in this review), two studies to oral sweet solution or non-pharmacological intervention, and five studies (of which two were part of the same study) to other analgesics and sedatives. All studies were performed in a hospital setting. Opioids compared to placebo or no drug Compared to placebo, opioids probably reduce pain score assessed with the Premature Infant Pain Profile (PIPP)/PIPP-Revised (PIPP-R) scale during the procedure (MD -2.58, 95% CI -3.12 to -2.03; 199 participants, 3 studies; moderate-certainty evidence); may reduce Neonatal Infant Pain Scale (NIPS) during the procedure (MD -1.97, 95% CI -2.46 to -1.48; 102 participants, 2 studies; low-certainty evidence); and may result in little to no difference in pain score assessed with the Douleur Aiguë du Nouveau-né (DAN) scale one to two hours after the procedure (MD -0.20, 95% CI -2.21 to 1.81; 42 participants, 1 study; low-certainty evidence). The evidence is very uncertain about the effect of opioids on pain score assessed with the PIPP/PIPP-R scale up to 30 minutes after the procedure (MD 0.14, 95% CI -0.17 to 0.45; 123 participants, 2 studies; very low-certainty evidence) or one to two hours after the procedure (MD -0.83, 95% CI -2.42 to 0.75; 54 participants, 2 studies; very low-certainty evidence). The evidence is very uncertain about the effect of opioids on episodes of bradycardia (RR 3.19, 95% CI 0.14 to 72.69; 172 participants, 3 studies; very low-certainty evidence). Opioids may result in an increase in episodes of apnea compared to placebo (RR 3.15, 95% CI 1.08 to 9.16; 199 participants, 3 studies; low-certainty evidence): with one study reporting a concerning increase in severe apnea (RR 7.44, 95% CI 0.42 to 132.95; 31 participants, 1 study; very low-certainty). The evidence is very uncertain about the effect of opioids on episodes of hypotension (RR not estimable, risk difference 0.00, 95% CI -0.06 to 0.06; 88 participants, 2 studies; very low-certainty evidence). No studies reported parent satisfaction with care provided in the neonatal intensive care unit (NICU). Opioids compared to non-pharmacological intervention The evidence is very uncertain about the effect of opioids on pain score assessed with the Crying Requires oxygen Increased vital signs Expression Sleep (CRIES) scale during the procedure when compared to facilitated tucking (MD -4.62, 95% CI -6.38 to -2.86; 100 participants, 1 study; very low-certainty evidence) or sensorial stimulation (MD 0.32, 95% CI -1.13 to 1.77; 100 participants, 1 study; very low-certainty evidence). The other main outcomes were not reported. Opioids compared to other analgesics or sedatives The evidence is very uncertain about the effect of opioids on pain score assessed with the PIPP/PIPP-R during the procedure (MD -0.29, 95% CI -1.58 to 1.01; 124 participants, 2 studies; very low-certainty evidence); up to 30 minutes after the procedure (MD -1.10, 95% CI -2.82 to 0.62; 12 participants, 1 study; very low-certainty evidence); and one to two hours after the procedure (MD -0.17, 95% CI -2.22 to 1.88; 12 participants, 1 study; very low-certainty evidence). No studies reported any harms. The evidence is very uncertain about the effect of opioids on episodes of apnea during (RR 3.27, 95% CI 0.85 to 12.58; 124 participants, 2 studies; very low-certainty evidence) and after the procedure (RR 2.71, 95% CI 0.11 to 64.96; 124 participants, 2 studies; very low-certainty evidence) and on hypotension (RR 1.34, 95% CI 0.32 to 5.59; 204 participants, 3 studies; very low-certainty evidence). The other main outcomes were not reported. We identified no studies comparing different opioids (e.g. morphine versus fentanyl) or different routes for administration of the same opioid (e.g. morphine enterally versus morphine intravenously). AUTHORS' CONCLUSIONS Compared to placebo, opioids probably reduce pain score assessed with PIPP/PIPP-R scale during the procedure; may reduce NIPS during the procedure; and may result in little to no difference in DAN one to two hours after the procedure. The evidence is very uncertain about the effect of opioids on pain assessed with other pain scores or at different time points. The evidence is very uncertain about the effect of opioids on episodes of bradycardia, hypotension or severe apnea. Opioids may result in an increase in episodes of apnea. No studies reported parent satisfaction with care provided in the NICU. The evidence is very uncertain about the effect of opioids on any outcome when compared to non-pharmacological interventions or to other analgesics. We identified no studies comparing opioids to other opioids or comparing different routes of administration of the same opioid.
Collapse
Affiliation(s)
- Mari Kinoshita
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Emma Olsson
- Department of Pediatrics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Franciszek Borys
- II Department of Neonatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Matteo Bruschettini
- Paediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Department of Research and Education, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
14
|
Hosseinzadeh Sahafi O, Sardari M, Alijanpour S, Rezayof A. Shared Mechanisms of GABAergic and Opioidergic Transmission Regulate Corticolimbic Reward Systems and Cognitive Aspects of Motivational Behaviors. Brain Sci 2023; 13:brainsci13050815. [PMID: 37239287 DOI: 10.3390/brainsci13050815] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The functional interplay between the corticolimbic GABAergic and opioidergic systems plays a crucial role in regulating the reward system and cognitive aspects of motivational behaviors leading to the development of addictive behaviors and disorders. This review provides a summary of the shared mechanisms of GABAergic and opioidergic transmission, which modulate the activity of dopaminergic neurons located in the ventral tegmental area (VTA), the central hub of the reward mechanisms. This review comprehensively covers the neuroanatomical and neurobiological aspects of corticolimbic inhibitory neurons that express opioid receptors, which act as modulators of corticolimbic GABAergic transmission. The presence of opioid and GABA receptors on the same neurons allows for the modulation of the activity of dopaminergic neurons in the ventral tegmental area, which plays a key role in the reward mechanisms of the brain. This colocalization of receptors and their immunochemical markers can provide a comprehensive understanding for clinicians and researchers, revealing the neuronal circuits that contribute to the reward system. Moreover, this review highlights the importance of GABAergic transmission-induced neuroplasticity under the modulation of opioid receptors. It discusses their interactive role in reinforcement learning, network oscillation, aversive behaviors, and local feedback or feedforward inhibitions in reward mechanisms. Understanding the shared mechanisms of these systems may lead to the development of new therapeutic approaches for addiction, reward-related disorders, and drug-induced cognitive impairment.
Collapse
Affiliation(s)
- Oveis Hosseinzadeh Sahafi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Maryam Sardari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous 4971799151, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
| |
Collapse
|
15
|
Abstract
BACKGROUND Neonates might be exposed to numerous painful procedures due to diagnostic reasons, therapeutic interventions, or surgical procedures. Options for pain management include opioids, non-pharmacological interventions, and other drugs. Morphine, fentanyl, and remifentanil are the opioids most often used in neonates. However, negative impact of opioids on the structure and function of the developing brain has been reported. OBJECTIVES To evaluate the benefits and harms of opioids in term or preterm neonates exposed to procedural pain, compared to placebo or no drug, non-pharmacological intervention, other analgesics or sedatives, other opioids, or the same opioid administered by a different route. SEARCH METHODS We used standard, extensive Cochrane search methods. The latest search date was December 2021. SELECTION CRITERIA We included randomized controlled trials conducted in preterm and term infants of a postmenstrual age (PMA) up to 46 weeks and 0 days exposed to procedural pain where opioids were compared to 1) placebo or no drug; 2) non-pharmacological intervention; 3) other analgesics or sedatives; 4) other opioids; or 5) the same opioid administered by a different route. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were pain assessed with validated methods and any harms. We used a fixed-effect model with risk ratio (RR) for dichotomous data and mean difference (MD) for continuous data, and their confidence intervals (CI). We used GRADE to assess the certainty of the evidence for each outcome. MAIN RESULTS We included 13 independent studies (enrolling 823 newborn infants): seven studies compared opioids to no treatment or placebo (the main comparison in this review), two studies to oral sweet solution or non-pharmacological intervention, and five studies (of which two were part of the same study) to other analgesics and sedatives. All studies were performed in a hospital setting. Opioids compared to placebo or no drug Compared to placebo, opioids probably reduce pain score assessed with the Premature Infant Pain Profile (PIPP)/PIPP-Revised (PIPP-R) scale during the procedure (MD -2.58, 95% CI -3.12 to -2.03; 199 participants, 3 studies; moderate-certainty evidence); may reduce Neonatal Infant Pain Scale (NIPS) during the procedure (MD -1.97, 95% CI -2.46 to -1.48; 102 participants, 2 studies; low-certainty evidence); and may result in little to no difference in pain score assessed with the Douleur Aiguë du Nouveau-né (DAN) scale one to two hours after the procedure (MD -0.20, 95% CI -2.21 to 1.81; 42 participants, 1 study; low-certainty evidence). The evidence is very uncertain about the effect of opioids on pain score assessed with the PIPP/PIPP-R scale up to 30 minutes after the procedure (MD 0.14, 95% CI -0.17 to 0.45; 123 participants, 2 studies; very low-certainty evidence) or one to two hours after the procedure (MD -0.83, 95% CI -2.42 to 0.75; 54 participants, 2 studies; very low-certainty evidence). No studies reported any harms. The evidence is very uncertain about the effect of opioids on episodes of bradycardia (RR 3.19, 95% CI 0.14 to 72.69; 172 participants, 3 studies; very low-certainty evidence). Opioids may result in an increase in episodes of apnea compared to placebo (RR 3.15, 95% CI 1.08 to 9.16; 199 participants, 3 studies; low-certainty evidence). The evidence is very uncertain about the effect of opioids on episodes of hypotension (RR not estimable, risk difference 0.00, 95% CI -0.06 to 0.06; 88 participants, 2 studies; very low-certainty evidence). No studies reported parent satisfaction with care provided in the neonatal intensive care unit (NICU). Opioids compared to non-pharmacological intervention The evidence is very uncertain about the effect of opioids on pain score assessed with the Crying Requires oxygen Increased vital signs Expression Sleep (CRIES) scale during the procedure when compared to facilitated tucking (MD -4.62, 95% CI -6.38 to -2.86; 100 participants, 1 study; very low-certainty evidence) or sensorial stimulation (MD 0.32, 95% CI -1.13 to 1.77; 100 participants, 1 study; very low-certainty evidence). The other main outcomes were not reported. Opioids compared to other analgesics or sedatives The evidence is very uncertain about the effect of opioids on pain score assessed with the PIPP/PIPP-R during the procedure (MD -0.29, 95% CI -1.58 to 1.01; 124 participants, 2 studies; very low-certainty evidence); up to 30 minutes after the procedure (MD -1.10, 95% CI -2.82 to 0.62; 12 participants, 1 study; very low-certainty evidence); and one to two hours after the procedure (MD -0.17, 95% CI -2.22 to 1.88; 12 participants, 1 study; very low-certainty evidence). No studies reported any harms. The evidence is very uncertain about the effect of opioids on episodes of apnea during (RR 3.27, 95% CI 0.85 to 12.58; 124 participants, 2 studies; very low-certainty evidence) and after the procedure (RR 2.71, 95% CI 0.11 to 64.96; 124 participants, 2 studies; very low-certainty evidence) and on hypotension (RR 1.34, 95% CI 0.32 to 5.59; 204 participants, 3 studies; very low-certainty evidence). The other main outcomes were not reported. We identified no studies comparing different opioids (e.g. morphine versus fentanyl) or different routes for administration of the same opioid (e.g. morphine enterally versus morphine intravenously). AUTHORS' CONCLUSIONS Compared to placebo, opioids probably reduce pain score assessed with PIPP/PIPP-R scale during the procedure; may reduce NIPS during the procedure; and may result in little to no difference in DAN one to two hours after the procedure. The evidence is very uncertain about the effect of opioids on pain assessed with other pain scores or at different time points. No studies reported if any harms occurred. The evidence is very uncertain about the effect of opioids on episodes of bradycardia or hypotension. Opioids may result in an increase in episodes of apnea. No studies reported parent satisfaction with care provided in the NICU. The evidence is very uncertain about the effect of opioids on any outcome when compared to non-pharmacological interventions or to other analgesics. We identified no studies comparing opioids to other opioids or comparing different routes of administration of the same opioid.
Collapse
Affiliation(s)
- Mari Kinoshita
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Emma Olsson
- Department of Pediatrics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Franciszek Borys
- II Department of Neonatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Matteo Bruschettini
- Paediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Department of Research and Education, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
16
|
Zhen W, Zhen H, Wang Y, Chen L, Niu X, Zhang B, Yang Z, Peng D. Mechanism of ERK/CREB pathway in pain and analgesia. Front Mol Neurosci 2023; 16:1156674. [PMID: 37008781 PMCID: PMC10060514 DOI: 10.3389/fnmol.2023.1156674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Research has long centered on the pathophysiology of pain. The Transient Receiver Potential (TRP) protein family is well known for its function in the pathophysiology of pain, and extensive study has been done in this area. One of the significant mechanisms of pain etiology and analgesia that lacks a systematic synthesis and review is the ERK/CREB (Extracellular Signal-Regulated Kinase/CAMP Response Element Binding Protein) pathway. The ERK/CREB pathway-targeting analgesics may also cause a variety of adverse effects that call for specialized medical care. In this review, we systematically compiled the mechanism of the ERK/CREB pathway in the process of pain and analgesia, as well as the potential adverse effects on the nervous system brought on by the inhibition of the ERK/CREB pathway in analgesic drugs, and we suggested the corresponding solutions.
Collapse
Affiliation(s)
- Weizhe Zhen
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Hongjun Zhen
- Department of Orthopaedics, Handan Chinese Medicine Hospital, Handan, Hebei Province, China
| | - Yuye Wang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Leian Chen
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoqian Niu
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Bin Zhang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziyuan Yang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Dantao Peng
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Dantao Peng,
| |
Collapse
|
17
|
Vogt KM, Pryor KO. Anesthesia and the neurobiology of fear and posttraumatic stress disorder. Curr Opin Anaesthesiol 2022; 35:593-599. [PMID: 35993581 PMCID: PMC9469898 DOI: 10.1097/aco.0000000000001176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE OF REVIEW Dysfunction of fear memory systems underlie a cluster of clinically important and highly prevalent psychological morbidities seen in perioperative and critical care patients, most archetypally posttraumatic stress disorder (PTSD). Several sedative-hypnotics and analgesics are known to modulate fear systems, and it is theoretically plausible that clinical decisions of the anesthesiologist could impact psychological outcomes. This review aims to provide a focused synthesis of relevant literature from multiple fields of research. RECENT FINDINGS There is evidence in some contexts that unconscious fear memory systems are less sensitive to anesthetics than are conscious memory systems. Opiates may suppress the activation of fear systems and have benefit in the prevention of PTSD following trauma. There is inconsistent evidence that the use of propofol and benzodiazepines for sedation following trauma may potentiate the development of PTSD relative to other drugs. The benefits of ketamine seen in the treatment of major depression are not clearly replicated in PTSD-cluster psychopathologies, and its effects on fear processes are complex. SUMMARY There are multiple theoretical mechanisms by which anesthetic drugs can modulate fear systems and clinically important fear-based psychopathologies. The current state of research provides some evidence to support further hypothesis investigation. However, the absence of effectiveness studies and the inconsistent signals from smaller studies provide insufficient evidence to currently offer firm clinical guidance.
Collapse
Affiliation(s)
- Keith M. Vogt
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, School of Medicine
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh
- Center for the Neural Basis of Cognition
- Clinical and Translational Science Institute, University of Pittsburgh
| | - Kane O. Pryor
- Department of Anesthesiology, Weill Cornell Medicine
| |
Collapse
|
18
|
Leconte C, Mongeau R, Noble F. Traumatic Stress-Induced Vulnerability to Addiction: Critical Role of the Dynorphin/Kappa Opioid Receptor System. Front Pharmacol 2022; 13:856672. [PMID: 35571111 PMCID: PMC9091501 DOI: 10.3389/fphar.2022.856672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Substance use disorders (SUD) may emerge from an individual’s attempt to limit negative affective states and symptoms linked to stress. Indeed, SUD is highly comorbid with chronic stress, traumatic stress, or post-traumatic stress disorder (PTSD), and treatments approved for each pathology individually often failed to have a therapeutic efficiency in such comorbid patients. The kappa-opioid receptor (KOR) and its endogenous ligand dynorphin (DYN), seem to play a key role in the occurrence of this comorbidity. The DYN/KOR function is increased either in traumatic stress or during drug use, dependence acquisition and DYN is released during stress. The behavioural effects of stress related to the DYN/KOR system include anxiety, dissociative and depressive symptoms, as well as increased conditioned fear response. Furthermore, the DYN/KOR system is implicated in negative reinforcement after the euphoric effects of a drug of abuse ends. During chronic drug consumption DYN/KOR functions increase and facilitate tolerance and dependence. The drug-seeking behaviour induced by KOR activation can be retrieved either during the development of an addictive behaviour, or during relapse after withdrawal. DYN is known to be one of the most powerful negative modulators of dopamine signalling, notably in brain structures implicated in both reward and fear circuitries. KOR are also acting as inhibitory heteroreceptors on serotonin neurons. Moreover, the DYN/KOR system cross-regulate with corticotropin-releasing factor in the brain. The sexual dimorphism of the DYN/KOR system could be the cause of the gender differences observed in patients with SUD or/and traumatic stress-related pathologies. This review underlies experimental and clinical results emphasizing the DYN/KOR system as common mechanisms shared by SUD or/and traumatic stress-related pathologies, and suggests KOR antagonist as a new pharmacological strategy to treat this comorbidity.
Collapse
|
19
|
Kim DS, Kim SW, Gil HW. Emotional and cognitive changes in chronic kidney disease. Korean J Intern Med 2022; 37:489-501. [PMID: 35249316 PMCID: PMC9082446 DOI: 10.3904/kjim.2021.492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/02/2022] [Indexed: 11/30/2022] Open
Abstract
Chronic kidney disease (CKD) leads to cognitive impairment and emotional changes. However, the precise mechanism underlying the crosstalk between the kidneys and the nervous system is not fully understood. Inflammation and cerebrovascular disease can influence the development of depression in CKD. CKD is one of the strongest risk factors for cognitive impairment. Moreover, cognitive impairment occurs in CKD as patients experience the dysregulation of several brain functional domains due to damage caused to multiple cortical regions and to subcortical modulatory neurons. The differences in structural brain changes between CKD and non-CKD dementia may be attributable to the different mechanisms that occur in CKD. The kidney and brain have similar anatomical vascular systems, which may be susceptible to traditional risk factors. Vascular factors are assumed to be involved in the development of cognitive impairment in patients with CKD. Vascular injury induces white matter lesions, silent infarction, and microbleeds. Uremic toxins may also be directly related to cognitive impairment in CKD. Many uremic toxins, such as indoxyl sulfate, are likely to have an impact on the central nervous system. Further studies are required to identify therapeutic targets to prevent changes in the brain in patients with CKD.
Collapse
Affiliation(s)
- Duk-Soo Kim
- Department of Anatomy, Soonchunhyang University College of Medicine, Cheonan,
Korea
| | - Seong-Wook Kim
- Graduate School of New Drug Discovery & Development, Chungnam National University, Daejeon,
Korea
| | - Hyo-Wook Gil
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan,
Korea
| |
Collapse
|
20
|
A unified model of the pathophysiology of bipolar disorder. Mol Psychiatry 2022; 27:202-211. [PMID: 33859358 DOI: 10.1038/s41380-021-01091-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/17/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
This work provides an overview of the most consistent alterations in bipolar disorder (BD), attempting to unify them in an internally coherent working model of the pathophysiology of BD. Data on immune-inflammatory changes, structural brain abnormalities (in gray and white matter), and functional brain alterations (from neurotransmitter signaling to intrinsic brain activity) in BD were reviewed. Based on the reported data, (1) we hypothesized that the core pathological alteration in BD is a damage of the limbic network that results in alterations of neurotransmitter signaling. Although heterogeneous conditions can lead to such damage, we supposed that the main pathophysiological mechanism is traceable to an immune/inflammatory-mediated alteration of white matter involving the limbic network connections, which destabilizes the neurotransmitter signaling, such as dopamine and serotonin signaling. Then, (2) we suggested that changes in such neurotransmitter signaling (potentially triggered by heterogeneous stressors onto a structurally-damaged limbic network) lead to phasic (and often recurrent) reconfigurations of intrinsic brain activity, from abnormal subcortical-cortical coupling to changes in network activity. We suggested that the resulting dysbalance between networks, such as sensorimotor networks, salience network, and default-mode network, clinically manifest in combined alterations of psychomotricity, affectivity, and thought during the manic and depressive phases of BD. Finally, (3) we supposed that an additional contribution of gray matter alterations and related cognitive deterioration characterize a clinical-biological subgroup of BD. This model may provide a general framework for integrating the current data on BD and suggests novel specific hypotheses, prompting for a better understanding of the pathophysiology of BD.
Collapse
|
21
|
de Souza JA, da Silva MC, de Souza Ferraz Junior JC, de Souza FL, de Souza SL. Maternal separation in the light or dark phase of the circadian cycle has different effects on the corticosterone levels and anxiety-like behavior in male adult rats. Physiol Behav 2022; 247:113725. [DOI: 10.1016/j.physbeh.2022.113725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 11/26/2022]
|
22
|
Affiliation(s)
- Mari Kinoshita
- Department of Pediatrics; Clinical Sciences Lund, Lund University; Lund Sweden
| | - Emma Olsson
- Department of Pediatrics, Faculty of Medicine and Health; Örebro University; Örebro Sweden
| | | | - Matteo Bruschettini
- Department of Clinical Sciences Lund, Paediatrics; Lund University, Skåne University Hospital; Lund Sweden
- Cochrane Sweden; Lund University, Skåne University Hospital; Lund Sweden
| |
Collapse
|
23
|
Karasawa Y, Miyano K, Fujii H, Mizuguchi T, Kuroda Y, Nonaka M, Komatsu A, Ohshima K, Yamaguchi M, Yamaguchi K, Iseki M, Uezono Y, Hayashida M. In Vitro Analyses of Spinach-Derived Opioid Peptides, Rubiscolins: Receptor Selectivity and Intracellular Activities through G Protein- and β-Arrestin-Mediated Pathways. Molecules 2021; 26:molecules26196079. [PMID: 34641621 PMCID: PMC8513079 DOI: 10.3390/molecules26196079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
Activated opioid receptors transmit internal signals through two major pathways: the G-protein-mediated pathway, which exerts analgesia, and the β-arrestin-mediated pathway, which leads to unfavorable side effects. Hence, G-protein-biased opioid agonists are preferable as opioid analgesics. Rubiscolins, the spinach-derived naturally occurring opioid peptides, are selective δ opioid receptor agonists, and their p.o. administration exhibits antinociceptive effects. Although the potency and effect of rubiscolins as G-protein-biased molecules are partially confirmed, their in vitro profiles remain unclear. We, therefore, evaluated the properties of rubiscolins, in detail, through several analyses, including the CellKeyTM assay, cADDis® cAMP assay, and PathHunter® β-arrestin recruitment assay, using cells stably expressing µ, δ, κ, or µ/δ heteromer opioid receptors. In the CellKeyTM assay, rubiscolins showed selective agonistic effects for δ opioid receptor and little agonistic or antagonistic effects for µ and κ opioid receptors. Furthermore, rubiscolins were found to be G-protein-biased δ opioid receptor agonists based on the results obtained in cADDis® cAMP and PathHunter® β-arrestin recruitment assays. Finally, we found, for the first time, that they are also partially agonistic for the µ/δ dimers. In conclusion, rubiscolins could serve as attractive seeds, as δ opioid receptor-specific agonists, for the development of novel opioid analgesics with reduced side effects.
Collapse
Affiliation(s)
- Yusuke Karasawa
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
- Medical Affairs, Viatris Pharmaceuticals Japan Inc., 5-11-2, Toranomon, Minato-ku, Tokyo 105-0001, Japan
| | - Kanako Miyano
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry and Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan; (H.F.); (T.M.)
| | - Takaaki Mizuguchi
- Laboratory of Medicinal Chemistry and Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan; (H.F.); (T.M.)
| | - Yui Kuroda
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Miki Nonaka
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
| | - Akane Komatsu
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kaori Ohshima
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
| | - Masahiro Yamaguchi
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
- Medical Affairs, Pfizer Japan Inc., 3-22-7, Yoyogi, Shibuya-ku, Tokyo 151-0053, Japan
| | - Keisuke Yamaguchi
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masako Iseki
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yasuhito Uezono
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
- Correspondence:
| | - Masakazu Hayashida
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
24
|
Liu J, Di J, Zhang Y, Xing E. Oxycodone-paracetamol tablet exhibits increased analgesic efficacy for acute postoperative pain, higher satisfaction and comparable safety profiles compared with celecoxib in patients underwent arthroscopic knee surgery. Inflammopharmacology 2021; 29:1091-1099. [PMID: 34181148 DOI: 10.1007/s10787-021-00828-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/29/2021] [Indexed: 10/21/2022]
Abstract
This randomized, controlled study compared the efficacy and safety between oxycodone-paracetamol tablet and celecoxib for postoperative analgesia in patients who underwent arthroscopic knee surgery (AKS). Totally, 232 patients scheduled to undergo AKS were enrolled and were randomly assigned to either the oxycodone-paracetamol (OPT group) or the celecoxib group (CEL group). Pain at rest/motion (based on pain visual analog scale (VAS) score), rescue analgesia consumption, satisfaction level and adverse events were assessed after AKS. Pain VAS score at rest was decreased at 6 h, 12 h post-AKS in the OPT group compared with the CEL group. Similarly, pain VAS score at motion was reduced at 6 h, 12 h, 24 h post-AKS in the OPT group compared to the CEL group. Furthermore, both rescue analgesia rate (14.7% vs. 33.6%) and accumulated pethidine consumption (3.7 ± 8.9 mg vs. 14.0 ± 21.2 mg) were lower in OPT group compared with the CEL group. Patients satisfaction score was either at 24 h, 48 h in OPT group compared with the CEL group. Further subgroup analyses indicated that the effect of oxycodone-paracetamol versus (vs. celecoxib) on post-AKS management was more apparent in the elderly patients and male patients. In addition, the adverse events were well tolerable (including nausea, constipation, vomiting, drowsiness and dizziness) and were of no different between the two groups. In conclusion, oxycodone-paracetamol tablet presents increased analgesic efficacy for acute postoperative pain, with higher patient satisfaction and comparable safety profiles compared with celecoxib in patients underwent AKS.
Collapse
Affiliation(s)
- Junchuan Liu
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, China.
| | - Jun Di
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Yanlong Zhang
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Enzeng Xing
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, China
| |
Collapse
|
25
|
Blockade of Opiodergic System During Early Weaning Reverts Feeding Behavior Altered Patterns. Neuroscience 2021; 463:254-263. [PMID: 33662530 DOI: 10.1016/j.neuroscience.2021.02.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 10/22/2022]
Abstract
Adverse experiences that occur during the early stages of life can have permanent repercussions in adulthood. Among these experiences, early weaning is one that can alter the molecular, cellular, and behavior patterns in later life. Centered on this fact, the objective of the current study was to evaluate the effect of early weaning at 15 days of life of Wistar rats on their feeding behavior and if the opioidergic system blockade would cause a reversal of these outcomes. Experimental groups were formed based on the weaning period of each litter. On postnatal day 15, the group D15 was weaned and, on postnatal day 30 (natural weaning), the group D30 was weaned. The rats weaned on postnatal day 15, and administered subcutaneous Naltrexone (3 mg/kg) were from group D15 + NTX. Those weaned at 15 days of age exhibited higher depressive-like behavior, lesser reactivity time to sucrose, and higher intake of palatable food than the control group. The Naltrexone administration was observed to reverse some outcomes, such as increasing the reactivity time to sucrose and decreasing the quantity of palatable food consumed, to levels similar to those of the control group. Together, the findings of the present study are indicative of the vital role played by the opioidergic system in inducing the changes noted in the eating behavior patterns during adulthood, post early weaning.
Collapse
|
26
|
Wu G, Xu X, Ye F, Shu H. Effects of processed Aconiti tuber on the extinction and reinstatement of morphine-induced conditioned place preference in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113524. [PMID: 33129945 DOI: 10.1016/j.jep.2020.113524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/10/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
AIM OF THE STUDY To investigate the effect of processed Aconiti tuber (PAT) administered during or after the time of conditioned place preference (CPP) training on the extinction and reinstatement of morphine-priming CPP in rats. The dynorphin level in rats' nucleus accumbens (NAc) is detected as a target of the Dynorphin/Kappa Opioid Receptor (KOR) system for the possible mechanism. MATERIALS AND METHODS Eight groups of rats were subcutaneously (s.c.) injected with morphine (10mg/kg) (on days 2,4,6,8) or saline (1ml/kg) (on days 3,5,7,9) alternately for 8 days. Five groups, including groups (Mor + Water, Mor + PAT (1.0/3.0g/kg) (S) and Sal + PAT(1.0/3.0g/kg)), were orally given distilled water or PAT 1.0 or 3.0 g/kg daily on days 1-8 during CPP training while other three groups, including groups (Sal + Water and Mor + PAT (1.0/3.0g/kg)(P), were given distilled water or PAT daily from day 10 until CPP was extinct. Morphine 1mg/kg (s.c.) was used to reinstate the extinct CPP and the CPP scores were recorded. The dynorphin concentration in nucleus accumbens (NAc) was assayed by radioimmunoassay after the last CPP measurement. RESULTS 1) The CPP extinction shortened in Mor + PAT (1.0/3.0 g/kg) (S) groups but extended in Mor + PAT (1.0/3.0 g/kg)(P) groups. 2) Morphine-priming CPP did not change either in Mor + PAT (1.0/3.0 g/kg) (S) or Mor + PAT (1.0/3.0 g/kg)(P) groups. 3) The dynorphin concentration in NAc increased either in Mor + PAT (1.0/3.0 g/kg)(S) or Mor + PAT (1.0/3.0 g/kg)(P) groups. CONCLUSIONS 1) PAT shortened the extinction from morphine induced CPP when administrated before CPP acquisition, whereas it extended the extinction when administrated after CPP formation. 2) PAT administrated during or after CPP training did not affect morphine-priming reinstatement of morphine induced CPP. 3) Dynorphin/KOR system might be a target to regulate morphine-induced CPP extinction but not reinstatement.
Collapse
Affiliation(s)
- Guiyun Wu
- Department of Anesthesiology, Affiliated Sun Yat-sen Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoying Xu
- Department of Anesthesiology, Affiliated Sun Yat-sen Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fang Ye
- Department of Anesthesiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haihua Shu
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, PR China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
27
|
McGregor R, Thannickal TC, Siegel JM. Pleasure, addiction, and hypocretin (orexin). HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:359-374. [PMID: 34225941 DOI: 10.1016/b978-0-12-820107-7.00022-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hypocretins/orexins were discovered in 1998. Within 2 years, this led to the discovery of the cause of human narcolepsy, a 90% loss of hypothalamic neurons containing these peptides. Further work demonstrated that these neurons were not simply linked to waking. Rather these neurons were active during pleasurable behaviors in waking and were silenced by aversive stimulation. This was seen in wild-type mice, rats, cats, and dogs. It was also evident in humans, with increased Hcrt release during pleasurable activities and decreased release, to the levels seen in sleep, during pain. We found that human heroin addicts have, on average, an increase of 54% in the number of detectable Hcrt neurons compared to "control" human brains and that these Hcrt neurons are substantially smaller than those in control brains. We found that in mice, chronic morphine administration induced the same changes in Hcrt neuron number and size. Our studies in the mouse allowed us to determine the specificity, dose response relations, time course of the change in the number of Hcrt neurons, and that the increased number of Hcrt neurons after opiates was not due to neurogenesis. Furthermore, we found that it took a month or longer for these anatomical changes in the mouse brain to return to baseline. Human narcoleptics, despite their prescribed use of several commonly addictive drugs, do not show significant evidence of dose escalation or substance use disorder. Similarly, mice in which the peptide has been eliminated are resistant to addiction. These findings are consistent with the concept that an increased number of Hcrt neurons may underlie and maintain opioid or cocaine use disorders.
Collapse
Affiliation(s)
- Ronald McGregor
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, CA, United States; Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Thomas C Thannickal
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, CA, United States; Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Jerome M Siegel
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, CA, United States; Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
28
|
HIV-1 Tat Dysregulates the Hypothalamic-Pituitary-Adrenal Stress Axis and Potentiates Oxycodone-Mediated Psychomotor and Anxiety-Like Behavior of Male Mice. Int J Mol Sci 2020; 21:ijms21218212. [PMID: 33153023 PMCID: PMC7662349 DOI: 10.3390/ijms21218212] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 01/31/2023] Open
Abstract
Human immunodeficiency virus (HIV) is associated with co-morbid affective and stress-sensitive neuropsychiatric disorders that may be related to dysfunction of the hypothalamic-pituitary-adrenal (HPA) stress axis. The HPA axis is perturbed in up to 46% of HIV patients, but the mechanisms are not known. The neurotoxic HIV-1 regulatory protein, trans-activator of transcription (Tat), may contribute. We hypothesized that HPA dysregulation may contribute to Tat-mediated interactions with oxycodone, a clinically-used opioid often prescribed to HIV patients. In transgenic male mice, Tat expression produced significantly higher basal corticosterone levels with adrenal insufficiency in response to a natural stressor or pharmacological blockade of HPA feedback, recapitulating the clinical phenotype. On acute exposure, HIV-1 Tat interacted with oxycodone to potentiate psychomotor and anxiety like-behavior in an open field and light-dark transition tasks, whereas repeated exposure sensitized stress-related psychomotor behavior and the HPA stress response. Pharmacological blockade of glucocorticoid receptors (GR) partially-restored the stress response and decreased oxycodone-mediated psychomotor behavior in Tat-expressing mice, implicating GR in these effects. Blocking corticotrophin-releasing factor (CRF) receptors reduced anxiety-like behavior in mice that were exposed to oxycodone. Together, these effects support the notion that Tat exposure can dysregulate the HPA axis, potentially raising vulnerability to stress-related substance use and affective disorders.
Collapse
|
29
|
Bengoetxea X, Goedecke L, Blaesse P, Pape HC, Jüngling K. The µ-opioid system in midline thalamic nuclei modulates defence strategies towards a conditioned fear stimulus in male mice. J Psychopharmacol 2020; 34:1280-1288. [PMID: 32684084 PMCID: PMC7604929 DOI: 10.1177/0269881120940919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
BACKGROUND Nuclei located in the dorsal midline thalamus, such as the paraventricular nucleus of the thalamus (PVT), are crucial to modulate fear and aversive behaviour. In addition, the PVT shows a dense expression of µ-opioid receptors (MORs) and could mediate the anxiolytic effects of opioids. METHODS We analysed the contribution of MORs in the dorsal midline thalamus (i.e. the PVT) to the performance of mice in a classical fear conditioning paradigm. We locally injected a specific agonist (DAMGO), an antagonist (CTAP) of MOR or saline as a control into the dorsal midline thalamus of male mice, prior to fear extinction training. We assessed freezing as a typical measure of fear and extended our analysis by evaluation of aversive, non-aversive and neutral behavioural features using compositional data analysis. RESULTS Pharmacological blockade of MORs through CTAP in the dorsal midline thalamus induced a fear memory extinction deficit, as evidenced by maintained freezing during extinction sessions. Stimulation of MORs by DAMGO resulted in an overall increase in locomotor activity, associated with decreased freezing during recall of extinction. Compositional data analysis confirmed the freezing-related pharmacological effects and revealed specific differences in basic behavioural states. CTAP-treated mice remained in an aversive state, whereas DAMGO-treated mice displayed predominantly neutral behaviour. CONCLUSIONS Fear extinction requires the integrity of the µ-opioid system in the dorsal midline thalamus. Pharmacological stimulation of MOR and associated facilitation of fear extinction recall suggest a potential therapeutic avenue for stress-related or anxiety disorders.
Collapse
Affiliation(s)
- Xabier Bengoetxea
- Xabier Bengoetxea, Institute of Physiology I, University of Münster, Robert-Koch-Str. 27a, Münster, 48149, Germany.
| | | | | | | | | |
Collapse
|
30
|
Polymorphisms of stress pathway genes and emergence of suicidal ideation at antidepressant treatment onset. Transl Psychiatry 2020; 10:320. [PMID: 32952155 PMCID: PMC7502493 DOI: 10.1038/s41398-020-01003-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 01/17/2023] Open
Abstract
The prescription of antidepressant drugs is one of the most frequently used strategies to prevent suicide and suicidal behavior. However, some patients develop suicidal ideation at antidepressant treatment onset, a phenomenon known as treatment-emergent suicidal ideation (TESI). Few studies have explored TESI pharmacogenomics. As the Hypothalamic-Pituitary-Adrenal (HPA) axis might be implicated in suicidal behavior, we assessed the relationship between TESI and single nucleotide polymorphisms (SNPs) in the HPA axis-implicated NR3C1 (n = 7 SNPs), FKBP5 (n = 5 SNPs), AVPR1B (n = 1 SNPs), CRHR1 (n = 1 SNPs), and SKA2 (n = 1 SNPs) genes, in a sample of 3566 adult outpatients with depression for whom an antidepressant treatment was introduced. General practitioners and psychiatrists throughout France followed participants for 6 weeks after the initial prescription of tianeptine, an antidepressant molecule showing mu agonism. Suicidal ideation was assessed with item 10 of the Montgomery-Åsberg Depression Rating Scale (item dedicated to suicidal ideation) at baseline, and at week 2, 4, and 6 of treatment. Within the informative sample, 112 patients reported TESI and 384 did not. TESI was significantly associated with the TT genotype of the SNP rs6902321 in FKBP5 (OR = 1.76, 95% CI = [1.07; 2.90]; p-value = 0.03) and the GG/AG genotype of the SNP rs7208505 in SKA2 (OR = 1.85, 95% CI = [1.03;3.33]; p-value = 0.04). These associations were not significant after multiple test correction. Nevertheless, our results suggest a possible involvement of HPA axis elements in treatment-emergent suicidal ideation (TESI).
Collapse
|
31
|
|
32
|
Yang HM, Zhan LJ, Lin XQ, Chu CP, Qiu DL, Lan Y. Fentanyl Inhibits Air Puff-Evoked Sensory Information Processing in Mouse Cerebellar Neurons Recorded in vivo. Front Syst Neurosci 2020; 14:51. [PMID: 32848643 PMCID: PMC7417629 DOI: 10.3389/fnsys.2020.00051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/06/2020] [Indexed: 02/02/2023] Open
Abstract
Aim: To examine the effects of fentanyl, a potent mu-opioid receptor (MOR) agonist, on-air puff-evoked responses in Purkinje cells (PCs), and molecular layer interneurons (MLIs) using in vivo patch-clamp recordings in anesthetized mice. Methods: Male mice 6–8 weeks-old were anesthetized and fixed on a custom-made stereotaxic frame. The cerebellar surface was exposed and perfused with oxygenated artificial cerebrospinal fluid (ACSF). Patch-clamp recordings in the cell-attached mode were obtained from PCs and MLIs. Facial stimulation by air-puff of the ipsilateral whisker pad was performed through a pressurized injection system. Fentanyl citrate, CTOP, and H-89 dissolved in ACSF were perfused onto the cerebellar surface. Results: Fentanyl significantly inhibited the amplitude and area under the curve (AUC) of sensory stimulation-evoked inhibitory responses in PCs. Although fentanyl did not influence the frequency of simple spikes (SSs), it decreased the pause of SS. The IC50 of the fentanyl-induced suppression of the P1 response amplitude was 5.53 μM. The selective MOR antagonist CTOP abolished fentanyl-induced inhibitory responses in PCs. However, the application of CTOP alone increased the amplitude, AUC of P1, and the pause of SS. Notably, fentanyl significantly inhibited the tactile-evoked response of MLIs but did not affect their spontaneous firing. The fentanyl-induced decrease of inhibitory responses in PCs was partially prevented by a PKA inhibitor, H-89. Conclusions: These results suggest that fentanyl binds to MORs in MLIs to reduce GABAergic neurotransmission in MLI-PC projections and one potential mechanism is via modulation of the cAMP-PKA pathway.
Collapse
Affiliation(s)
- He-Min Yang
- Brain Science Research Center, Yanbian University, Yanji City, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, China
| | - Li-Jie Zhan
- Brain Science Research Center, Yanbian University, Yanji City, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, China
| | - Xue-Qin Lin
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, China
| | - Chun-Ping Chu
- Brain Science Research Center, Yanbian University, Yanji City, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, China
| | - De-Lai Qiu
- Brain Science Research Center, Yanbian University, Yanji City, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, China
| | - Yan Lan
- Brain Science Research Center, Yanbian University, Yanji City, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, China
| |
Collapse
|
33
|
Harvey AR. Links Between the Neurobiology of Oxytocin and Human Musicality. Front Hum Neurosci 2020; 14:350. [PMID: 33005139 PMCID: PMC7479205 DOI: 10.3389/fnhum.2020.00350] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022] Open
Abstract
The human species possesses two complementary, yet distinct, universal communication systems—language and music. Functional imaging studies have revealed that some core elements of these two systems are processed in closely related brain regions, but there are also clear differences in brain circuitry that likely underlie differences in functionality. Music affects many aspects of human behavior, especially in encouraging prosocial interactions and promoting trust and cooperation within groups of culturally compatible but not necessarily genetically related individuals. Music, presumably via its impact on the limbic system, is also rewarding and motivating, and music can facilitate aspects of learning and memory. In this review these special characteristics of music are considered in light of recent research on the neuroscience of the peptide oxytocin, a hormone that has both peripheral and central actions, that plays a role in many complex human behaviors, and whose expression has recently been reported to be affected by music-related activities. I will first briefly discuss what is currently known about the peptide’s physiological actions on neurons and its interactions with other neuromodulator systems, then summarize recent advances in our knowledge of the distribution of oxytocin and its receptor (OXTR) in the human brain. Next, the complex links between oxytocin and various social behaviors in humans are considered. First, how endogenous oxytocin levels relate to individual personality traits, and then how exogenous, intranasal application of oxytocin affects behaviors such as trust, empathy, reciprocity, group conformity, anxiety, and overall social decision making under different environmental conditions. It is argued that many of these characteristics of oxytocin biology closely mirror the diverse effects that music has on human cognition and emotion, providing a link to the important role music has played throughout human evolutionary history and helping to explain why music remains a special prosocial human asset. Finally, it is suggested that there is a potential synergy in combining oxytocin- and music-based strategies to improve general health and aid in the treatment of various neurological dysfunctions.
Collapse
Affiliation(s)
- Alan R Harvey
- School of Human Sciences, The University of Western Australia, Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| |
Collapse
|
34
|
Johnson KVA, Burnet PWJ. Opposing effects of antibiotics and germ-free status on neuropeptide systems involved in social behaviour and pain regulation. BMC Neurosci 2020; 21:32. [PMID: 32698770 PMCID: PMC7374917 DOI: 10.1186/s12868-020-00583-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background Recent research has revealed that the community of microorganisms inhabiting the gut affects brain development, function and behaviour. In particular, disruption of the gut microbiome during critical developmental windows can have lasting effects on host physiology. Both antibiotic exposure and germ-free conditions impact the central nervous system and can alter multiple aspects of behaviour. Social impairments are typically displayed by antibiotic-treated and germ-free animals, yet there is a lack of understanding of the underlying neurobiological changes. Since the μ-opioid, oxytocin and vasopressin systems are key modulators of mammalian social behaviour, here we investigate the effect of experimentally manipulating the gut microbiome on the expression of these pathways. Results We show that social neuropeptide signalling is disrupted in germ-free and antibiotic-treated mice, which may contribute to the behavioural deficits observed in these animal models. The most notable finding is the reduction in neuroreceptor gene expression in the frontal cortex of mice administered an antibiotic cocktail post-weaning. Additionally, the changes observed in germ-free mice were generally in the opposite direction to the antibiotic-treated mice. Conclusions Antibiotic treatment when young can impact brain signalling pathways underpinning social behaviour and pain regulation. Since antibiotic administration is common in childhood and adolescence, our findings highlight the potential adverse effects that antibiotic exposure during these key neurodevelopmental periods may have on the human brain, including the possible increased risk of neuropsychiatric conditions later in life. In addition, since antibiotics are often considered a more amenable alternative to germ-free conditions, our contrasting results for these two treatments suggest that they should be viewed as distinct models.
Collapse
Affiliation(s)
- Katerina V A Johnson
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory Quarter, Oxford, OX2 6GG, UK. .,Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK.
| | - Philip W J Burnet
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
| |
Collapse
|
35
|
Williams JR, Cole V, Girdler S, Cromeens MG. Exploring stress, cognitive, and affective mechanisms of the relationship between interpersonal trauma and opioid misuse. PLoS One 2020; 15:e0233185. [PMID: 32413081 PMCID: PMC7228080 DOI: 10.1371/journal.pone.0233185] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/29/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND People with a history of interpersonal trauma, including intimate partner violence, sexual assault, and adverse childhood experiences, are disproportionately affected by the current opioid epidemic. Interpersonal trauma has been shown to increase risk for chronic pain conditions, prescription opioid use, and opioid misuse. Stress, cognition, and affective function have been examined as potential mechanisms that may influence opioid misuse among individuals with a history of interpersonal trauma. However, no studies have examined these factors simultaneously, despite their interrelatedness. OBJECTIVE The purpose of this study was to 1) examine perceived stress, perceived cognitive function, depressive symptoms, and PTSD symptoms as potential mechanisms of opioid misuse among individuals with a history of interpersonal trauma, 2) examine the types of interpersonal trauma that are associated with opioid misuse, and 3) assess the mediating role of pain and opioid prescription. METHODS A cross-sectional, observational study design was conducted. Data were collected through a confidential self-report online survey using validated instruments (n = 230). A series of regression analyses were conducted to identify mechanistic factors and interpersonal trauma types associated with opioid misuse, opioid prescription, and pain intensity. Structural equation modeling was used to examine mediating effects of pain intensity and opioid prescription. RESULTS Opioid prescription, depressive symptoms, and intimate partner violence increased the odds of reporting opioid misuse. Pain intensity and adverse childhood experiences increased the odds of opioid prescription. Higher levels of perceived stress and depressive symptoms were associated with increased pain intensity. Pain intensity emerged as a mediator of the relationship between depressive symptoms and opioid misuse. CONCLUSIONS Our work shows that there are likely several pathways through which interpersonal trauma can lead to opioid misuse. Interventions aimed at improving depressive symptoms and coping with traumatizing events should be included as part of comprehensive trauma-informed pain management practices.
Collapse
Affiliation(s)
- Jessica Roberts Williams
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | - Veronica Cole
- Department of Psychology, Wake Forest University, Wake Forest, North Carolina, United States of America
| | - Susan Girdler
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Martha Grace Cromeens
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
36
|
Mousavi A, Askari N, Vaez-Mahdavi MR. Augmentation of morphine-conditioned place preference by food restriction is associated with alterations in the oxytocin/oxytocin receptor in rat models. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2020; 46:304-315. [PMID: 31609135 DOI: 10.1080/00952990.2019.1648483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Studies indicate that food restriction (FR) reinforces the effects of morphine. The exact mechanisms by which FR influences the reward circuitry of morphine have not yet been determined. OBJECTIVES We hypothesized that the effects of FR on the oxytocin (OXT) system and HPA axis can be associated with substance abuse disorders. In this study, the serum levels of OXT and corticosterone, and the expression of OXT/OXT receptor (OXTR), glucocorticoid receptor (GR), and brain-derived neurotrophic factor (BDNF) in the hippocampus, prefrontal cortex, and nucleus accumbens were investigated in an FR model. METHODS First, the male rats (n = 8 per group) were subjected to FR for 3 weeks. Then, morphine-induced conditioned place preference (CPP) was observed using two doses of morphine (3 and 5 mg/kg). The serum concentrations of corticosterone and OXT were determined by ELISA and the expression of genes was examined by qPCR. RESULTS FR induced an enhanced preference in the animals for the 5 mg/kg dose of morphine compared to the controls. Serum corticosterone levels increased after FR but OXT levels decreased. Meanwhile, FR actuated downregulation of GR, BDNF, and OXT genes, while inducing the overexpression of OXTR. CONCLUSION We propose the inclusion of OXT and OXTR alterations in the enhancement of morphine-induced CPP and addiction vulnerability following FR. Moreover, we conclude that altered BDNF levels and HPA axis activity may be the mechanisms involved in the effects of FR on morphine-induced behavior.
Collapse
Affiliation(s)
- Ali Mousavi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman , Kerman, I.R. Iran
| | - Nayere Askari
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman , Kerman, I.R. Iran.,Immunoregulation Research Center, Shahed University , Tehran, I.R. Iran
| | | |
Collapse
|
37
|
Paternal morphine self-administration produces object recognition memory deficits in female, but not male offspring. Psychopharmacology (Berl) 2020; 237:1209-1221. [PMID: 31912193 PMCID: PMC7124995 DOI: 10.1007/s00213-019-05450-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/27/2019] [Indexed: 02/03/2023]
Abstract
RATIONALE Parental drug use around or before conception can have adverse consequences for offspring. Historically, this research has focused on the effects of maternal substance use on future generations but less is known about the influence of the paternal lineage. This study focused on the impact of chronic paternal morphine exposure prior to conception on behavioral outcomes in male and female progeny. OBJECTIVES This study sought to investigate the impact of paternal morphine self-administration on anxiety-like behavior, the stress response, and memory in male and female offspring. METHODS Adult, drug-naïve male and female progeny of morphine-treated sires and controls were evaluated for anxiety-like behavior using defensive probe burying and novelty-induced hypophagia paradigms. Hypothalamic-pituitary-adrenal (HPA) axis function was assessed by measuring plasma corticosterone levels following a restraint stressor in male and female progeny. Memory was probed using a battery of tests including object location memory, novel object recognition, and contextual fear conditioning. RESULTS Paternal morphine exposure did not alter anxiety-like behavior or stress-induced HPA axis activation in male or female offspring. Morphine-sired male and female offspring showed intact hippocampus-dependent memory: they performed normally on the long-term fear conditioning and object location memory tests. In contrast, paternal morphine exposure selectively disrupted novel object recognition in female, but not male, progeny. CONCLUSIONS Our findings demonstrate that paternal morphine taking produces sex-specific and selective impairments in object recognition memory while leaving hippocampal function largely intact.
Collapse
|
38
|
Wang D, Zhang J, Bai Y, Zheng X, Alizamini MM, Shang W, Yang Q, Li M, Li Y, Sui N. Melanin-concentrating hormone in rat nucleus accumbens or lateral hypothalamus differentially impacts morphine and food seeking behaviors. J Psychopharmacol 2020; 34:478-489. [PMID: 31909693 DOI: 10.1177/0269881119895521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Identifying neural substrates that are differentially affected by drugs of abuse and natural rewards is key to finding a target for an efficacious treatment for substance abuse. Melanin-concentrating hormone is a polypeptide with an inhibitory effect on the mesolimbic dopamine system. Here we test the hypothesis that melanin-concentrating hormone in the lateral hypothalamus and nucleus accumbens shell is differentially involved in the regulation of morphine and food-rewarded behaviors. METHODS Male Sprague-Dawley rats were trained with morphine (5.0 mg/kg, subcutaneously) or food pellets (standard chow, 10-14 g) to induce a conditioned place preference, immediately followed by extinction training. Melanin-concentrating hormone (1.0 µg/side) or saline was infused into the nucleus accumbens shell or lateral hypothalamus before the reinstatement primed by morphine or food, and locomotor activity was simultaneously monitored. As the comparison, melanin-concentrating hormone was also microinjected into the nucleus accumbens shell or lateral hypothalamus before the expression of food or morphine-induced conditioned place preference. RESULTS Microinfusion of melanin-concentrating hormone into the nucleus accumbens shell (but not into the lateral hypothalamus) prevented the reinstatement of morphine conditioned place preference but had no effect on the reinstatement of food conditioned place preference. In contrast, microinfusion of melanin-concentrating hormone into the lateral hypothalamus (but not in the nucleus accumbens shell) inhibited the reinstatement of food conditioned place preference but had no effect on the reinstatement of morphine conditioned place preference. CONCLUSIONS These results suggest a clear double dissociation of melanin-concentrating hormone in morphine/food rewarding behaviors and melanin-concentrating hormone in the nucleus accumbens shell. Melanin-concentrating hormone could be a potential target for therapeutic intervention for morphine abuse without affecting natural rewards.
Collapse
Affiliation(s)
- Dongmei Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jianjun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yunjing Bai
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xigeng Zheng
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Mirmohammadali M Alizamini
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Wen Shang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Qingxiong Yang
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, China
| | - Ming Li
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Yonghui Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Sui
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
Babenko VN, Galyamina AG, Rogozin IB, Smagin DA, Kudryavtseva NN. Dopamine response gene pathways in dorsal striatum MSNs from a gene expression viewpoint: cAMP-mediated gene networks. BMC Neurosci 2020; 21:12. [PMID: 32216748 PMCID: PMC7099774 DOI: 10.1186/s12868-020-00560-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/18/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Medium spiny neurons (MSNs) comprise the main body (95% in mouse) of the dorsal striatum neurons and represent dopaminoceptive GABAergic neurons. The cAMP (cyclic Adenosine MonoPhosphate)-mediated cascade of excitation and inhibition responses observed in MSN intracellular signal transduction is crucial for neuroscience research due to its involvement in the motor and behavioral functions. In particular, all types of addictions are related to MSNs. Shedding the light on the mechanics of the above-mentioned cascade is of primary importance for this research domain. RESULTS A mouse model of chronic social conflicts in daily agonistic interactions was used to analyze dorsal striatum neurons genes implicated in cAMP-mediated phosphorylation activation pathways specific for MSNs. Based on expression correlation analysis, we succeeded in dissecting Drd1- and Drd2-dopaminoceptive neurons (D1 and D2, correspondingly) gene pathways. We also found that D1 neurons genes clustering are split into two oppositely correlated states, passive and active ones, the latter apparently corresponding to D1 firing stage upon protein kinase A (PKA) activation. We observed that under defeat stress in chronic social conflicts the loser mice manifest overall depression of dopamine-mediated MSNs activity resulting in previously reported reduced motor activity, while the aggressive mice with positive fighting experience (aggressive mice) feature an increase in both D1-active phase and D2 MSNs genes expression leading to hyperactive behavior pattern corresponded by us before. Based on the alternative transcript isoforms expression analysis, it was assumed that many genes (Drd1, Adora1, Pde10, Ppp1r1b, Gnal), specifically those in D1 neurons, apparently remain transcriptionally repressed via the reversible mechanism of promoter CpG island silencing, resulting in alternative promoter usage following profound reduction in their expression rate. CONCLUSION Based on the animal stress model dorsal striatum pooled tissue RNA-Seq data restricted to cAMP related genes subset we elucidated MSNs steady states exhaustive projection for the first time. We correspond the existence of D1 active state not explicitly outlined before, and connected with dynamic dopamine neurotransmission cycles. Consequently, we were also able to indicate an oscillated postsynaptic dopamine vs glutamate action pattern in the course of the neurotransmission cycles.
Collapse
Affiliation(s)
- Vladimir N Babenko
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
| | | | - Igor B Rogozin
- National Institutes of Health, Rockville Pike, Bethesda, MD, USA
| | - Dmitry A Smagin
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | | |
Collapse
|
40
|
Mac Gillavry DW, Ullrich D. A novel theory on the predictive value of variation in the β-endorphin system on the risk and severity of PTSD. MILITARY PSYCHOLOGY 2020; 32:247-260. [PMID: 38536347 PMCID: PMC10013490 DOI: 10.1080/08995605.2020.1730111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 09/18/2019] [Indexed: 02/08/2023]
Abstract
Despite growing interest in genetic and psychosocial indicators of heightened susceptibility to posttraumatic stress disorder (PTSD), a predictive model, which explains why some individuals develop PTSD in response to life-threatening traumatic events, while others, when faced with the same or similar experiences, do not, has thus far remained out of reach. In this paper, we review the literature on gene-environment interactions in β-endorphin system functioning with regard to PTSD and suggest that variation, both genetic and with regard to environmental stimuli, in systems which, like the β-endorphin system, distort human perception of life-threatening traumatic experiences may account for some of the variance in resilience to the disorder. Given the role of β-endorphin in both social connections and physical exercise, this becomes especially relevant with regard to military selection, training, and leadership processes.
Collapse
Affiliation(s)
| | - David Ullrich
- Department of Military Leadership, University of Defence, Brno, Czech Republic
| |
Collapse
|
41
|
Littlejohn BP, Price DM, Neuendorff DA, Carroll JA, Vann RC, Riggs PK, Riley DG, Long CR, Randel RD, Welsh TH. Influence of prenatal transportation stress-induced differential DNA methylation on the physiological control of behavior and stress response in suckling Brahman bull calves. J Anim Sci 2020; 98:skz368. [PMID: 31807776 PMCID: PMC6986441 DOI: 10.1093/jas/skz368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
The objective of this experiment was to examine potential differential methylation of DNA as a mechanism for altered behavioral and stress responses in prenatally stressed (PNS) compared with nonprenatally stressed (Control) young bull calves. Mature Brahman cows (n = 48) were transported for 2-h periods at 60 ± 5, 80 ± 5, 100 ± 5, 120 ± 5, and 140 ± 5 d of gestation (Transported group) or maintained as nontransported Controls (n = 48). From the offspring born to Transported and Control cows, a subset of 28-d-old intact bulls (n = 7 PNS; n = 7 Control) were evaluated for methylation of DNA of behavior and stress response-associated genes. Methylation of DNA from white blood cells was assessed via reduced representation bisulfite sequencing methods. Because increased methylation of DNA within gene promoter regions has been associated with decreased transcriptional activity of the corresponding gene, differentially methylated (P ≤ 0.05) CG sites (cytosine followed by a guanine nucleotide) located within promoter regions (n = 1,205) were used to predict (using Ingenuity Pathway Analysis software) alterations to canonical pathways in PNS compared with Control bull calves. Among differentially methylated genes (P ≤ 0.05) related to behavior and the stress response were OPRK1, OPRM1, PENK, POMC, NR3C2, TH, DRD1, DRD5, COMT, HTR6, HTR5A, GABRA4, GABRQ, and GAD2. Among altered (P < 0.05) signaling pathways related to behavior and the stress response were Opioid Signaling, Corticotropin-Releasing Hormone Signaling, Dopamine Receptor Signaling, Dopamine-DARPP32 Feedback in cAMP Signaling, Serotonin Receptor Signaling, and GABA Receptor Signaling. Alterations to behavior and stress response-related genes and canonical pathways supported previously observed elevations in temperament score and serum cortisol through weaning in the larger population of PNS calves from which bulls in this study were derived. Differential methylation of DNA and predicted alterations to behavior and stress response-related pathways in PNS compared with Control bull calves suggest epigenetic programming of behavior and the stress response in utero.
Collapse
Affiliation(s)
- Brittni P Littlejohn
- Texas A&M AgriLife Research & Extension Center, Overton, TX
- Department of Animal Science, Texas A&M University, and Texas A&M AgriLife Research, College Station, TX
| | - Deborah M Price
- Texas A&M AgriLife Research & Extension Center, Overton, TX
- Department of Animal Science, Texas A&M University, and Texas A&M AgriLife Research, College Station, TX
| | | | | | - Rhonda C Vann
- Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Raymond, MS
| | - Penny K Riggs
- Department of Animal Science, Texas A&M University, and Texas A&M AgriLife Research, College Station, TX
| | - David G Riley
- Department of Animal Science, Texas A&M University, and Texas A&M AgriLife Research, College Station, TX
| | - Charles R Long
- Texas A&M AgriLife Research & Extension Center, Overton, TX
- Department of Animal Science, Texas A&M University, and Texas A&M AgriLife Research, College Station, TX
| | | | - Thomas H Welsh
- Department of Animal Science, Texas A&M University, and Texas A&M AgriLife Research, College Station, TX
| |
Collapse
|
42
|
Zhang J, Yang J, Yang C, Chen T, Wang Z, Li J, Qin F, Deng Q, Zhang X. Sensitivity to Morphine Reward Associates With Gut Dysbiosis in Rats With Morphine-Induced Conditioned Place Preference. Front Psychiatry 2020; 11:631. [PMID: 33005148 PMCID: PMC7484999 DOI: 10.3389/fpsyt.2020.00631] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022] Open
Abstract
Gut microbiota has been found to establish a bidirectional relationship with the central nervous system. Variations of the gut microbiota has been implicated in various mental disorders, including opioid use disorders. Morphine exposure has been repeatedly found to disrupt the gut microbiota, but association between the gut microbiota and the sensitivity to morphine reward remains unknown. In this study the conditioned place preference (CPP) paradigm was used for morphine-treated rats and saline-treated rats. After the CPP procedure, the morphine-treated rats were divided equally into the low and high CPP (L- and H-CPP) groups according to the CPP scores. We adopted 16S rRNA sequencing for the fecal bacterial communities at baseline and post-conditioning. By comparing the morphine-treated group with saline-treated group, we found alterations of microbial composition in the morphine-treated group, but no significant differences in alpha diversity. The L-CPP group and H-CPP group differed in microbial composition both before and after morphine treatment. The relative abundance of certain taxa was correlated to the CPP scores, such as Alloprevotella and Romboutsia. This study provides direct evidence that morphine exposure alters the composition of the gut microbiota in rats and that microbial alterations are correlated to the sensitivity to morphine reward. These findings may help develop novel therapeutic and preventive strategies for opioid use disorder.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinic Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Jun Yang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinic Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Cheng Yang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinic Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Ti Chen
- Clinical Laboratory, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ziwei Wang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinic Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Junyi Li
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinic Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Fanglin Qin
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinic Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Qijian Deng
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinic Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Xiaojie Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinic Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| |
Collapse
|
43
|
Scarna H. Genesis of the Heroin-Induced Addictive Process: Articulation Between Psychodynamic and Neurobiological Theories. Front Psychiatry 2020; 11:524764. [PMID: 33362589 PMCID: PMC7755881 DOI: 10.3389/fpsyt.2020.524764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 11/18/2020] [Indexed: 11/24/2022] Open
Abstract
Psychotherapeutic consultations of drug addict's patients in a Care, Support and Prevention Center in Addictology led us to propose several hypotheses on the genesis of addiction and its articulation with currently available neurobiological data. This care center dispenses both pharmacological maintenance medications for heroin dependence, such as methadone or buprenorphine, and psychological support. Our first hypothesis posits that the addictive process is driven by the narcissistic vulnerability of these patients, its neurobiological foundations being mainly mediated by the activation of endogenous opioid systems. Drug use/abuse could be a way to make arise the "True Self," therefore overcoming the defensive system's set up to protect oneself from early traumas. The neurobiological impact of traumas is also developed and articulated with psychodynamic concepts, particularly those of Winnicott. Additionally, functions of addiction such as defensive, anti-depressant roles and emotional regulation are discussed in relationship with their currently known neuroscientific bases. Although the experience in the psychodynamic clinic is at a level of complexity much higher than what is currently accessible to the neurosciences, most of the research in this domain stays in line with our psychological understanding of the addictive process. Finally, we outline some critically sensitive points regarding the therapeutic support.
Collapse
Affiliation(s)
- Hélène Scarna
- Centre de Recherche en Psychopathologie et Psychologie Clinique, Université Lumière Lyon 2, Bron, France.,Laboratoire de Psychologie EA 3188, Université de Bourgogne Franche-Comté, Besançon, France.,Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.,Centre de Soin, d'Accompagnement et de Prévention en Addictologie, Hôpital de la Croix-Rousse, Lyon, France
| |
Collapse
|
44
|
Hippocampal µ-opioid receptors on GABAergic neurons mediate stress-induced impairment of memory retrieval. Mol Psychiatry 2020; 25:977-992. [PMID: 31142818 PMCID: PMC7192851 DOI: 10.1038/s41380-019-0435-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 01/28/2023]
Abstract
Stressful life events induce abnormalities in emotional and cognitive behaviour. The endogenous opioid system plays an essential role in stress adaptation and coping strategies. In particular, the µ-opioid receptor (μR), one of the major opioid receptors, strongly influences memory processing in that alterations in μR signalling are associated with various neuropsychiatric disorders. However, it remains unclear whether μR signalling contributes to memory impairments induced by acute stress. Here, we utilized pharmacological methods and cell-type-selective/non-cell-type-selective μR depletion approaches combined with behavioural tests, biochemical analyses, and in vitro electrophysiological recordings to investigate the role of hippocampal μR signalling in memory-retrieval impairment induced by acute elevated platform (EP) stress in mice. Biochemical and molecular analyses revealed that hippocampal μRs were significantly activated during acute stress. Blockage of hippocampal μRs, non-selective deletion of μRs or selective deletion of μRs on GABAergic neurons (μRGABA) reversed EP-stress-induced impairment of memory retrieval, with no effect on the elevation of serum corticosterone after stress. Electrophysiological results demonstrated that stress depressed hippocampal GABAergic synaptic transmission to CA1 pyramidal neurons, thereby leading to excitation/inhibition (E/I) imbalance in a μRGABA-dependent manner. Pharmaceutically enhancing hippocampal GABAA receptor-mediated inhibitory currents in stressed mice restored their memory retrieval, whereas inhibiting those currents in the unstressed mice mimicked the stress-induced impairment of memory retrieval. Our findings reveal a novel pathway in which endogenous opioids recruited by acute stress predominantly activate μRGABA to depress GABAergic inhibitory effects on CA1 pyramidal neurons, which subsequently alters the E/I balance in the hippocampus and results in impairment of memory retrieval.
Collapse
|
45
|
Kibaly C, Xu C, Cahill CM, Evans CJ, Law PY. Non-nociceptive roles of opioids in the CNS: opioids' effects on neurogenesis, learning, memory and affect. Nat Rev Neurosci 2019; 20:5-18. [PMID: 30518959 DOI: 10.1038/s41583-018-0092-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mortality due to opioid use has grown to the point where, for the first time in history, opioid-related deaths exceed those caused by car accidents in many states in the United States. Changes in the prescribing of opioids for pain and the illicit use of fentanyl (and derivatives) have contributed to the current epidemic. Less known is the impact of opioids on hippocampal neurogenesis, the functional manipulation of which may improve the deleterious effects of opioid use. We provide new insights into how the dysregulation of neurogenesis by opioids can modify learning and affect, mood and emotions, processes that have been well accepted to motivate addictive behaviours.
Collapse
Affiliation(s)
- Cherkaouia Kibaly
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA.
| | - Chi Xu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Catherine M Cahill
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Christopher J Evans
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Ping-Yee Law
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| |
Collapse
|
46
|
β-Endorphin Induction by Psychological Stress Promotes Leydig Cell Apoptosis through p38 MAPK Pathway in Male Rats. Cells 2019; 8:cells8101265. [PMID: 31623282 PMCID: PMC6829611 DOI: 10.3390/cells8101265] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
Abstract
Psychological stress (PS) disturbs the reproductive endocrine system and promotes male infertility, but the underlying pathogenic mechanisms have not been extensively studied. This study aimed to uncover the mechanisms of PS-induced male reproductive related abnormalities subjected to a ‘terrified sound’ exposure. Male rats subjected to PS displayed slow growth, decreased sperm quality, abnormal levels of the reproductive endocrine hormones, decreased expression of the reproductive-related proteins androgen-binding protein (ABP) and bromodomain-containing protein (BRDT), increased apoptosis in the testis, and accompanied by elevated levels of β-endorphin (β-EP). These effects were reversed by naloxone. Furthermore, PS-induced β-EP could promote mu opioid receptor (MOR) activation and ensure intracellular p38 MAPK phosphorylation and then lead to Leydig cells (LCs) apoptosis. The current result showed that β-EP was a key factor to PS-induced male infertility.
Collapse
|
47
|
Gómez-Murcia V, Ribeiro Do Couto B, Gómez-Fernández JC, Milanés MV, Laorden ML, Almela P. Liposome-Encapsulated Morphine Affords a Prolonged Analgesia While Facilitating Extinction of Reward and Aversive Memories. Front Pharmacol 2019; 10:1082. [PMID: 31616299 PMCID: PMC6764324 DOI: 10.3389/fphar.2019.01082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/26/2019] [Indexed: 01/25/2023] Open
Abstract
Morphine is thoroughly used for pain control; however, it has a high addictive potential. Opioid liposome formulations produce controlled drug release and have been thoroughly tested for pain treatment although their role in addiction is still unknown. This study investigated the effects of free morphine and morphine encapsulated in unilamellar and multilamellar liposomes on antinociception and on the expression and extinction of the positive and negative memories associated with environmental cues. The hot plate test was used to measure central pain. The rewarding effects of morphine were analyzed by the conditioned-place preference (CPP) test, and the aversive aspects of naloxone-precipitated morphine withdrawal were evaluated by the conditioned-place aversion (CPA) paradigm. Our results show that encapsulated morphine yields prolonged antinociceptive effects compared with the free form, and that CPP and CPA expression were similar in the free- or encapsulated-morphine groups. However, we demonstrate, for the first time, that morphine encapsulation reduces the duration of reward and aversive memories, suggesting that this technological process could transform morphine into a potentially less addictive drug. Morphine encapsulation in liposomes could represent a pharmacological approach for enhancing extinction, which might lead to effective clinical treatments in drug addiction with fewer side effects.
Collapse
Affiliation(s)
- Victoria Gómez-Murcia
- Department of Pharmacology, Faculty of Medicine, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Bruno Ribeiro Do Couto
- Department of Human Anatomy and Psychobiology, Faculty of Psychology, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Juan C Gómez-Fernández
- Department of Biochemistry and Molecular Biology A, Faculty of Veterinary, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - María V Milanés
- Department of Pharmacology, Faculty of Medicine, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - María L Laorden
- Department of Pharmacology, Faculty of Medicine, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Pilar Almela
- Department of Pharmacology, Faculty of Medicine, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
48
|
Abstract
The old classification of depression as reactive and endogenous, which are still observed in clinical practice, both cannot be accommodated under the current rubric of major depression. This is because psychiatric nosology under the Diagnostic and Statistical Manual of Mental Disorders (DSM) and its latest fifth edition (DSM-V) is still descriptive and not etiologic. The aim of this review was to revisit reactive and endogenous categories of depression from the perspective of today's understanding of etiological pathways. From an epigenetic perspective, the old dichotomy of reactive versus endogenous is interrelated through the impact of the environment (e.g., stress). This includes familial or prenatal depression, where the environmental impact is before birth, or childhood depression, where the early life stress is the precipitating factor to genetic susceptibility. In conclusion, searching for both environmental impact (e.g., stressors) and genetic predispositions in depression, even at a clinical level, could help clinicians with better therapeutic decisions.
Collapse
|
49
|
Barrell GK. An Appraisal of Methods for Measuring Welfare of Grazing Ruminants. Front Vet Sci 2019; 6:289. [PMID: 31555673 PMCID: PMC6722481 DOI: 10.3389/fvets.2019.00289] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/14/2019] [Indexed: 01/10/2023] Open
Abstract
Although disturbances in body function of animals can be measured to determine whether a state of stress may exist, there is growing interest in finding ways to assess their emotional status as an indicator of good or bad welfare status. Generally it is easier to determine poor states of well-being than positive ones. For grazing ruminants some indicators of well-being include absence of illness, good growth and productivity, and longevity. Motion detectors can provide automated remote monitoring of behavior and it is likely that there will be advances in the interpretation software to increase the utility of this technology for assessing well-being. Cortisol levels in body fluids, feces and pelage are prominent as a marker of poor animal welfare, but like many of the other objective measures that are used, are not wholly reliable at the individual animal level. These other measures include: plasma serotonin, heart rate variation, infra-red thermography, cytokines, salivary alpha amylase, and acute phase proteins. Use of automated facial expression recognition may supplement electrophysiological recording as means to quantify the pain experience of animals. Although the measures described in the literature do not necessarily provide the final answer for determination of welfare in grazing ruminants, they all have some merit and deserve further investigation.
Collapse
Affiliation(s)
- Graham K Barrell
- Department of Agricultural Sciences, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
50
|
Flamarion E, Saada N, Khellaf M, Michon A, Passeron A, Pouchot J, Arlet JB, Ranque B. [Opioid-induced adrenal insufficiency: Case report and synthesis of the literature]. Rev Med Interne 2019; 40:758-763. [PMID: 31444021 DOI: 10.1016/j.revmed.2019.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/01/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Opioid therapy for pain relief is associated with several adverse effects. Herein, we report the potential consequences of opioid use on the adrenal function. OBSERVATION A 49-year-old woman with sickle cell anemia (Hemoglobin SS) was admitted for the treatment of a vaso-occlusive crisis. Morphine was used for pain management, provided by intravenous intermittent dosing (patient-controlled analgesia). She developed during the hospitalization low blood pressure, due to secondary adrenal insufficiency (cortisol 74 nmol/L; ACTH 2.9pmol/L). Pituitary gland was normal on brain magnetic resonance imaging and adrenal function recovered after morphine discontinuation. CONCLUSION Opioids suppress cortisol secretion, primarily mediated by direct negative effect on hypothalamus and pituitary gland. Further studies are needed to define the incidence and the clinical significance of opioid-induced adrenal insufficiency, as well as the need for hormone replacement.
Collapse
Affiliation(s)
- E Flamarion
- Service de médecine interne, hôpital européen Georges-Pompidou, université Paris Descartes, Assistance publique-Hôpitaux de Paris, 20, rue Leblanc, 75015 Paris, France.
| | - N Saada
- Service de médecine interne, hôpital Henri-Mondor, université Paris Est Créteil, Assistance publique-Hôpitaux de Paris, 51, avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France
| | - M Khellaf
- Service d'accueil des urgences et département d'aval des urgences, hôpital Henri-Mondor, université Paris Est Créteil, Assistance publique-Hôpitaux de Paris, 51, avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France
| | - A Michon
- Service de médecine interne, hôpital européen Georges-Pompidou, université Paris Descartes, Assistance publique-Hôpitaux de Paris, 20, rue Leblanc, 75015 Paris, France
| | - A Passeron
- Service de médecine interne, hôpital européen Georges-Pompidou, université Paris Descartes, Assistance publique-Hôpitaux de Paris, 20, rue Leblanc, 75015 Paris, France
| | - J Pouchot
- Service de médecine interne, hôpital européen Georges-Pompidou, université Paris Descartes, Assistance publique-Hôpitaux de Paris, 20, rue Leblanc, 75015 Paris, France
| | - J-B Arlet
- Service de médecine interne, hôpital européen Georges-Pompidou, université Paris Descartes, Assistance publique-Hôpitaux de Paris, 20, rue Leblanc, 75015 Paris, France
| | - B Ranque
- Service de médecine interne, hôpital européen Georges-Pompidou, université Paris Descartes, Assistance publique-Hôpitaux de Paris, 20, rue Leblanc, 75015 Paris, France
| |
Collapse
|