1
|
Malaguti MC, Di Fonzo A, Longo C, Di Giacopo R, Papagno C, Donner D, Rozzanigo U, Monfrini E. A Novel Pathogenic PSEN1 Variant in a Patient With Dystonia-Parkinsonism Without Dementia. J Mov Disord 2024; 17:102-105. [PMID: 37704566 PMCID: PMC10846968 DOI: 10.14802/jmd.23125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023] Open
Affiliation(s)
| | - Alessio Di Fonzo
- Department of Neurology, Foundation Istituti di Ricovero e Cura a Carattere Scientifico Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Longo
- Department of Neurology, Santa Chiara Hospital, APSS, Trento, Italy
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | | | - Costanza Papagno
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Davide Donner
- Department of Nuclear Medicine, Santa Chiara Hospital, APSS, Trento, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Umberto Rozzanigo
- Department of Diagnostic Imaging, Santa Chiara Hospital, APSS, Trento, Italy
| | - Edoardo Monfrini
- Department of Neurology, Foundation Istituti di Ricovero e Cura a Carattere Scientifico Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Neuroscience Section, Dino Ferrari Center, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Mumtaz I, Ayaz MO, Khan MS, Manzoor U, Ganayee MA, Bhat AQ, Dar GH, Alghamdi BS, Hashem AM, Dar MJ, Ashraf GM, Maqbool T. Clinical relevance of biomarkers, new therapeutic approaches, and role of post-translational modifications in the pathogenesis of Alzheimer's disease. Front Aging Neurosci 2022; 14:977411. [PMID: 36158539 PMCID: PMC9490081 DOI: 10.3389/fnagi.2022.977411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that causes progressive loss of cognitive functions like thinking, memory, reasoning, behavioral abilities, and social skills thus affecting the ability of a person to perform normal daily functions independently. There is no definitive cure for this disease, and treatment options available for the management of the disease are not very effective as well. Based on histopathology, AD is characterized by the accumulation of insoluble deposits of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs). Although several molecular events contribute to the formation of these insoluble deposits, the aberrant post-translational modifications (PTMs) of AD-related proteins (like APP, Aβ, tau, and BACE1) are also known to be involved in the onset and progression of this disease. However, early diagnosis of the disease as well as the development of effective therapeutic approaches is impeded by lack of proper clinical biomarkers. In this review, we summarized the current status and clinical relevance of biomarkers from cerebrospinal fluid (CSF), blood and extracellular vesicles involved in onset and progression of AD. Moreover, we highlight the effects of several PTMs on the AD-related proteins, and provide an insight how these modifications impact the structure and function of proteins leading to AD pathology. Finally, for disease-modifying therapeutics, novel approaches, and targets are discussed for the successful treatment and management of AD.
Collapse
Affiliation(s)
- Ibtisam Mumtaz
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| | - Mir Owais Ayaz
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Mohamad Sultan Khan
- Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Umar Manzoor
- Laboratory of Immune and Inflammatory Disease, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju, South Korea
| | - Mohd Azhardin Ganayee
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, India
| | - Aadil Qadir Bhat
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Ghulam Hassan Dar
- Sri Pratap College, Cluster University Srinagar, Jammu and Kashmir, India
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar M. Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Jamal Dar
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Gulam Md. Ashraf
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tariq Maqbool
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| |
Collapse
|
3
|
Abrahamson EE, Kofler JK, Becker CR, Price JC, Newell KL, Ghetti B, Murrell JR, McLean CA, Lopez OL, Mathis CA, Klunk WE, Villemagne VL, Ikonomovic MD. 11C-PiB PET can underestimate brain amyloid-β burden when cotton wool plaques are numerous. Brain 2022; 145:2161-2176. [PMID: 34918018 PMCID: PMC9630719 DOI: 10.1093/brain/awab434] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/02/2021] [Accepted: 10/20/2021] [Indexed: 09/01/2023] Open
Abstract
Individuals with familial Alzheimer's disease due to PSEN1 mutations develop high cortical fibrillar amyloid-β load but often have lower cortical 11C-Pittsburgh compound B (PiB) retention than Individuals with sporadic Alzheimer's disease. We hypothesized this is influenced by limited interactions of Pittsburgh compound B with cotton wool plaques, an amyloid-β plaque type common in familial Alzheimer's disease but rare in sporadic Alzheimer's disease. Histological sections of frontal and temporal cortex, caudate nucleus and cerebellum were obtained from 14 cases with sporadic Alzheimer's disease, 12 cases with familial Alzheimer's disease due to PSEN1 mutations, two relatives of a PSEN1 mutation carrier but without genotype information and three non-Alzheimer's disease cases. Sections were processed immunohistochemically using amyloid-β-targeting antibodies and the fluorescent amyloid stains cyano-PiB and X-34. Plaque load was quantified by percentage area analysis. Frozen homogenates from the same brain regions from five sporadic Alzheimer's disease and three familial Alzheimer's disease cases were analysed for 3H-PiB in vitro binding and concentrations of amyloid-β1-40 and amyloid-β1-42. Nine sporadic Alzheimer's disease, three familial Alzheimer's disease and three non-Alzheimer's disease participants had 11C-PiB PET with standardized uptake value ratios calculated using the cerebellum as the reference region. Cotton wool plaques were present in the neocortex of all familial Alzheimer's disease cases and one sporadic Alzheimer's disease case, in the caudate nucleus from four familial Alzheimer's disease cases, but not in the cerebellum. Cotton wool plaques immunolabelled robustly with 4G8 and amyloid-β42 antibodies but weakly with amyloid-β40 and amyloid-βN3pE antibodies and had only background cyano-PiB fluorescence despite labelling with X-34. Relative to amyloid-β plaque load, cyano-Pittsburgh compound B plaque load was similar in sporadic Alzheimer's disease while in familial Alzheimer's disease it was lower in the neocortex and the caudate nucleus. In both regions, insoluble amyloid-β1-42 and amyloid-β1-40 concentrations were similar in familial Alzheimer's disease and sporadic Alzheimer's disease groups, while 3H-PiB binding was lower in the familial Alzheimer's disease than the sporadic Alzheimer's disease group. Higher amyloid-β1-42 concentration associated with higher 3H-PiB binding in sporadic Alzheimer's disease but not familial Alzheimer's disease. 11C-PiB retention correlated with region-matched post-mortem amyloid-β plaque load; however, familial Alzheimer's disease cases with abundant cotton wool plaques had lower 11C-PiB retention than sporadic Alzheimer's disease cases with similar amyloid-β plaque loads. PiB has limited ability to detect amyloid-β aggregates in cotton wool plaques and may underestimate total amyloid-β plaque burden in brain regions with abundant cotton wool plaques.
Collapse
Affiliation(s)
- Eric E Abrahamson
- Department of Neurology, University of Pittsburgh School of Medicine. Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, PA, USA
| | - Julia K Kofler
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Carl R Becker
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Julie C Price
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Massachusetts General Hospital, A. A. Martinos Center for Biomedical Imaging, Cambridge, MA, USA
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - Jill R Murrell
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Catriona A McLean
- Victorian Brain Bank, The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh School of Medicine. Pittsburgh, PA, USA
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh School of Medicine. Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Willumsen N, Poole T, Nicholas JM, Fox NC, Ryan NS, Lashley T. Variability in the type and layer distribution of cortical Aβ pathology in familial Alzheimer's disease. Brain Pathol 2021; 32:e13009. [PMID: 34319632 PMCID: PMC9048809 DOI: 10.1111/bpa.13009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022] Open
Abstract
Familial Alzheimer's disease (FAD) is caused by autosomal dominant mutations in the PSEN1, PSEN2 or APP genes, giving rise to considerable clinical and pathological heterogeneity in FAD. Here we investigate variability in clinical data and the type and distribution of Aβ pathologies throughout the cortical layers of different FAD mutation cases. Brain tissue from 20 FAD cases [PSEN1 pre-codon 200 (n = 10), PSEN1 post-codon 200 (n = 6), APP (n = 4)] were investigated. Frontal cortex sections were stained immunohistochemically for Aβ, and Nissl to define the cortical layers. The frequency of different amyloid-beta plaque types was graded for each cortical layer and the severity of cerebral amyloid angiopathy (CAA) was determined in cortical and leptomeningeal blood vessels. Comparisons were made between FAD mutations and APOE4 status, with associations between pathology, clinical and genetic data investigated. In this cohort, possession of an APOE4 allele was associated with increased disease duration but not with age at onset, after adjusting for mutation sub-group and sex. We found Aβ pathology to be heterogeneous between cases although Aβ load was highest in cortical layer 3 for all mutation groups and a higher Aβ load was associated with APOE4. The PSEN1 post-codon 200 group had a higher Aβ load in lower cortical layers, with a small number of this group having increased cotton wool plaque pathology in lower layers. Cotton wool plaque frequency was positively associated with the severity of CAA in the whole cohort and in the PSEN1 post-codon 200 group. Carriers of the same PSEN1 mutation can have differing patterns of Aβ deposition, potentially because of differences in risk factors. Our results highlight possible influences of APOE4 genotype, and PSEN1 mutation type on Aβ deposition, which may have effects on the clinical heterogeneity of FAD.
Collapse
Affiliation(s)
- Nanet Willumsen
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Teresa Poole
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK.,Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Jennifer M Nicholas
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK.,Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at University College London, London, UK
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at University College London, London, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
5
|
Abstract
The history of Alzheimer's disease (AD) started in 1907, but we needed to wait until the end of the century to identify the components of pathological hallmarks and genetic subtypes and to formulate the first pathogenic hypothesis. Thanks to biomarkers and new technologies, the concept of AD then rapidly changed from a static view of an amnestic dementia of the presenium to a biological entity that could be clinically manifested as normal cognition or dementia of different types. What is clearly emerging from studies is that AD is heterogeneous in each aspect, such as amyloid composition, tau distribution, relation between amyloid and tau, clinical symptoms, and genetic background, and thus it is probably impossible to explain AD with a single pathological process. The scientific approach to AD suffers from chronological mismatches between clinical, pathological, and technological data, causing difficulty in conceiving diagnostic gold standards and in creating models for drug discovery and screening. A recent mathematical computer-based approach offers the opportunity to study AD in real life and to provide a new point of view and the final missing pieces of the AD puzzle.
Collapse
Affiliation(s)
- Camilla Ferrari
- Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| |
Collapse
|
6
|
Qin Q, Yin Y, Wang Y, Lu Y, Tang Y, Jia J. Gene mutations associated with early onset familial Alzheimer's disease in China: An overview and current status. Mol Genet Genomic Med 2020; 8:e1443. [PMID: 32767553 PMCID: PMC7549583 DOI: 10.1002/mgg3.1443] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mutations of three causative genes, namely presenilin 1 (PSEN1), presenilin 2 (PSEN2), and amyloid precursor protein (APP), have been identified as the major causes of early-onset familial Alzheimer's disease (EOFAD). The prevalence of causative gene mutations in patients with EOFAD has been reported in previous studies worldwide but remains unclear in China. The patients with these known mutations always show considerable clinical phenotypic variability. However, to date, there have been no detailed descriptions of the clinical phenotypes associated with these Chinese EOFAD mutations. Thus, the aim of this study was to describe all of the known mutations in three EOFAD causative genes and genotype-phenotype correlations in Chinese patients with EOFAD. METHOD We systematically searched the PubMed, MEDLINE, CNKI, VIP, and WAN-FANG databases to find Chinese EOFAD mutations in reports from inception through May 2020. RESULT We identified 31 studies reporting mutations of three causative genes in China. 10 mutations in APP gene, 27 mutations in PSEN1 gene and six mutations in PSEN2 were discovered in Chinese EOFAD. This review summarized all these probably pathogenic mutations as well as its clinical features. To the best of our knowledge, this is the first systemic review of causative gene mutations in patients with EOFAD in China. CONCLUSION The analysis of the genetic and clinical phenotype correlations in this review supports the idea that the clinical phenotype might be influenced by specific genetic defects. It also suggests genetic testing and genotype-phenotype correlations are important for the accurate diagnosis and for understanding disease-associated pathways and might also improve disease therapy and prevention.
Collapse
Affiliation(s)
- Qi Qin
- Innovation Center for Neurological DisordersDepartment of NeurologyXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yunsi Yin
- Innovation Center for Neurological DisordersDepartment of NeurologyXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yan Wang
- Innovation Center for Neurological DisordersDepartment of NeurologyXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yuanyuan Lu
- Innovation Center for Neurological DisordersDepartment of NeurologyXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yi Tang
- Innovation Center for Neurological DisordersDepartment of NeurologyXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jianping Jia
- Innovation Center for Neurological DisordersDepartment of NeurologyXuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Geriatric Cognitive DisordersBeijingChina
- Clinical Center for Neurodegenerative Disease and Memory ImpairmentCapital Medical UniversityBeijingChina
- Center of Alzheimer's DiseaseBeijing Institute for Brain DisordersBeijingChina
| |
Collapse
|
7
|
Santos-Mandujano RA, Ryan NS, Chávez-Gutiérrez L, Sánchez-Torres C, Meraz-Ríos MA. Clinical Association of White Matter Hyperintensities Localization in a Mexican Family with Spastic Paraparesis Carrying the PSEN1 A431E Mutation. J Alzheimers Dis 2020; 73:1075-1083. [DOI: 10.3233/jad-190978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Natalie S. Ryan
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
| | - Lucía Chávez-Gutiérrez
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | - Carmen Sánchez-Torres
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV), CDMX, México
| | - Marco Antonio Meraz-Ríos
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV), CDMX, México
| |
Collapse
|
8
|
Yong Y, Zhang R, Liu Z, Wei D, Shang Y, Wu J, Zhang Z, Li C, Chen Z, Bian H. Gamma‐secretase complex‐dependent intramembrane proteolysis of CD147 regulates the Notch1 signaling pathway in hepatocellular carcinoma. J Pathol 2019; 249:255-267. [DOI: 10.1002/path.5316] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/30/2019] [Accepted: 06/16/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Yu‐Le Yong
- National Translational Science Center for Molecular Medicine, Department of Cell BiologyFourth Military Medical University Xi'an PR China
| | - Ren‐Yu Zhang
- National Translational Science Center for Molecular Medicine, Department of Cell BiologyFourth Military Medical University Xi'an PR China
| | - Ze‐Kun Liu
- National Translational Science Center for Molecular Medicine, Department of Cell BiologyFourth Military Medical University Xi'an PR China
| | - Ding Wei
- National Translational Science Center for Molecular Medicine, Department of Cell BiologyFourth Military Medical University Xi'an PR China
| | - Yu‐Kui Shang
- National Translational Science Center for Molecular Medicine, Department of Cell BiologyFourth Military Medical University Xi'an PR China
| | - Jiao Wu
- National Translational Science Center for Molecular Medicine, Department of Cell BiologyFourth Military Medical University Xi'an PR China
| | - Zhi‐Yun Zhang
- National Translational Science Center for Molecular Medicine, Department of Cell BiologyFourth Military Medical University Xi'an PR China
| | - Can Li
- National Translational Science Center for Molecular Medicine, Department of Cell BiologyFourth Military Medical University Xi'an PR China
| | - Zhi‐Nan Chen
- National Translational Science Center for Molecular Medicine, Department of Cell BiologyFourth Military Medical University Xi'an PR China
| | - Huijie Bian
- National Translational Science Center for Molecular Medicine, Department of Cell BiologyFourth Military Medical University Xi'an PR China
| |
Collapse
|
9
|
Affiliation(s)
- Rodrigo Aguayo-Ortiz
- Departamento de Fisicoquímica; Universidad Nacional Autónoma de México; Ciudad de México 04510 México
| | - Laura Dominguez
- Departamento de Fisicoquímica; Universidad Nacional Autónoma de México; Ciudad de México 04510 México
| |
Collapse
|