1
|
Gomez-Escolar A, Folch-Sanchez D, Stefaniuk J, Swithenbank Z, Nisa A, Braddick F, Idrees Chaudhary N, van der Meer PB, Batalla A. Current Perspectives on the Clinical Research and Medicalization of Psychedelic Drugs for Addiction Treatments: Safety, Efficacy, Limitations and Challenges. CNS Drugs 2024; 38:771-789. [PMID: 39033264 DOI: 10.1007/s40263-024-01101-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/23/2024]
Abstract
Mental health disorders and substance use disorders (SUDs) in particular, contribute greatly to the global burden of disease. Psychedelics, including entactogens and dissociative substances, are currently being explored for the treatment of SUDs, yet with less empirical clinical evidence than for other mental health disorders, such as depression or post-traumatic stress disorder (PTSD). In this narrative review, we discuss the current clinical research evidence, therapeutic potential and safety of psilocybin, lysergic acid diethylamide (LSD), ketamine, 3,4-methylenedioxymethamphetamine (MDMA) and ibogaine, particularly in the context of the SUD treatment. Our aim was to provide a balanced overview of the current research and findings on potential benefits and harms of psychedelics in clinical settings for SUD treatment. We highlight the need for more clinical research in this particular treatment area and point out some limitations and challenges to be addressed in future research.
Collapse
Affiliation(s)
- Anton Gomez-Escolar
- INAWE Institute, Calle Ciudad Real 28, 28223, Madrid, Spain.
- Sociedad Española de Medicina Psicodélica (SEMPsi), Barcelona, Spain.
- Energy Control, Asociación Bienestar y Desarrollo (ABD), Madrid, Spain.
- Drogopedia, Madrid, Spain.
| | - Daniel Folch-Sanchez
- Addictions Research Group (GRAC), Clínic Foundation for Biomedical Research - Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | | | - Zoe Swithenbank
- Public Health Institute, Liverpool John Moores University, Liverpool, UK
| | | | - Fleur Braddick
- Addictions Research Group (GRAC), Clínic Foundation for Biomedical Research - Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | | | - Pim B van der Meer
- Department of Neurology, University Medical Center, Leiden, The Netherlands
| | - Albert Batalla
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Serra M, Simola N, Pollack AE, Costa G. Brain dysfunctions and neurotoxicity induced by psychostimulants in experimental models and humans: an overview of recent findings. Neural Regen Res 2024; 19:1908-1918. [PMID: 38227515 DOI: 10.4103/1673-5374.390971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/10/2023] [Indexed: 01/17/2024] Open
Abstract
Preclinical and clinical studies indicate that psychostimulants, in addition to having abuse potential, may elicit brain dysfunctions and/or neurotoxic effects. Central toxicity induced by psychostimulants may pose serious health risks since the recreational use of these substances is on the rise among young people and adults. The present review provides an overview of recent research, conducted between 2018 and 2023, focusing on brain dysfunctions and neurotoxic effects elicited in experimental models and humans by amphetamine, cocaine, methamphetamine, 3,4-methylenedioxymethamphetamine, methylphenidate, caffeine, and nicotine. Detailed elucidation of factors and mechanisms that underlie psychostimulant-induced brain dysfunction and neurotoxicity is crucial for understanding the acute and enduring noxious brain effects that may occur in individuals who use psychostimulants for recreational and/or therapeutic purposes.
Collapse
Affiliation(s)
- Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Alexia E Pollack
- Department of Biology, University of Massachusetts-Boston, Boston, MA, USA
| | - Giulia Costa
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| |
Collapse
|
3
|
Coray RC, Zimmermann J, Haugg A, Baumgartner MR, Steuer AE, Seifritz E, Stock AK, Beste C, Cole DM, Quednow BB. The functional connectome of 3,4-methyldioxymethamphetamine-related declarative memory impairments. Hum Brain Mapp 2023; 44:5079-5094. [PMID: 37530403 PMCID: PMC10502674 DOI: 10.1002/hbm.26438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 08/03/2023] Open
Abstract
The chronic intake of 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") bears a strong risk for sustained declarative memory impairments. Although such memory deficits have been repeatedly reported, their neurofunctional origin remains elusive. Therefore, we here investigate the neuronal basis of altered declarative memory in recurrent MDMA users at the level of brain connectivity. We examined a group of 44 chronic MDMA users and 41 demographically matched controls. Declarative memory performance was assessed by the Rey Auditory Verbal Learning Test and a visual associative learning test. To uncover alterations in the whole brain connectome between groups, we employed a data-driven multi-voxel pattern analysis (MVPA) approach on participants' resting-state functional magnetic resonance imaging data. Recent MDMA use was confirmed by hair analyses. MDMA users showed lower performance in delayed recall across tasks compared to well-matched controls with moderate-to-strong effect sizes. MVPA revealed a large cluster located in the left postcentral gyrus of global connectivity differences between groups. Post hoc seed-based connectivity analyses with this cluster unraveled hypoconnectivity to temporal areas belonging to the auditory network and hyperconnectivity to dorsal parietal regions belonging to the dorsal attention network in MDMA users. Seed-based connectivity strength was associated with verbal memory performance in the whole sample as well as with MDMA intake patterns in the user group. Our findings suggest that functional underpinnings of MDMA-related memory impairments encompass altered patterns of multimodal sensory integration within auditory processing regions to a functional heteromodal connector hub, the left postcentral gyrus. In addition, hyperconnectivity in regions of a cognitive control network might indicate compensation for degraded sensory processing.
Collapse
Affiliation(s)
- Rebecca C Coray
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Josua Zimmermann
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Amelie Haugg
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Markus R Baumgartner
- Center for Forensic Hair Analytics, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Andrea E Steuer
- Department of Forensic Pharmacology and Toxicology, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - David M Cole
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Opitz A, Petasch MS, Klappauf R, Kirschgens J, Hinz J, Dittmann L, Dathe AS, Quednow BB, Beste C, Stock AK. Does chronic use of amphetamine-type stimulants impair interference control? - A meta-analysis. Neurosci Biobehav Rev 2023; 146:105020. [PMID: 36581170 DOI: 10.1016/j.neubiorev.2022.105020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
In substance use and addiction, inhibitory control is key to ignoring triggers, withstanding craving and maintaining abstinence. In amphetamine-type stimulant (ATS) users, most research focused on behavioral inhibition, but largely neglected the equally important subdomain of cognitive interference control. Given its crucial role in managing consumption, we investigated the relationship between interference control and chronic ATS use in adults. A database search (Pubmed & Web of Science) and relevant reviews were used to identify eligible studies. Effect sizes were estimated with random effects models. Subgroup, meta-regression, and sensitivity analyses explored heterogeneity in effect sizes. We identified 61 studies (53 datasets) assessing interference control in 1873 ATS users and 1905 controls. Findings revealed robust small effect sizes for ATS-related deficits in interference control, which were mainly seen in methamphetamine, as compared to MDMA users. The differential effects are likely due to tolerance-induced dopaminergic deficiencies (presumably most pronounced in methamphetamine users). Similarities between different ATS could be due to noradrenergic deficiencies; but elucidating their functional role in ATS users requires further/more research.
Collapse
Affiliation(s)
- Antje Opitz
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Miriam-Sophie Petasch
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Regine Klappauf
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Josephine Kirschgens
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Julian Hinz
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Lena Dittmann
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Anthea S Dathe
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Boris B Quednow
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland; Biopsychology, Department of Psychology, School of Science, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.
| |
Collapse
|
5
|
Zimmermann J, Friedli N, Bavato F, Stämpfli P, Coray R, Baumgartner MR, Grandgirard D, Leib SL, Opitz A, Seifritz E, Stock AK, Beste C, Cole DM, Quednow BB. White matter alterations in chronic MDMA use: Evidence from diffusion tensor imaging and neurofilament light chain blood levels. Neuroimage Clin 2022; 36:103191. [PMID: 36126513 PMCID: PMC9486575 DOI: 10.1016/j.nicl.2022.103191] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, "Ecstasy") is a serotonin- and noradrenaline-releasing substance, currently among the most widely used illicit substances worldwide. In animal studies, repeated exposure to MDMA has been associated with dendritic but also axonal degeneration in the brain. However, translation of the axonal findings, specifically, to humans has been repeatedly questioned and the few existing studies investigating white matter alterations in human chronic MDMA users have yielded conflicting findings. In this study, we combined whole-brain diffusion tensor imaging and neurofilament light chain (NfL) analysis in blood to reveal potential MDMA-induced axonal neuropathology. To this end, we assessed 39 chronic MDMA users and 39 matched MDMA-naïve healthy controls. MDMA users showed increased fractional anisotropy in several white matter tracts, most prominently in the corpus callosum as well as corticospinal tracts, with these findings partly related to MDMA use intensity. However, the NfL levels of MDMA users were not significantly different from those of controls. We conclude that MDMA use is not associated with significant white matter lesions due to the absence of reduced fractional anisotropy and increased NfL levels commonly observed in conditions associated with white matter lesions, including stimulant and ketamine use disorders. Hence, the MDMA-induced axonal degradation demonstrated in animal models was not observed in this human study of chronic MDMA users.
Collapse
Affiliation(s)
- Josua Zimmermann
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Nicole Friedli
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Francesco Bavato
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Philipp Stämpfli
- MR-Center of the Department of Psychiatry, Psychotherapy and Psychosomatics and the Department of Child and Adolescent Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Zurich
| | - Rebecca Coray
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Markus R Baumgartner
- Center for Forensic Hair Analytics, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Denis Grandgirard
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephen L Leib
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Antje Opitz
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - David M Cole
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Lyubomirsky S. Toward a New Science of Psychedelic Social Psychology: The Effects of MDMA (Ecstasy) on Social Connection. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2022; 17:1234-1257. [PMID: 35536567 DOI: 10.1177/17456916211055369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Psychedelic science has generated hundreds of compelling published studies yet with relatively little impact on mainstream psychology. I propose that social psychologists have much to gain by incorporating psychoactive substances into their research programs. Here I use (±)-3,4-methylenedioxymethamphetamine (MDMA) as an example because of its documented ability in experiments and clinical trials to promote bonding, love, and warmth. Social connection is a fundamental human need, yet researchers still possess few tools to effectively and durably boost it. MDMA allows investigators to isolate the psychological mechanisms-as well as brain pathways-underlying felt social connection and thus reveal what should be targeted in future (nondrug) studies. Accordingly, I introduce a conceptual model that presents the proximal psychological mechanisms stimulated by MDMA (lowered fear, increased sociability, more chemistry), as well as its potential long-term impacts (improved relationships, reduced loneliness, stronger therapeutic alliances). Finally, I discuss further questions (e.g., whether using MDMA for enhancing connection can backfire) and promising research areas for building a new science of psychedelic social psychology. In sum, psychopharmacological methods can be a useful approach to illuminate commonly studied social-psychological processes, such as connectedness, prejudice, or self, as well as inform interventions to directly improve people's lives.
Collapse
|
7
|
A review on the mitochondrial toxicity of “ecstasy” (3,4-methylenedioxymethamphetamine, MDMA). Curr Res Toxicol 2022; 3:100075. [PMID: 35651589 PMCID: PMC9149009 DOI: 10.1016/j.crtox.2022.100075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
in vitro and in vivo studies on MDMA mitochondria toxicity are revised. MDMA causes ATP depletion and inhibition of mitochondrial complexes. MDMA or its metabolites impair mitochondrial trafficking in vitro. MDMA evokes deletion on mitochondrial DNA in vivo. A direct translation to humans is hampered by the doses and concentrations of MDMA.
3,4-Methylenedioxymethamphetamine (MDMA or “ecstasy”) is a drug of abuse used by millions worldwide. MDMA human abuse and dependence is well described, but addictive properties are not always consistent among studies. This amphetamine is a substrate type releaser, binding to monoamine transporters, leading to a pronounced release of serotonin and noradrenaline and to a minor extent dopamine. The toxicity of MDMA is well studied at the pre-clinical level, with neurotoxicity and hepatotoxicity being particularly described. In this review, we describe the most relevant MDMA effects at the mitochondrial level found in in vitro and in vivo models, these later conducted in mice and rats. Most of these reports focus on the mitochondria of brain or liver. In in vitro models, MDMA causes depletion of ATP levels and inhibition of mitochondrial complex I and III, loss in mitochondrial membrane potential (ΔΨm) and induction of mitochondrial permeability transition. The involvement of mitochondria in the apoptotic cell death evoked by MDMA has also been shown, such as the release of cytochrome c. Additionally, MDMA or its metabolites impaired mitochondrial trafficking and increased the fragmentation of axonal mitochondria. In animal studies, MDMA decreased mitochondrial complex I activity and decreased ATP levels. Moreover, MDMA-evoked oxidative stress has been shown to cause deletion on mitochondrial DNA and impairment in mitochondrial protein synthesis. Although the concentrations and doses used in some studies do not always correlate to the human scenario, the mitochondrial abnormalities evoked by MDMA are well described and are in part responsible for its mechanism of toxicity.
Collapse
|
8
|
van de Blaak FL, Dumont GJH. Serotonin transporter availability, neurocognitive function and their correlation in abstinent 3,4-methylenedioxymethamphetamine users. Hum Psychopharmacol 2022; 37:e2811. [PMID: 34506649 DOI: 10.1002/hup.2811] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/02/2021] [Accepted: 08/09/2021] [Indexed: 11/05/2022]
Abstract
RATIONALE MDMA or Ecstasy has made a resurgence in popularity and the majority of users consist of teenagers and adolescents. Therefore, it is important to determine whether MDMA causes long-term damage and what this damage entails. There is an ongoing debate about possible neurocognitive changes in 3,4-methylenedioxymethamphetamine (MDMA) users related to MDMA's neurotoxic potential. Multiple neuroimaging studies have shown that Ecstasy use leads to lower serotonin transporter (SERT) availability in multiple brain regions. This may express itself in a loss of cognitive functions like memory, attention and executive function. However, there is increasing evidence reporting that MDMA's induced serotonergic adaptations are reversible over time. The question we thus address is whether the recovery of SERT function predicts a recovery of cognitive function. OBJECTIVES This review aims to investigate MDMA's long-term effects on SERT availability and cognitive functioning. METHODS A literature search was performed in PubMed. Studies that investigated the effects of MDMA on both SERT availability and cognitive performance were eligible for inclusion. RESULTS SERT availability positively correlated with time of abstinence, whereas memory performance did not show this correlation, but remained impaired in MDMA users. No significant correlation between SERT availability and memory function was found (r = 0.232, p = 0.581; r = 0.176, p = 0.677). CONCLUSIONS The main findings of this review are that MDMA-use leads to an acute decrease in SERT availability and causes an impairment in cognitive functions, mostly memory. However, SERT availability recovers with sustained abstinence while memory function does not. This suggests that SERT availability is not a biomarker for MDMA-induced cognitive impairment and likely also not for MDMA-induced neurotoxicity.
Collapse
Affiliation(s)
- Foke L van de Blaak
- Department of Clinical pharmacology, Amsterdam UMC - Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Glenn J H Dumont
- Department of Clinical pharmacology, Amsterdam UMC - Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Binkowska AA, Jakubowska N, Krystecka K, Galant N, Piotrowska-Cyplik A, Brzezicka A. Theta and Alpha Oscillatory Activity During Working Memory Maintenance in Long-Term Cannabis Users: The Importance of the Polydrug Use Context. Front Hum Neurosci 2021; 15:740277. [PMID: 34733146 PMCID: PMC8558244 DOI: 10.3389/fnhum.2021.740277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Impairments in various subdomains of memory have been associated with chronic cannabis use, but less is known about their neural underpinnings, especially in the domain of the brain's oscillatory activity. Aims: To investigate neural oscillatory activity supporting working memory (WM) in regular cannabis users and non-using controls. We focused our analyses on frontal midline theta and posterior alpha asymmetry as oscillatory fingerprints for the WM's maintenance process. Methods: 30 non-using controls (CG) and 57 regular cannabis users-27 exclusive cannabis users (CU) and 30 polydrug cannabis users (PU) completed a Sternberg modified WM task with a concurrent electroencephalography recording. Theta, alpha and beta frequency bands were examined during WM maintenance. Results: When compared to non-using controls, the PU group displayed increased frontal midline theta (FMT) power during WM maintenance, which was positively correlated with RT. The posterior alpha asymmetry during the maintenance phase, on the other hand, was negatively correlated with RT in the CU group. WM performance did not differ between groups. Conclusions: Both groups of cannabis users (CU and PU), when compared to the control group, displayed differences in oscillatory activity during WM maintenance, unique for each group (in CU posterior alpha and in PU FMT correlated with performance). We interpret those differences as a reflection of compensatory strategies, as there were no differences between groups in task performance. Understanding the psychophysiological processes in regular cannabis users may provide insight on how chronic use may affect neural networks underlying cognitive processes, however, a polydrug use context (i.e., combining cannabis with other illegal substances) seems to be an important factor.
Collapse
Affiliation(s)
| | - Natalia Jakubowska
- SWPS University of Social Sciences and Humanities, Warsaw, Poland.,Polish-Japanese Academy of Information Technology, Warsaw, Poland
| | | | | | | | - Aneta Brzezicka
- SWPS University of Social Sciences and Humanities, Warsaw, Poland
| |
Collapse
|
10
|
Binkowska AA, Jakubowska N, Gaca M, Galant N, Piotrowska-Cyplik A, Brzezicka A. Not Just a Pot: Visual Episodic Memory in Cannabis Users and Polydrug Cannabis Users: ROC and ERP Preliminary Investigation. Front Hum Neurosci 2021; 15:677793. [PMID: 34177497 PMCID: PMC8226271 DOI: 10.3389/fnhum.2021.677793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
Background While research has consistently identified an association between long-term cannabis use and memory impairments, few studies have examined this relationship in a polydrug context (i.e., when combining cannabis with other substances). Aims: In this preliminary study, we used event-related potentials to examine the recognition process in a visual episodic memory task in cannabis users (CU) and cannabis polydrug users (PU). We hypothesized that CU and PU will have both-behavioral and psychophysiological-indicators of memory processes affected, compared to matched non-using controls with the PU expressing more severe changes. Methods 29 non-using controls (CG), 24 CU and 27 PU were enrolled into the study. All participants completed a visual learning recognition task while brain electrical activity was recorded. Event-related potentials were calculated for familiar (old) and new images from a signal recorded during a subsequent recognition test. We used receiver operating characteristic curves for behavioral data analysis. Results The groups did not differ in memory performance based on receiver operating characteristic method in accuracy and discriminability indicators nor mean reaction times for old/new images. The frontal old/new effect expected from prior research was observed for all participants, while a parietal old/new effect was not observed. While, the significant differences in the late parietal component (LPC) amplitude was observed between CG and PU but not between CG and CU nor CU and PU. Linear regression analysis was used to examine the mean amplitude of the LPC component as a predictor of memory performance accuracy indicator. LPC amplitude predicts recognition accuracy only in the CG. Conclusion The results showed alterations in recognition memory processing in CU and PU groups compared to CG, which were not manifested on the behavioral level, and were the most prominent in cannabis polydrug users. We interpret it as a manifestation of the cumulative effect of multiple drug usage in the PU group.
Collapse
Affiliation(s)
| | - Natalia Jakubowska
- SWPS University of Social Sciences and Humanities, Warsaw, Poland.,Polish-Japanese Academy of Information Technology, Warsaw, Poland
| | - Maciej Gaca
- Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | | | | | - Aneta Brzezicka
- SWPS University of Social Sciences and Humanities, Warsaw, Poland.,Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
11
|
Kendrick KM, Daumann J, Wagner D, Koester P, Tittgemeyer M, Luo Q, Gouzoulis-Mayfrank E, Becker B. A prospective longitudinal study shows putamen volume is associated with moderate amphetamine use and resultant cognitive impairments. PSYCHORADIOLOGY 2021; 1:3-12. [PMID: 38665308 PMCID: PMC10917237 DOI: 10.1093/psyrad/kkab001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/19/2020] [Accepted: 01/12/2021] [Indexed: 04/28/2024]
Abstract
Background Amphetamine-type stimulants (ATS) have become a critical public health issue. Animal models have indicated a clear neurotoxic potential of ATSs. In humans, chronic use has been associated with cognitive deficits and structural brain abnormalities. However, cross-sectional retrospective designs in chronic users cannot truly determine the causal direction of the effects. Objective To prospectively determine effects of occasional ATS use on cognitive functioning and brain structure. Methods In a prospective longitudinal study design, cognitive functioning and brain structure were assessed at baseline and at 12-month follow-up in occasional ATS users (cumulative lifetime use <10 units at baseline). Results Examination of change scores between the initial examination and follow-up revealed declined verbal memory performance and putamen volume in users with high relative to low interim ATS exposure. In the entire sample, interim ATS use, memory decline, and putamen volume reductions were strongly associated. Conclusions The present findings support the hypothesis that ATS use is associated with deficient dorsal striatal morphology that might reflect alterations in dopaminergic pathways. More importantly, these findings strongly suggest that even occasional, low-dose ATS use disrupts striatal integrity and cognitive functioning.
Collapse
Affiliation(s)
- Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Joerg Daumann
- Department of Psychiatry and Psychotherapy, University of Cologne, Germany
| | - Daniel Wagner
- Department of Psychiatry and Psychotherapy, University of Cologne, Germany
| | - Philip Koester
- Department of Psychiatry and Psychotherapy, University of Cologne, Germany
| | - Marc Tittgemeyer
- Max-Planck Institute for Neurological Research, Cologne, Germany
| | - Qiang Luo
- Institute of Science and Technology for Brain-Inspired Intelligence, Ministry of Education Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
| | | | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
12
|
Brewerton TD, Lafrance A, Mithoefer MC. The potential use of N-methyl-3,4-methylenedioxyamphetamine (MDMA) assisted psychotherapy in the treatment of eating disorders comorbid with PTSD. Med Hypotheses 2020; 146:110367. [PMID: 33203569 DOI: 10.1016/j.mehy.2020.110367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/12/2020] [Accepted: 10/23/2020] [Indexed: 01/06/2023]
Abstract
Despite advances in the field, eating disorders (EDs) remain very challenging disorders to treat, especially when comorbid with posttraumatic stress disorder (PTSD). N-methyl-3,4-methylenedioxyamphetamine (MDMA)-assisted psychotherapy for treatment refractory PTSD shows great promise, with two-thirds of participants achieving full remission at 1 year or more at follow-up. PTSD is a common comorbidity associated with EDs, and patients with EDs and PTSD (ED-PTSD) are reported to have higher severities of illness, greater comorbidities, higher treatment dropouts, and poorer outcomes. We hypothesize that MDMA-assisted psychotherapy will be efficacious in the ED-PTSD population for both ED and PTSD symptoms. The rationales for and proposed mechanisms of MDMA-assisted psychotherapy for ED-PTSD are considered from neurobiological, psychological and social perspectives. MDMA is associated with unique psychopharmacological effects, including: 1) reduced fear, 2) enhanced wellbeing, 3) increased sociability/extroversion, 4) reduced self-criticism, 5) increased compassion for self/others, 6) increased interpersonal trust, and 7) alert state of consciousness. These anxiolytic and prosocial effects may counteract avoidance and hyperarousal in the context of psychotherapy for those with ED-PTSD. Other clinical features of EDs that may be amenable to MDMA-assisted psychotherapy include body image distortion, cognitive rigidity, and socio-emotional processing difficulties. To illustrate its potential, personal accounts of individuals with ED-PTSD symptoms reporting benefit from MDMA adjunctive to psychotherapy are described. In addition, the possible risks and challenges in conducting this work are addressed, and future implications of this proposal are discussed.
Collapse
Affiliation(s)
- Timothy D Brewerton
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA; Timothy D. Brewerton, MD, LLC, 216 Scott Street, Mt. Pleasant, SC 29464, USA.
| | - Adele Lafrance
- Department of School of Rural and Northern Health, Laurentian University, Sudbury, ON, Canada
| | - Michael C Mithoefer
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
13
|
Lee JH, Park OR, Mandava S, Kim J, Koo J, Lee J, Kang H. Identification of a new M-ALPHA analog and MDMA in an illegal health product. Forensic Sci Int 2020; 313:110332. [PMID: 32540761 DOI: 10.1016/j.forsciint.2020.110332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 10/24/2022]
Abstract
The widespread abuse of illicit psychoactive substances is one of the most serious public health and social problems. A suspicious airmail package was seized by Korean customs, and two psychoactive substances in the grayish-green pills in the package were detected by ultra-performance liquid chromatography. The structures of the two substances were elucidated by a combination of liquid chromatography quadrupole time-of-flight mass spectrometry, nuclear magnetic resonance spectroscopy, and comparison with reported or newly generated spectral data of the suggested structures. One of the psychoactive substances proved to be MDMA (commonly known as "Ecstasy"), and the other compound was an M-ALPHA analog bearing a hydroxyl group and an N-methylcarboxamide group. The new M-ALPHA analog was determined as 3-(benzo[d][1,3]dioxol-5-yl)-2-hydroxy-N,2-dimethyl-3-(methylamino)propanamide and named as M-ALPHA-HMCA, wherein HMCA denotes hydroxymethylcarboxamide. Although psychoactivity of this compound has not been assessed, M-ALPHA-HMCA should be considered a potential new psychoactive substance and/or a by-product of MDMA.
Collapse
Affiliation(s)
- Ji Hyun Lee
- Division of Advanced Analysis, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea
| | - Ok Rim Park
- Division of Advanced Analysis, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea
| | - Suresh Mandava
- College of Pharmacy, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Jemin Kim
- College of Pharmacy, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Jaun Koo
- College of Pharmacy, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Jongkook Lee
- College of Pharmacy, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do 24341, Republic of Korea.
| | - Hoil Kang
- Division of Advanced Analysis, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea.
| |
Collapse
|
14
|
Mead J, Parrott A. Mephedrone and MDMA: A comparative review. Brain Res 2020; 1735:146740. [PMID: 32087112 DOI: 10.1016/j.brainres.2020.146740] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 01/10/2023]
Abstract
Mephedrone and MDMA are both constituents of party drugs, with mephedrone being relatively new compared to MDMA. This review compares current knowledge regarding the patterns of usage and neuropsychobiological effects of both mephedrone and MDMA. Both drugs share common psychoactive effects, the duration of which is significantly shorter with mephedrone use, attributing towards a pattern of binge use among users. Both drugs have also been associated with adverse health, psychiatric, and neurocognitive problems. Whilst there is extensive research into the psychobiological problems induced by MDMA, the evidence for mephedrone is comparatively limited. The adverse effect profile of mephedrone appears to be less severe than that of MDMA. Users often believe it to be safer, although both drugs have been associated with overdoses. The neurotoxic potential of mephedrone appears to be low, whereas MDMA can cause long-term damage to the serotonergic system, although this needs further investigation. The abuse liability of mephedrone is significantly greater than that of MDMA, raising concerns regarding the impact of lifetime usage on users. Given that mephedrone is relatively new, the effects of long-term exposure are yet to be documented. Future research focused on lifetime users may highlight more severe neuropsychobiological effects from the drug.
Collapse
Affiliation(s)
- Jessica Mead
- Department of Psychology, School of Human and Health Sciences, Swansea University, Swansea, Wales, United Kingdom.
| | - Andrew Parrott
- Department of Psychology, School of Human and Health Sciences, Swansea University, Swansea, Wales, United Kingdom
| |
Collapse
|
15
|
Aguilar MA, García-Pardo MP, Parrott AC. Of mice and men on MDMA: A translational comparison of the neuropsychobiological effects of 3,4-methylenedioxymethamphetamine ('Ecstasy'). Brain Res 2020; 1727:146556. [PMID: 31734398 DOI: 10.1016/j.brainres.2019.146556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 11/19/2022]
Abstract
MDMA (3,4-methylendioxymethamphetamine), also known as Ecstasy, is a stimulant drug recreationally used by young adults usually in dance clubs and raves. Acute MDMA administration increases serotonin, dopamine and noradrenaline by reversing the action of the monoamine transporters. In this work, we review the studies carried out over the last 30 years on the neuropsychobiological effects of MDMA in humans and mice and summarise the current knowledge. The two species differ with respect to the neurochemical consequences of chronic MDMA, since it preferentially induces serotonergic dysfunction in humans and dopaminergic neurotoxicity in mice. However, MDMA alters brain structure and function and induces hormonal, psychomotor, neurocognitive, psychosocial and psychiatric outcomes in both species, as well as physically damaging and teratogen effects. Pharmacological and genetic studies in mice have increased our knowledge of the neurochemical substrate of the multiple effects of MDMA. Future work in this area may contribute to developing pharmacological treatments for MDMA-related disorders.
Collapse
Affiliation(s)
- Maria A Aguilar
- Department of Psychobiology, Faculty of Psychology, Valencia University, Valencia, Spain.
| | | | - Andrew C Parrott
- Department of Psychology, Swansea University, Swansea, United Kingdom; Centre for Human Psychopharmacology, Swinburne University, Melbourne, Australia
| |
Collapse
|