1
|
Wei C, Zhai W, Zhao P, Sun L. Plasma fibrinogen as a potential biomarker of cognitive impairment after acute ischemic stroke. Sci Rep 2024; 14:32120. [PMID: 39739003 DOI: 10.1038/s41598-024-83907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
Fibrinogen (FBG) has been discovered to be associated with cognitive impairment (CI) and dementia. However, the exact correlation between FBG levels and CI after acute ischemic stroke (AIS) remains uncertain. Plasma FBG levels were measured in 398 patients with AIS who underwent comprehensive neuropsychological evaluation. To assess the correlation of FBG with global cognitive function, physical status, anxiety, depression, and psychiatric symptoms. Multifactorial logistic regression was used to analyze risk factors for CI. Constructed and plotted a nomogram graph to visualize the CI prediction model. The model was further evaluated for discrimination, calibration, and clinical utility. The results indicate that plasma FBG levels are significantly elevated in patients with CI compared to those with non-cognitive impairment (NCI). Analysis of the overall population reveals that elevated FBG levels are correlated with both reduced cognitive function and decreased activity status. After adjusting for other influencing factors, high FBG levels were identified as a risk factor for the incidence of CI. We developed an intuitive and valid predictive model for CI, demonstrating its suitability for clinical application. In conclusion, our study demonstrates that plasma FBG serves as a potential biomarker of CI following AIS, offering a novel perspective for the identification of CI.
Collapse
Affiliation(s)
- Chunxiao Wei
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Weijie Zhai
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Panpan Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China.
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
2
|
Magoon R, Mahajan S. Neuroinflammation in COVID-19: Fibrinogen (fibrin), a potential culprit! Med J Armed Forces India 2024; 80:S407-S408. [PMID: 39734898 PMCID: PMC11670567 DOI: 10.1016/j.mjafi.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/16/2023] [Indexed: 12/31/2024] Open
Affiliation(s)
- Rohan Magoon
- Assistant Professor (Anaesthesia), Atal Bihari Vajpayee Institute of Medical Sciences (ABVIMS) & Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Shalvi Mahajan
- Assistant Professor (Anaesthesia & Intensive Care), PGIMER, Chandigarh, India
| |
Collapse
|
3
|
Beura SK, Panigrahi AR, Yadav P, Kulkarni PP, Lakhanpal V, Singh B, Singh SK. Role of Thrombosis in Neurodegenerative Diseases: An Intricate Mechanism of Neurovascular Complications. Mol Neurobiol 2024:10.1007/s12035-024-04589-4. [PMID: 39482419 DOI: 10.1007/s12035-024-04589-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
Thrombosis, the formation of blood clots in arteries or veins, poses a significant health risk by disrupting the blood flow. It can potentially lead to major cardiovascular complications such as acute myocardial infarction or ischemic stroke (arterial thrombosis) and deep vein thrombosis or pulmonary embolism (venous thrombosis). Nevertheless, over the course of several decades, researchers have observed an association between different cardiovascular events and neurodegenerative diseases, which progressively harm and impair parts of the nervous system, particularly the brain. Furthermore, thrombotic complications have been identified in numerous clinical instances of neurodegenerative diseases, particularly Alzheimer's disease, Parkinson's disease, multiple sclerosis, and Huntington's disease. Substantial research indicates that endothelial dysfunction, vascular inflammation, coagulation abnormalities, and platelet hyperactivation are commonly observed in these conditions, collectively contributing to an increased risk of thrombosis. Thrombosis can, in turn, contribute to the onset, pathogenesis, and severity of these neurological disorders. Hence, this concise review comprehensively explores the correlation between cardiovascular diseases and neurodegenerative diseases, elucidating the cellular and molecular mechanisms of thrombosis in these neurodegenerative diseases. Additionally, a detailed discussion is provided on the commonly employed antithrombotic medications in the context of these neuronal diseases.
Collapse
Affiliation(s)
- Samir Kumar Beura
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401
| | | | - Pooja Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Paresh P Kulkarni
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Vikas Lakhanpal
- Department of Neurology, All India Institute of Medical Sciences, Bathinda, Punjab, India, 151001
| | - Bhupinder Singh
- Department of Cardiology, All India Institute of Medical Sciences, Bathinda, Punjab, India, 151001
| | - Sunil Kumar Singh
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401.
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401.
| |
Collapse
|
4
|
Kountouras J, Boziki M, Kazakos E, Theotokis P, Kesidou E, Nella M, Bakirtzis C, Karafoulidou E, Vardaka E, Mouratidou MC, Kyrailidi F, Tzitiridou-Chatzopoulou M, Orovou E, Giartza-Taxidou E, Deretzi G, Grigoriadis N, Doulberis M. Impact of Helicobacter pylori and metabolic syndrome on mast cell activation-related pathophysiology and neurodegeneration. Neurochem Int 2024; 175:105724. [PMID: 38508416 DOI: 10.1016/j.neuint.2024.105724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/03/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Both Helicobacter pylori (H. pylori) infection and metabolic syndrome (MetS) are highly prevalent worldwide. The emergence of relevant research suggesting a pathogenic linkage between H. pylori infection and MetS-related cardio-cerebrovascular diseases and neurodegenerative disorders, particularly through mechanisms involving brain pericyte deficiency, hyperhomocysteinemia, hyperfibrinogenemia, elevated lipoprotein-a, galectin-3 overexpression, atrial fibrillation, and gut dysbiosis, has raised stimulating questions regarding their pathophysiology and its translational implications for clinicians. An additional stimulating aspect refers to H. pylori and MetS-related activation of innate immune cells, mast cells (MC), which is an important, often early, event in systemic inflammatory pathologies and related brain disorders. Synoptically, MC degranulation may play a role in the pathogenesis of H. pylori and MetS-related obesity, adipokine effects, dyslipidemia, diabetes mellitus, insulin resistance, arterial hypertension, vascular dysfunction and arterial stiffness, an early indicator of atherosclerosis associated with cardio-cerebrovascular and neurodegenerative disorders. Meningeal MC can be activated by triggers including stress and toxins resulting in vascular changes and neurodegeneration. Likewise, H.pylori and MetS-related MC activation is linked with: (a) vasculitis and thromboembolic events that increase the risk of cardio-cerebrovascular and neurodegenerative disorders, and (b) gut dysbiosis-associated neurodegeneration, whereas modulation of gut microbiota and MC activation may promote neuroprotection. This narrative review investigates the intricate relationship between H. pylori infection, MetS, MC activation, and their collective impact on pathophysiological processes linked to neurodegeneration. Through a comprehensive search of current literature, we elucidate the mechanisms through which H. pylori and MetS contribute to MC activation, subsequently triggering cascades of inflammatory responses. This highlights the role of MC as key mediators in the pathogenesis of cardio-cerebrovascular and neurodegenerative disorders, emphasizing their involvement in neuroinflammation, vascular dysfunction and, ultimately, neuronal damage. Although further research is warranted, we provide a novel perspective on the pathophysiology and management of brain disorders by exploring potential therapeutic strategies targeting H. pylori eradication, MetS management, and modulation of MC to mitigate neurodegeneration risk while promoting neuroprotection.
Collapse
Affiliation(s)
- Jannis Kountouras
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece.
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Evangelos Kazakos
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Maria Nella
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Christos Bakirtzis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Eleni Karafoulidou
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Elisabeth Vardaka
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, Alexander Campus, 57400, Macedonia, Greece
| | - Maria C Mouratidou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Foteini Kyrailidi
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Maria Tzitiridou-Chatzopoulou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Eirini Orovou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Evaggelia Giartza-Taxidou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Georgia Deretzi
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Neurology, Papageorgiou General Hospital, Thessaloniki, Macedonia, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Michael Doulberis
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Gastroklinik, Private Gastroenterological Practice, 8810, Horgen, Switzerland; Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, 5001, Aarau, Switzerland
| |
Collapse
|
5
|
Wen T, Zhang Z. Cellular mechanisms of fibrin (ogen): insight from neurodegenerative diseases. Front Neurosci 2023; 17:1197094. [PMID: 37529232 PMCID: PMC10390316 DOI: 10.3389/fnins.2023.1197094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/27/2023] [Indexed: 08/03/2023] Open
Abstract
Neurodegenerative diseases are prevalent and currently incurable conditions that progressively impair cognitive, behavioral, and psychiatric functions of the central or peripheral nervous system. Fibrinogen, a macromolecular glycoprotein, plays a crucial role in the inflammatory response and tissue repair in the human body and interacts with various nervous system cells due to its unique molecular structure. Accumulating evidence suggests that fibrinogen deposits in the brains of patients with neurodegenerative diseases. By regulating pathophysiological mechanisms and signaling pathways, fibrinogen can exacerbate the neuro-pathological features of neurodegenerative diseases, while depletion of fibrinogen contributes to the amelioration of cognitive function impairment in patients. This review comprehensively summarizes the molecular mechanisms and biological functions of fibrinogen in central nervous system cells and neurodegenerative diseases, including Alzheimer's disease, Multiple Sclerosis, Parkinson's disease, Vascular dementia, Huntington's disease, and Amyotrophic Lateral Sclerosis. Additionally, we discuss the potential of fibrinogen-related treatments in the management of neurodegenerative disorders.
Collapse
|
6
|
Zhang H, Zhou Z. Fibrinogen in Alzheimer's Disease, Parkinson's Disease and Lewy Body Dementia: A Mendelian Randomization Study. Front Aging Neurosci 2022; 14:847583. [PMID: 35875802 PMCID: PMC9300417 DOI: 10.3389/fnagi.2022.847583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Fibrinogen is reportedly associated with neurodegenerative diseases (NDs), but the underlying causality remains controversial. Using Mendelian randomization (MR), this study aimed to assess the causal association between fibrinogen and Alzheimer’s disease (AD), Parkinson’s disease (PD), and Lewy body dementia (LBD). Genetic variants associated with fibrinogen and γ-fibrinogen were selected and used as instrumental variables. The effect estimates of the main analysis were obtained by inverse-variance weighting (IVW), complemented by sensitivity analyses to verify model assumptions, and multivariable MR was conducted to control for potential pleiotropic effect. Two-step MR was performed to assess the causal association through mediators. The main analysis suggested no causal association between genetically predicted plasma fibrinogen and γ-fibrinogen levels and the risk of AD, PD, and LBD. The effect estimates did not change in the follow-up sensitivity analyses and MVMR. However, the two-step MR analysis provides evidence that fibrinogen may contribute to the risk of AD via CRP levels. There was an inverse effect of adult height levels on the risk of AD. Our results support the effects of fibrinogen on the risk of AD through increasing plasma CRP levels. Our study found no evidence to support the effects of genetically determined fibrinogen and γ-fibrinogen levels on the risk of PD and LBD. Additionally, our findings suggested an inverse association between genetically determined adult height levels and the risk of AD. Future studies are needed to elucidate the underlying mechanisms and their clinical applications.
Collapse
Affiliation(s)
- Hanyu Zhang
- Department of General Practice, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Zengyuan Zhou
- Department of Nutrition, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Zhou Z, Bai J, Zhong S, Zhang R, Kang K, Zhang X, Xu Y, Zhao C, Zhao M. Downregulation of PIK3CB Involved in Alzheimer's Disease via Apoptosis, Axon Guidance, and FoxO Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1260161. [PMID: 35096262 PMCID: PMC8794666 DOI: 10.1155/2022/1260161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/08/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the molecular function of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta (PIK3CB) underlying Alzheimer's disease (AD). METHODS RNA sequencing data were used to filtrate differentially expressed genes (DEGs) in AD/nondementia control and PIK3CB-low/high groups. An unbiased coexpression network was established to evaluate module-trait relationships by using weight gene correlation network analysis (WGCNA). Global regulatory network was constructed to predict the protein-protein interaction. Further cross-talking pathways of PIK3CB were identified by functional enrichment analysis. RESULTS The mean expression of PIK3CB in AD patients was significantly lower than those in nondementia controls. We identified 2,385 DEGs from 16,790 background genes in AD/control and PIK3CB-low/high groups. Five coexpression modules were established using WGCNA, which participated in apoptosis, axon guidance, long-term potentiation (LTP), regulation of actin cytoskeleton, synaptic vesicle cycle, FoxO, mitogen-activated protein kinase (MAPK), and vascular endothelial growth factor (VEGF) signaling pathways. DEGs with strong relation to AD and low PIK3CB expression were extracted to construct a global regulatory network, in which cross-talking pathways of PIK3CB were identified, such as apoptosis, axon guidance, and FoxO signaling pathway. The occurrence of AD could be accurately predicted by low PIK3CB based on the area under the curve of 71.7%. CONCLUSIONS These findings highlight downregulated PIK3CB as a potential causative factor of AD, possibly mediated via apoptosis, axon guidance, and FoxO signaling pathway.
Collapse
Affiliation(s)
- Zhike Zhou
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, 110001 Liaoning, China
| | - Jun Bai
- Cancer Systems Biology Center, The China-Japan Union Hospital, Jilin University, Changchun, 130033 Jilin, China
| | - Shanshan Zhong
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, 110001 Liaoning, China
| | - Rongwei Zhang
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, 110001 Liaoning, China
| | - Kexin Kang
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, 110001 Liaoning, China
| | - Xiaoqian Zhang
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, 110001 Liaoning, China
| | - Ying Xu
- Cancer Systems Biology Center, The China-Japan Union Hospital, Jilin University, Changchun, 130033 Jilin, China
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, The University of Georgia, USA
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, 110001 Liaoning, China
| | - Mei Zhao
- Department of Cardiology, The Shengjing Affiliated Hospital, China Medical University, Shenyang, 110004 Liaoning, China
| |
Collapse
|
8
|
Page MJ, Pretorius E. Platelet Behavior Contributes to Neuropathologies: A Focus on Alzheimer's and Parkinson's Disease. Semin Thromb Hemost 2021; 48:382-404. [PMID: 34624913 DOI: 10.1055/s-0041-1733960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The functions of platelets are broad. Platelets function in hemostasis and thrombosis, inflammation and immune responses, vascular regulation, and host defense against invading pathogens, among others. These actions are achieved through the release of a wide set of coagulative, vascular, inflammatory, and other factors as well as diverse cell surface receptors involved in the same activities. As active participants in these physiological processes, platelets become involved in signaling pathways and pathological reactions that contribute to diseases that are defined by inflammation (including by pathogen-derived stimuli), vascular dysfunction, and coagulation. These diseases include Alzheimer's and Parkinson's disease, the two most common neurodegenerative diseases. Despite their unique pathological and clinical features, significant shared pathological processes exist between these two conditions, particularly relating to a central inflammatory mechanism involving both neuroinflammation and inflammation in the systemic environment, but also neurovascular dysfunction and coagulopathy, processes which also share initiation factors and receptors. This triad of dysfunction-(neuro)inflammation, neurovascular dysfunction, and hypercoagulation-illustrates the important roles platelets play in neuropathology. Although some mechanisms are understudied in Alzheimer's and Parkinson's disease, a strong case can be made for the relevance of platelets in neurodegeneration-related processes.
Collapse
Affiliation(s)
- Martin J Page
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| |
Collapse
|
9
|
Integrative Functional Genomic Analysis of Molecular Signatures and Mechanistic Pathways in the Cell Cycle Underlying Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5552623. [PMID: 34336099 PMCID: PMC8290224 DOI: 10.1155/2021/5552623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/25/2021] [Indexed: 11/18/2022]
Abstract
Objective Alzheimer's disease (AD) is associated with cell cycle reentry of mature neurons that subsequently undergo degeneration. This study is aimed to identify key regulators of the cell cycle and their underlying pathways for developing optimal treatment of AD. Methods RNA sequencing data were profiled to screen for differentially expressed genes in the cell cycle. Correlation of created modules with AD phenotype was computed by weight gene correlation network analysis (WGCNA). Signature genes for trophic factor receptors were determined using Pearson correlation coefficient (PCC) analysis. Results Among the 13,679 background genes, 775 cell cycle genes and 77 trophic factor receptors were differentially expressed in AD versus nondementia controls. Four coexpression modules were constructed by WGCNA, among which the turquoise module had the strongest correlation with AD. According to PCC analysis, 10 signature trophic receptors most strongly interacting with cell cycle genes were filtered and subsequently displayed in the global regulatory network. Further cross-talking pathways of signature receptors, such as glutamatergic synapse, long-term potentiation, PI3K-Akt, and MAPK signaling pathways, were identified. Conclusions Our findings highlighted the mechanistic pathways of signature trophic receptors in cell cycle perturbation underlying AD pathogenesis, thereby providing new molecular targets for therapeutic intervention in AD.
Collapse
|
10
|
Singh PK, Badimon A, Chen Z, Strickland S, Norris EH. The contact activation system and vascular factors as alternative targets for Alzheimer's disease therapy. Res Pract Thromb Haemost 2021; 5:e12504. [PMID: 33977208 PMCID: PMC8105157 DOI: 10.1002/rth2.12504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/10/2021] [Accepted: 03/04/2021] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, affecting millions of people worldwide. Extracellular beta-amyloid (Aβ) plaques and neurofibrillary tau tangles are classical hallmarks of AD pathology and thus are the prime targets for AD therapeutics. However, approaches to slow or stop AD progression and dementia by reducing Aβ production, neutralizing toxic Aβ aggregates, or inhibiting tau aggregation have been largely unsuccessful in clinical trials. The contribution of dysregulated vascular components and inflammation is evident in AD pathology. Vascular changes are detectable early in AD progression, so treatment of vascular defects along with anti-Aβ/tau therapy could be a successful combination therapeutic strategy for this disease. Here, we explain how vascular dysfunction mechanistically contributes to thrombosis as well as inflammation and neurodegeneration in AD pathogenesis. This review provides evidence that addressing vascular dysfunction in people with AD could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Pradeep K. Singh
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNYUSA
| | - Ana Badimon
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNYUSA
| | - Zu‐Lin Chen
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNYUSA
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNYUSA
| | - Erin H. Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNYUSA
| |
Collapse
|
11
|
Zhou Z, Zhong S, Liang Y, Zhang X, Zhang R, Kang K, Qu H, Xu Y, Zhao C, Zhao M. Serum Uric Acid and the Risk of Dementia: A Systematic Review and Meta-Analysis. Front Aging Neurosci 2021; 13:625690. [PMID: 33716713 PMCID: PMC7947796 DOI: 10.3389/fnagi.2021.625690] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background: This meta-analysis aimed to evaluate the relationship between serum uric acid (UA) and the risk of dementia and its subtypes. Methods: Embase, PubMed, and Web of Science were searched from inception to July 2020. Random-effect models were employed to analyze the standard mean difference (SMD) with the corresponding 95% confidence intervals (CI). Results: Twenty-three eligible studies involving 5,575 participants were identified. The overall results showed lower levels of UA in dementia relative to non-dementia controls [SMD = −0.32 (−0.64; −0.01) p = 0.04]. The subgroup analysis of the type of dementia demonstrated a significant association of UA with Alzheimer's disease (AD) [SMD = −0.58 (−1.02; −0.15) p = 0.009] and Parkinson's disease with dementia (PDD) [SMD = −0.33 (−0.52; −0.14) p = 0.001] but not with vascular dementia (VaD). The stratification analysis of the concentrations of UA revealed that the UA quartile 1–2 was negatively correlated with dementia and neurodegenerative subtypes (p < 0.05), whereas a positive correlation of UA quartile 4 with dementia was noted (p = 0.028). Additionally, the meta-regression analysis on confounders showed that not age, body mass index, diabetes mellitus, hypertension, or smoking but education (p = 0.003) exerted an influence of the UA in the risk estimate of dementia. Conclusions: Low concentrations of UA (< 292 μmol/L or 4.91 mg/dL) is a potential risk factor for AD and PDD but not for VaD. The mechanism of different concentrations of the UA in dementia needs to be confirmed through further investigation.
Collapse
Affiliation(s)
- Zhike Zhou
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Shanshan Zhong
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yifan Liang
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiaoqian Zhang
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Rongwei Zhang
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Kexin Kang
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Huiling Qu
- Department of Neurology, People's Hospital of Liaoning Province, Shenyang, China
| | - Ying Xu
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, The University of Georgia, Athens, GA, United States.,Cancer Systems Biology Center, The China-Japan Union Hospital, Jilin University, Changchun, China
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Mei Zhao
- Department of Cardiology, The Shengjing Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|