1
|
Al-Arfaj SK, Abdallah AF, Abdulla FA. Psychometric properties of an Arabic translation of the chronic pain acceptance questionnaire (CPAQ) in a sample of patients with chronic pain. Disabil Rehabil 2024; 46:5087-5098. [PMID: 38100318 DOI: 10.1080/09638288.2023.2293987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
PURPOSE Chronic pain (CP) acceptance is a major factor in determining the well-being of patients with chronic pain. The chronic pain acceptance questionnaire (CPAQ) was translated and validated into Arabic (CPAQ-Ar). METHODS 244 patients with CP completed the CPAQ-Ar, the Beck Depression Inventory-II (BDI-II), the short form health survey (SF-36), the Pain Catastrophizing Scale (PCS), the Pittsburgh Sleep Quality Index (PSQI), the Modified Fatigue Impact Scale (MFIS), and the Depression Anxiety Stress Scale 21 (DASS-21). 110 patients completed the CPAQ-Ar twice separated by two weeks to investigate test-retest reliability. RESULTS Cronbach's α was 0.902 while the intraclass correlation coefficient (ICC) was 0.917. The standard error measurement (SEM) was seven points while the minimal detectable change with 95% confidence interval (MDC95) was seventeen points. The CPAQ-Ar showed moderate to high correlations with the PCS, the BDI-II, the SF-36, the MFIS, the PSQI, and the DASS-21 indicating a good concurrent validity. Exploratory factor analysis confirmed that the CPAQ-Ar consists of two subscales. Better pain acceptance associated with male gender, older people, employed participants, low pain intensity, and single pain site. CONCLUSIONS The CPAQ-Ar is a valid and reliable tool for the measurement of pain acceptance in Arabic speaking patients with CP.
Collapse
Affiliation(s)
- Safiah K Al-Arfaj
- Department of Physical Therapy, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | - Fuad A Abdulla
- Department of physical therapy, Faculty of Allied Medical Sciences, Philadelphia University, Amman, Jordan
| |
Collapse
|
2
|
Moreau N, Korai SA, Sepe G, Panetsos F, Papa M, Cirillo G. Peripheral and central neurobiological effects of botulinum toxin A (BoNT/A) in neuropathic pain: a systematic review. Pain 2024; 165:1674-1688. [PMID: 38452215 DOI: 10.1097/j.pain.0000000000003204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/07/2023] [Indexed: 03/09/2024]
Abstract
ABSTRACT Botulinum toxin (BoNT), a presynaptic inhibitor of acetylcholine (Ach) release at the neuromuscular junction (NMJ), is a successful and safe drug for the treatment of several neurological disorders. However, a wide and recent literature review has demonstrated that BoNT exerts its effects not only at the "periphery" but also within the central nervous system (CNS). Studies from animal models, in fact, have shown a retrograde transport to the CNS, thus modulating synaptic function. The increasing number of articles reporting efficacy of BoNT on chronic neuropathic pain (CNP), a complex disease of the CNS, demonstrates that the central mechanisms of BoNT are far from being completely elucidated. In this new light, BoNT might interfere with the activity of spinal, brain stem, and cortical circuitry, modulating excitability and the functional organization of CNS in healthy conditions. Botulinum toxins efficacy on CNP is the result of a wide and complex action on many and diverse mechanisms at the basis of the maladaptive plasticity, the core of the pathogenesis of CNP. This systematic review aims to discuss in detail the BoNT's mechanisms and effects on peripheral and central neuroplasticity, at the basis for the clinical efficacy in CNP syndromes.
Collapse
Affiliation(s)
- Nathan Moreau
- Laboratoire de Neurobiologie oro-faciale, EA 7543, Université Paris Cité, Paris, France
| | - Sohaib Ali Korai
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanna Sepe
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fivos Panetsos
- Neurocomputing & Neurorobotics Research Group, Universidad Complutense de Madrid, Instituto de Investigaciones Sanitarias (IdISSC), Hospital Clinico San Carlos de Madrid, Silk Biomed SL, Madrid, Spain
| | - Michele Papa
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Cirillo
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
3
|
Yoshino A, Maekawa T, Kato M, Chan HL, Otsuru N, Yamawaki S. Changes in Resting-State Brain Activity After Cognitive Behavioral Therapy for Chronic Pain: A Magnetoencephalography Study. THE JOURNAL OF PAIN 2024; 25:104523. [PMID: 38582288 DOI: 10.1016/j.jpain.2024.104523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Cognitive behavioral therapy (CBT) is believed to be an effective treatment for chronic pain due to its association with cognitive and emotional factors. Nevertheless, there is a paucity of magnetoencephalography (MEG) investigations elucidating its underlying mechanisms. This study investigated the neurophysiological effects of CBT employing MEG and analytical techniques. We administered resting-state MEG scans to 30 patients with chronic pain and 31 age-matched healthy controls. Patients engaged in a 12-session group CBT program. We conducted pretreatment (T1) and post-treatment (T2) MEG and clinical assessments. MEG data were examined within predefined regions of interest, guided by the authors' and others' prior magnetic resonance imaging studies. Initially, we selected regions displaying significant changes in power spectral density and multiscale entropy between patients at T1 and healthy controls. Then, we examined the changes within these regions after conducting CBT. Furthermore, we applied support vector machine analysis to MEG data to assess the potential for classifying treatment effects. We observed normalization of power in the gamma2 band (61-90 Hz) within the right inferior frontal gyrus (IFG) and multiscale entropy within the right dorsolateral prefrontal cortex (DLPFC) of patients with chronic pain after CBT. Notably, changes in pain intensity before and after CBT positively correlated with the alterations of multiscale entropy. Importantly, responders predicted by the support vector machine classifier had significantly higher treatment improvement rates than nonresponders. These findings underscore the pivotal role of the right IFG and DLPFC in ameliorating pain intensity through CBT. Further accumulation of evidence is essential for future applications. PERSPECTIVE: We conducted MEG scans on 30 patients with chronic pain before and after a CBT program, comparing results with 31 healthy individuals. There were CBT-related changes in the right IFG and DLPFC. These results highlight the importance of specific brain regions in pain reduction through CBT.
Collapse
Affiliation(s)
- Atsuo Yoshino
- Health Service Center, Hiroshima University, Minami-Ku, Hiroshima, Japan; Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Minami-Ku, Hiroshima, Japan
| | - Toru Maekawa
- Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Minami-Ku, Hiroshima, Japan
| | - Miyuki Kato
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Hiroshima, Japan
| | - Hui-Ling Chan
- Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Minami-Ku, Hiroshima, Japan; Department of Computer Science and Information Engineering, Institute of Medical Informatics, National Cheng Kung University, Tainan City, Taiwan
| | - Naofumi Otsuru
- Department of Physical Therapy, Niigata University of Health and Welfare, Kita-Ku, Niigata, Japan
| | - Shigeto Yamawaki
- Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Minami-Ku, Hiroshima, Japan
| |
Collapse
|
4
|
Gonzalez-Rodriguez EA, Cepeda-Zapata LK, Rivas-Silva AA, Martinez-Gonzalez VG, Alonso-Valerdi LM, Ibarra-Zarate DI. NeuroSense: A non-invasive and configurable somatosensory stimulator with OPENVIBE communication. HARDWAREX 2024; 18:e00529. [PMID: 38690151 PMCID: PMC11059327 DOI: 10.1016/j.ohx.2024.e00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 05/02/2024]
Abstract
Understanding the somatosensory system and its abnormalities requires the development of devices that can accurately stimulate the human skin. New methods for assessing the somatosensory system can enhance the diagnosis, treatments, and prognosis for individuals with somatosensory impairments. Therefore, the design of NeuroSense, a tactile stimulator that evokes three types of daily life sensations (touch, air and vibration) is described in this work. The prototype aims to evoke quantitative assessments to evaluate the functionality of the somatosensory system and its abnormal conditions that affect the quality of life. In addition, the device has proven to have varying intensities and onset latencies that produces somatosensory evoked potentials and energy desynchronization on somatosensory cortex.
Collapse
Affiliation(s)
- Erick A. Gonzalez-Rodriguez
- Autonomous University of Nuevo Leon, Pedro de Alba S/N, Niños Héroes, Ciudad Universitaria, 66455 San Nicolás de los Garza, N.L., Mexico
| | - Luis Kevin Cepeda-Zapata
- Instituto Tecnológico de Estudios Superiores de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnológico, 64849 Monterrey, N.L., Mexico
| | - Angel Antonio Rivas-Silva
- Autonomous University of Nuevo Leon, Pedro de Alba S/N, Niños Héroes, Ciudad Universitaria, 66455 San Nicolás de los Garza, N.L., Mexico
| | - Vania G. Martinez-Gonzalez
- Instituto Tecnológico de Estudios Superiores de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnológico, 64849 Monterrey, N.L., Mexico
| | - Luz Maria Alonso-Valerdi
- Instituto Tecnológico de Estudios Superiores de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnológico, 64849 Monterrey, N.L., Mexico
| | - David Isaac Ibarra-Zarate
- Instituto Tecnológico de Estudios Superiores de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnológico, 64849 Monterrey, N.L., Mexico
| |
Collapse
|
5
|
Mathew J, Adhia DB, Hall M, De Ridder D, Mani R. EEG-Based Cortical Alterations in Individuals With Chronic Knee Pain Secondary to Osteoarthritis: A Cross-sectional Investigation. THE JOURNAL OF PAIN 2024; 25:104429. [PMID: 37989404 DOI: 10.1016/j.jpain.2023.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
Chronic painful knee osteoarthritis (OA) is a disabling physical health condition. Alterations in brain responses to arthritic changes in the knee may explain persistent pain. This study investigated source localized, resting-state electroencephalography activity and functional connectivity in people with knee OA, compared to healthy controls. Adults aged 44 to 85 years with knee OA (n = 37) and healthy control (n = 39) were recruited. Resting-state electroencephalography was collected for 10 minutes and decomposed into infraslow frequency (ISF) to gamma frequency bands. Standard low-resolution electromagnetic brain tomography statistical nonparametric maps were conducted, current densities of regions of interest were compared between groups and correlation analyses were performed between electroencephalography (EEG) measures and clinical pain and functional outcomes in the knee OA group. Standard low-resolution electromagnetic brain tomography nonparametric maps revealed higher (P = .006) gamma band activity over the right insula (RIns) in the knee OA group. A significant (P < .0001) reduction in ISF band activity at the pregenual anterior cingulate cortex, whereas higher theta, alpha, beta, and gamma band activity at the dorsal anterior cingulate cortex, pregenual anterior cingulate cortex, the somatosensory cortex, and RIns in the knee OA group were identified. ISF activity of the dorsal anterior cingulate cortex was positively correlated with pain measures and psychological distress scores. Theta and alpha activity of RIns were negatively correlated with pain interference. In conclusion, aberrations in infraslow and faster frequency EEG oscillations at sensory discriminative, motivational-affective, and descending inhibitory cortical regions were demonstrated in people with chronic painful knee OA. Moreover, EEG oscillations were correlated with pain and functional outcome measures. PERSPECTIVE: This study confirms alterations in the rsEEG oscillations and its relationship with pain experience in people with knee OA. The study provides potential cortical targets and the EEG frequency bands for neuromodulatory interventions for managing chronic pain experience in knee OA.
Collapse
Affiliation(s)
- Jerin Mathew
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, New Zealand; Department of Anatomy, School of Biomedical Sciences, University of Otago, New Zealand; Pain@Otago Research Theme, University of Otago, New Zealand
| | - Divya B Adhia
- Pain@Otago Research Theme, University of Otago, New Zealand; Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand
| | - Matthew Hall
- Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand
| | - Dirk De Ridder
- Pain@Otago Research Theme, University of Otago, New Zealand; Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand
| | - Ramakrishnan Mani
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, New Zealand; Pain@Otago Research Theme, University of Otago, New Zealand
| |
Collapse
|
6
|
Chen HH, Mohsin M, Ge JY, Feng YT, Wang JG, Ou YS, Jiang ZJ, Hu BY, Liu XJ. Optogenetic Activation of Peripheral Somatosensory Neurons in Transgenic Mice as a Neuropathic Pain Model for Assessing the Therapeutic Efficacy of Analgesics. ACS Pharmacol Transl Sci 2024; 7:236-248. [PMID: 38230281 PMCID: PMC10789130 DOI: 10.1021/acsptsci.3c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
Optogenetics is a novel biotechnology widely used to precisely manipulate a specific peripheral sensory neuron or neural circuit. However, the use of optogenetics to assess the therapeutic efficacy of analgesics is elusive. In this study, we generated a transgenic mouse stain in which all primary somatosensory neurons can be optogenetically activated to mimic neuronal hyperactivation in the neuropathic pain state for the assessment of analgesic effects of drugs. A transgenic mouse was generated using the advillin-Cre line mated with the Ai32 strain, in which channelrhodopsin-2 fused to enhanced yellow fluorescence protein (ChR2-EYFP) was conditionally expressed in all types of primary somatosensory neurons (advillincre/ChR2+/+). Immunofluorescence and transdermal photostimulation on the hindpaws were used to verify the transgenic mice. Optical stimulation to evoke pain-like paw withdrawal latency was used to assess the analgesic effects of a series of drugs. Injury- and pain-related molecular biomarkers were investigated with immunohistofluorescence. We found that the expression of ChR2-EYFP was observed in many primary afferents of paw skin and sciatic nerves and in primary sensory neurons and laminae I and II of the spinal dorsal horns in advillincre/ChR2+/+ mice. Transdermal blue light stimulation of the transgenic mouse hindpaw evoked nocifensive paw withdrawal behavior. Treatment with gabapentin, some channel blockers, and local anesthetics, but not opioids or COX-1/2 inhibitors, prolonged the paw withdrawal latency in the transgenic mice. The analgesic effect of gabapentin was also verified by the decreased expression of injury- and pain-related molecular biomarkers. These optogenetic mice provide a promising model for assessing the therapeutic efficacy of analgesics in neuropathic pain.
Collapse
Affiliation(s)
- Hao-Hao Chen
- School
of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Muhammad Mohsin
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Jia-Yi Ge
- School
of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yu-Ting Feng
- School
of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Jing-Ge Wang
- School
of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yu-Sen Ou
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Zuo-Jie Jiang
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Bo-Ya Hu
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Xing-Jun Liu
- School
of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
- Pain
and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| |
Collapse
|
7
|
Mirmoosavi M, Aminitabar A, Mirfathollahi A, Shalchyan V. Exploring altered oscillatory activity in the anterior cingulate cortex after nerve injury: Insights into mechanisms of neuropathic allodynia. Neurobiol Dis 2024; 190:106381. [PMID: 38114049 DOI: 10.1016/j.nbd.2023.106381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
While neural oscillations play a critical role in sensory perception, it remains unclear how these rhythms function under conditions of neuropathic allodynia. Recent studies demonstrated that the anterior cingulate cortex (ACC) is associated with the affective-aversive component of pain, and plasticity changes in this region are closely linked to abnormal allodynic sensations. Here, to study the mechanisms of allodynia, we recorded local field potentials (LFPs) in the bilateral ACC of awake-behaving rats and compared the spectral power and center frequency of brain oscillations between healthy and CCI (chronic constriction injury) induced neuropathic pain conditions. Our results indicated that activation of the ACC occurs bilaterally in the presence of neuropathic pain, similar to the healthy condition. Furthermore, CCI affects both spontaneous and stimulus-induced activity of ACC neurons. Specifically, we observed an increase in spontaneous beta activity after nerve injury compared to the healthy condition. By stimulating operated or unoperated paws, we found more intense event-related desynchronization (ERD) responses in the theta, alpha, and beta frequency bands and faster alpha center frequency after CCI compared to before CCI. Although the behavioral manifestation of allodynia was more pronounced in the operated paw than the unoperated paw following CCI, there was no significant difference in the center frequency and ERD responses observed in the ACC between stimulation of the operated and unoperated limbs. Our findings offer evidence supporting the notion that aberrancies in ACC oscillations may contribute to the maintenance and development of neuropathic allodynia.
Collapse
Affiliation(s)
- Mahnoosh Mirmoosavi
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran
| | - Amir Aminitabar
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran
| | - Alavie Mirfathollahi
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran; Institute for Cognitive Science Studies (ICSS), Tehran 16583-44575, Iran
| | - Vahid Shalchyan
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran.
| |
Collapse
|
8
|
Zolezzi DM, Alonso-Valerdi LM, Ibarra-Zarate DI. EEG frequency band analysis in chronic neuropathic pain: A linear and nonlinear approach to classify pain severity. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 230:107349. [PMID: 36689806 DOI: 10.1016/j.cmpb.2023.107349] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Chronic neuropathic pain (NP) is a chronic pain condition that severely impacts a patient's life. Pain management has proved to be inefficient due to a lack of a simple clinical tool that may identify and monitor NP. A low-cost, noninvasive tool that provides relevant information on NP is the electroencephalogram (EEG). However, the commonly used linear EEG features have proved to be limited in characterizing NP pathophysiology. This study sought to determine whether nonlinear EEG features such as approximate entropy (ApEn) would better differentiate pain severity than absolute band power. METHODS A non-parametric statistical approach based on the Brief Pain Inventory (BPI), along with linear and nonlinear EEG features, is proposed in this study. For this purpose, thirty-six chronic NP patients were recruited, and 22 channels were registered. Additionally, a control database of 13 participants with no NP was used as a reference, where 19 channels were registered. For both groups, EEG was recorded for 10 min in a resting state: 5 min with eyes open (EO) and 5 min with eyes closed (EC). Absolute band power and ApEn EEG features in the five clinical frequency bands (delta, theta, alpha, beta, and gamma) were estimated for all channels in both groups. As a result, 220-dimensional and 190-dimensional feature vectors were obtained for experimental and control classes respectively. For the experimental class, NP patients were grouped according to their BPI evaluation in three groups: low, moderate, and high pain. Finally, feature vectors were compared between groups using Kruskal Wallis and post-hoc Dunn's tests. RESULTS ApEn revealed significant statistical difference (p <=0.0001) in most frequency bands and conditions among the groups. In contrast, power had less significant differences between groups, particularly with EO. Furthermore, NP groups were notably clustered using only ApEn in theta, alpha, and beta bands. CONCLUSIONS The results indicate that ApEn effectively characterizes the different severities of chronic NP rather than the commonly used linear features. ApEn and other nonlinear techniques (e.g., spectral entropy, Shannon entropy) might be a more suitable methodology to monitor chronic NP experience.
Collapse
Affiliation(s)
- Daniela M Zolezzi
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, Mexico; Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Frederik Bajers Vej 7A 2-207, Aalborg East 9220, Denmark.
| | | | - David I Ibarra-Zarate
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Vía Atlixcáyotl 2301, Puebla 72453, Mexico
| |
Collapse
|
9
|
M. Zolezzi D, Naal-Ruiz NE, Alonso-Valerdi LM, Ibarra-Zarate DI. Chronic Neuropathic Pain: EEG data in eyes open and eyes closed with painDETECT and Brief Pain Inventory reports. Data Brief 2023; 48:109060. [PMID: 37006396 PMCID: PMC10050461 DOI: 10.1016/j.dib.2023.109060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Thirty-six chronic neuropathic pain patients (8 men and 28 women) of Mexican nationality with a mean age of 44±13.98 were recruited for EEG signal recording in eyes open and eyes closed resting state condition. Each condition was recorded for 5 min, with a total recording session time of 10 min. An ID number was given to each patient after signing up for the study, with which they answered the painDETECT questionnaire as a screening process for neuropathic pain alongside their clinical history. The day of the recording, the patients answered the Brief Pain Inventory, as an evaluation questionnaire for the interference of the pain with their daily life. Twenty-two EEG channels positioned in accordance with the 10/20 international system were registered with Smarting mBrain device. EEG signals were sampled at 250 Hz with a bandwidth between 0.1 and 100 Hz. The article provides two types of data: (1) raw EEG data in resting state and (2) the report of patients for two validated pain questionnaires. The data described in this article can be used for classifier algorithms considering stratifying chronic neuropathic pain patients with EEG data alongside their pain scores. In sum, this data is of extreme relevance for the pain field, where researchers have been seeking to integrate the pain experience with objective physiological data, such as the EEG.
Collapse
Affiliation(s)
- Daniela M. Zolezzi
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Nuevo León, México
- Center for Neuroplasticity and Pain, Department of Health Science and Technology, Aalborg University, Aalborg 9220, Denmark
- Corresponding author. @Montelezzi
| | - Norberto E. Naal-Ruiz
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Vía Atlixcáyotl 2301, Puebla 72453, México
| | | | - David I. Ibarra-Zarate
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Vía Atlixcáyotl 2301, Puebla 72453, México
| |
Collapse
|
10
|
Ujcikova H, Roubalova L, Lee YS, Slaninova J, Brejchova J, Svoboda P. The Dose-Dependent Effects of Multifunctional Enkephalin Analogs on the Protein Composition of Rat Spleen Lymphocytes, Cortex, and Hippocampus; Comparison with Changes Induced by Morphine. Biomedicines 2022; 10:biomedicines10081969. [PMID: 36009516 PMCID: PMC9406115 DOI: 10.3390/biomedicines10081969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/28/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
This work aimed to test the effect of 7-day exposure of rats to multifunctional enkephalin analogs LYS739 and LYS744 at doses of 3 mg/kg and 10 mg/kg on the protein composition of rat spleen lymphocytes, brain cortex, and hippocampus. Alterations of proteome induced by LYS739 and LYS744 were compared with those elicited by morphine. The changes in rat proteome profiles were analyzed by label-free quantification (MaxLFQ). Proteomic analysis indicated that the treatment with 3 mg/kg of LYS744 caused significant alterations in protein expression levels in spleen lymphocytes (45), rat brain cortex (31), and hippocampus (42). The identified proteins were primarily involved in RNA processing and the regulation of cytoskeletal dynamics. In spleen lymphocytes, the administration of the higher 10 mg/kg dose of both enkephalin analogs caused major, extensive modifications in protein expression levels: LYS739 (119) and LYS744 (182). Among these changes, the number of proteins associated with immune responses and apoptotic processes was increased. LYS739 treatment resulted in the highest number of alterations in the rat brain cortex (152) and hippocampus (45). The altered proteins were functionally related to the regulation of transcription and cytoskeletal reorganization, which plays an essential role in neuronal plasticity. Administration with LYS744 did not increase the number of altered proteins in the brain cortex (26) and hippocampus (26). Our findings demonstrate that the effect of κ-OR full antagonism of LYS744 is opposite in the central nervous system and the peripheral region (spleen lymphocytes).
Collapse
Affiliation(s)
- Hana Ujcikova
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
- Correspondence:
| | - Lenka Roubalova
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Yeon Sun Lee
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | - Jirina Slaninova
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Jana Brejchova
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Petr Svoboda
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| |
Collapse
|