1
|
Li Z, Lin C, Cai X, Lv F, Yang W, Ji L. Anti-diabetic agents and the risks of dementia in patients with type 2 diabetes: a systematic review and network meta-analysis of observational studies and randomized controlled trials. Alzheimers Res Ther 2024; 16:272. [PMID: 39716328 DOI: 10.1186/s13195-024-01645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024]
Abstract
OBJECTIVE To evaluate the association between anti-diabetic agents and the risks of dementia in patients with type 2 diabetes (T2D). METHODS Literature retrieval was conducted in PubMed, Embase, the Cochrane Central Register of Controlled Trials and Clinicaltrial.gov between January 1995 and October 2024. Observational studies and randomized controlled trials (RCTs) in patients with T2D, which intercompared anti-diabetic agents or compared them with placebo, and reported the incidence of dementia were included. Conventional and network meta-analyses of these studies were implemented. Results were exhibited as the odds ratio (OR) or risk ratio (RR) with 95% confidence interval (CI). RESULTS A total of 41 observational studies (3,307,483 participants) and 23 RCTs (155,443 participants) were included. In the network meta-analysis of observational studies, compared with non-users, sodium glucose cotransporter-2 inhibitor (SGLT-2i) (OR = 0.56, 95%CI, 0.45 to 0.69), glucagon-like peptide-1 receptor agonist (GLP-1RA) (OR = 0.58, 95%CI, 0.46 to 0.73), thiazolidinedione (TZD) (OR = 0.68, 95%CI, 0.57 to 0.81) and metformin (OR = 0.89, 95%CI, 0.80 to 0.99) treatments were all associated with reduced risk of dementia in patients with T2D. The surface under the cumulative ranking curve (SUCRA) evaluation conferred a rank order as SGLT-2i > GLP-1RA > TZD > dipeptidyl peptidase-4 inhibitor (DPP-4i) > metformin > α-glucosidase inhibitor (AGI) > glucokinase activator (GKA) > sulfonylureas > glinides > insulin in terms of the cognitive benefits. Meanwhile, compared with non-users, SGLT-2i (OR = 0.43, 95%CI, 0.30 to 0.62), GLP-1RA (OR = 0.54, 95%CI, 0.30 to 0.96) and DPP-4i (OR = 0.73, 95%CI, 0.57 to 0.93) were associated with a reduced risk of Alzheimer's disease while a lower risk of vascular dementia was observed in patients receiving SGLT-2i (OR = 0.42, 95%CI, 0.22 to 0.80) and TZD (OR = 0.52, 95%CI, 0.36 to 0.75) treatment. In the network meta-analysis of RCTs, the risks of dementia were comparable among anti-diabetic agents and placebo. CONCLUSION Compared with non-users, SGLT-2i, GLP-1RA, TZD and metformin were associated with the reduced risk of dementia in patients with T2D. SGLT-2i, and GLP-1RA may serve as the optimal choice to improve the cognitive prognosis in patients with T2D.
Collapse
Affiliation(s)
- Zonglin Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, 100044 No.11 Xizhimen South Street, Xicheng District, Beijing China, 100044, People's Republic of China
| | - Chu Lin
- Department of Endocrinology and Metabolism, Peking University People's Hospital, 100044 No.11 Xizhimen South Street, Xicheng District, Beijing China, 100044, People's Republic of China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, 100044 No.11 Xizhimen South Street, Xicheng District, Beijing China, 100044, People's Republic of China.
| | - Fang Lv
- Department of Endocrinology and Metabolism, Peking University People's Hospital, 100044 No.11 Xizhimen South Street, Xicheng District, Beijing China, 100044, People's Republic of China
| | - Wenjia Yang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, 100044 No.11 Xizhimen South Street, Xicheng District, Beijing China, 100044, People's Republic of China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, 100044 No.11 Xizhimen South Street, Xicheng District, Beijing China, 100044, People's Republic of China.
| |
Collapse
|
2
|
Pai YW, Chen IC, Lin JF, Chen XH, Chen HH, Chang MH, Huang JA, Lin CH. Association of sodium-glucose cotransporter 2 inhibitors with risk of incident dementia and all-cause mortality in older patients with type 2 diabetes: A retrospective cohort study using the TriNetX US collaborative networks. Diabetes Obes Metab 2024; 26:5420-5430. [PMID: 39248211 DOI: 10.1111/dom.15918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Limited evidence exists to support any specific medication over others to prevent dementia in older patients with type 2 diabetes (T2D). We investigated whether treatment with sodium-glucose cotransporter 2 (SGLT-2) inhibitors is associated with a lower risk of incident dementia and all-cause mortality, relative to dipeptidyl peptidase-4 (DPP-4) inhibitors and glucagon-like peptide-1 receptor agonists (GLP-1 RA). METHODS In this retrospective, active-comparator cohort study, we used data from the TriNetX electronic health records network. Our primary cohort comprised patients with T2D aged ≥50 years, registered between January 2012 and December 2022. Patients with a history of dementia were excluded. We used Kaplan-Meier survival analysis to estimate the incidence of dementia and all-cause mortality in our cohort after they had used glucose-lowering drugs for at least 12 months. Propensity score matching was performed to balance the SGLT-2 inhibitor, DPP-4 inhibitor and GLP-1 RA cohorts. Subgroup analyses for sex and age were also conducted. RESULTS Our first cohort comprised 193 948 patients treated with metformin and SGLT-2 inhibitors and an equal number of patients treated with metformin and DPP-4 inhibitors. In this cohort, the risk of dementia and all-cause mortality was lower in patients treated with SGLT-2 inhibitors than in those treated with DPP-4 inhibitors (hazard ratio [HR]: 0.62, 95% confidence interval [CI]: 0.59-0.65, for dementia; HR: 0.54, 95% CI: 0.52-0.56, for all-cause mortality). Our second cohort comprised 165 566 patients treated with metformin and SGLT-2 inhibitors and an equal number of patients treated with metformin and GLP-1 RAs. In this cohort, the risk of dementia and all-cause mortality was lower in those treated with SGLT-2 inhibitors than in those treated with GLP-1 RAs (HR: 0.92, 95% CI: 0.87-0.98, for dementia; HR: 0.88, 95% CI: 0.85-0.91, for all-cause mortality). CONCLUSIONS The use of SGLT-2 inhibitor was associated with a lower risk of incident dementia and all-cause mortality in older adults with T2D compared to DPP-4 inhibitor and GLP-1 RA.
Collapse
Affiliation(s)
- Yen-Wei Pai
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - I-Chieh Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jun-Fu Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Xiao-Hui Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsin-Hua Chen
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ming-Hong Chang
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jin-An Huang
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Health Business Administration, Hungkuang University, Taichung, Taiwan
| | - Ching-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan
- Institute of Public Health and Community Medicine Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
3
|
Battini V, Barbieri MA, Carnovale C, Spina E, Clementi E, Sessa M. Comparing major and mild cognitive impairment risks in older type-2 diabetic patients: a Danish register-based study on dipeptidyl peptidase-4 inhibitors vs. glucagon-like peptide-1 analogues. J Neurol 2024; 271:3417-3425. [PMID: 38517522 PMCID: PMC11136777 DOI: 10.1007/s00415-024-12300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/24/2024]
Abstract
INTRODUCTION The prevalence of major and mild cognitive impairment (CI) in type-2 diabetes older patients is 15-25% and 30-60%, respectively, thus affecting quality of life and health outcomes. There is, therefore, the need of head-to-head studies aiming at identifying the optimal treatment for individuals with type-2 diabetes at increased risk of mild and major CI. This study focuses on the risk of developing mild and major CI in Danish patients treated with dipeptidyl peptidase-4 inhibitors (DPP-4i) and glucagon-like peptide-1 analogues (GLP-1a) using administrative and healthcare registers. METHODS An active comparator design with a 3-year follow-up period was used. The main outcome was the hospital admission with a diagnosis of mild CI or major CI. Multivariate Cox Regression analysis was performed using the high-dimensional propensity score to obtain adjusted Hazard Ratio (HR) estimates. Inverse probability of treatment weighting (IPTW) and marginal structured model were used to calculate risk differences while accounting for the variations of confounders throughout the follow-up period. RESULTS Our results show a significant higher risk of major CI between DPP-4i and GLP-1a in unadjusted [HR (95% CI) = 3.13 (2.45-4.00), p < 0.001] and adjusted analyses [HR (95% CI) = 1.58 (1.22-2.06), p = 0.001]. No statistically significant differences were observed for mild CI. IPTW resulted stable throughout the follow-up period. Marginal structure modeling (β (95% CI) = 0.022 (0.020-0.024), p < 0.001) resulted in a higher risk of major CI for DPP-4i when compared to GLP-1a. DISCUSSION DPP-4i was associated with an increased risk of developing major CI when compared to GLP-1a among older individuals with type-2 diabetes.
Collapse
Affiliation(s)
- Vera Battini
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
- Pharmacovigilance and Clinical Research, International Centre for Pesticides and Health Risk Prevention, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università Degli Studi Di Milano, Milan, Italy
| | - Maria Antonietta Barbieri
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
- Department of Clinical and Experimental Medicine, University of Messina, 98125, Messina, Italy
| | - Carla Carnovale
- Pharmacovigilance and Clinical Research, International Centre for Pesticides and Health Risk Prevention, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università Degli Studi Di Milano, Milan, Italy
| | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, 98125, Messina, Italy
| | - Emilio Clementi
- Pharmacovigilance and Clinical Research, International Centre for Pesticides and Health Risk Prevention, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università Degli Studi Di Milano, Milan, Italy
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, LC, Italy
| | - Maurizio Sessa
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.
| |
Collapse
|
4
|
Ma Z, Yu Y, Gao M, Chen P, Hong H, Yu D, Liang Z, Bai Y, Ye Q, Wang Y, Huang G, Tan H. Protective Effect of Hop Ethyl Acetate Extract on Corticosterone-Induced PC12 and Improvement of Depression-like Behavior in Mice. ACS Chem Neurosci 2024; 15:1893-1903. [PMID: 38613492 DOI: 10.1021/acschemneuro.4c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024] Open
Abstract
Depression is a common mental disorder. In recent years, more and more attention has been paid to depression and its etiology and pathogenesis. This review aims to explore the neuroprotective and antidepressant effects of hop components. By establishing an in vitro cell damage model using PC12 cells induced by corticosterone (CORT) and an in vivo depression model through the intracranial injection of lipopolysaccharide (LPS) in mice, hop ethyl acetate extract (HEA) was used to study the protective effect and mechanism of HEA on neuronal cells in vitro and the antidepression effect and mechanism in vivo. The results showed that HEA increased the survival and decreased the rate of lactate dehydrogenase (LDH) release, apoptosis, and the ROS and NO content of CORT-induced PC12 cells. HEA alleviated depressive-like behavior, neuroinflammation, reduction of norepinephrine, and dendritic spines induced by intracerebroventricular injection of LPS in mice and increases the expression levels of BDNF, SNAP 25, and TrkB proteins without any significant side effects or toxicity. Hops demonstrated significant comprehensive utilization value, and this work provided an experimental basis for the role of hops in the treatment of depression and provided a basis for the development of HEA for antidepressant drugs or dietary therapy products.
Collapse
Affiliation(s)
- Ziwei Ma
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, P. R. China
| | - Yuming Yu
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, P. R. China
| | - Ming Gao
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, P. R. China
| | - Peng Chen
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, P. R. China
| | - Huixia Hong
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, P. R. China
| | - Dingle Yu
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Zhenjiang Liang
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Yu Bai
- Center for Child Care and Mental Health, Shenzhen Pediatrics Institute of Shantou University Medical College Health, Shenzhen 518035, China
| | - Qinlian Ye
- The Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518038, China
| | - Yachao Wang
- The Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518038, China
- Department of Neurosurgery, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Guodong Huang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, and the Institute of Translational Medicine, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, No. 3002 Sungang Westroad, Futian District, Shenzhen 518035, China
| | - Hui Tan
- Center for Child Care and Mental Health, Shenzhen Pediatrics Institute of Shantou University Medical College Health, Shenzhen 518035, China
| |
Collapse
|
5
|
Kalaria RN, Akinyemi RO, Paddick SM, Ihara M. Current perspectives on prevention of vascular cognitive impairment and promotion of vascular brain health. Expert Rev Neurother 2024; 24:25-44. [PMID: 37916306 PMCID: PMC10872925 DOI: 10.1080/14737175.2023.2273393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
INTRODUCTION The true global burden of vascular cognitive impairment (VCI) is unknown. Reducing risk factors for stroke and cardiovascular disease would inevitably curtail VCI. AREAS COVERED The authors review current diagnosis, epidemiology, and risk factors for VCI. VCI increases in older age and by inheritance of known genetic traits. They emphasize modifiable risk factors identified by the 2020 Lancet Dementia Commission. The most profound risks for VCI also include lower education, cardiometabolic factors, and compromised cognitive reserve. Finally, they discuss pharmacological and non-pharmacological interventions. EXPERT OPINION By virtue of the high frequencies of stroke and cardiovascular disease the global prevalence of VCI is expectedly higher than prevalent neurodegenerative disorders causing dementia. Since ~ 90% of the global burden of stroke can be attributed to modifiable risk factors, a formidable opportunity arises to reduce the burden of not only stroke but VCI outcomes including progression from mild to the major in form of vascular dementia. Strict control of vascular risk factors and secondary prevention of cerebrovascular disease via pharmacological interventions will impact on burden of VCI. Non-pharmacological measures by adopting healthy diets and encouraging physical and cognitive activities and urging multidomain approaches are important for prevention of VCI and preservation of vascular brain health.
Collapse
Affiliation(s)
- Raj N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Rufus O Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Stella-Maria Paddick
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Centre, Osaka, Japan
| |
Collapse
|
6
|
Wu CY, Wang C, Saskin R, Shah BR, Kapral MK, Lanctôt KL, Herrmann N, Cogo-Moreira H, MacIntosh BJ, Edwards JD, Swardfager W. No association between metformin initiation and incident dementia in older adults newly diagnosed with diabetes. J Intern Med 2024; 295:68-78. [PMID: 37747779 DOI: 10.1111/joim.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
BACKGROUND Metformin has been suggested to reduce dementia risk; however, most epidemiologic studies have been limited by immortal time bias or confounding due to disease severity. OBJECTIVES To investigate the association of metformin initiation with incident dementia using strategies that mitigate these important sources of bias. METHODS Residents of Ontario, Canada ≥66 years newly diagnosed with diabetes from January 1, 2008 to December 31, 2017 entered this retrospective population-based cohort. To consider the indication for metformin monotherapy initiation, people with hemoglobin A1c of 6.5%-8.0% and estimated glomerular filtration rate ≥45 mL/min/1.73 m2 were selected. Using the landmark method to address immortal time bias, exposure was grouped into "metformin monotherapy initiation within 180 days after new diabetes diagnosis" or "no glucose-lowering medications within 180 days." To address disease latency, 1-year lag time was applied to the end of the 180-day landmark period. Incident dementia was defined using a validated algorithm for Alzheimer's disease and related dementias. Adjusted hazard ratios (aHR) and confidence intervals (CIs) were estimated from propensity-score weighted Cox proportional hazard models. RESULTS Over mean follow-up of 6.77 years from cohort entry, metformin initiation within 180 days after new diabetes diagnosis (N = 12,331; 978 events; 65,762 person-years) showed no association with dementia risk (aHR [95% CI] = 1.05 [0.96-1.15]), compared to delayed or no glucose-lowering medication initiation (N = 22,369; 1768 events; 117,415 person-years). CONCLUSION Early metformin initiation was not associated with incident dementia in older adults newly diagnosed with diabetes. The utility of metformin to prevent dementia was not supported.
Collapse
Affiliation(s)
- Che-Yuan Wu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | | | - Baiju R Shah
- ICES, Toronto, Ontario, Canada
- Divisions of Endocrinology and Obstetric Medicine, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Moira K Kapral
- ICES, Toronto, Ontario, Canada
- Institute for Health Policy, Management, and Evaluation, University of Toronto, Toronto, Ontario, Canada
- Division of General Internal Medicine, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Krista L Lanctôt
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- KITE University Health Network Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| | - Nathan Herrmann
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Hugo Cogo-Moreira
- Faculty of Education, ICT, and Learning, Østfold University College, Halden, Norway
| | - Bradley J MacIntosh
- Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Radiology and Nuclear Medicine, Computational Radiology & Artificial Intelligence (CRAI), Oslo University Hospital, Oslo, Norway
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jodi D Edwards
- University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- ICES, Ottawa, Ontario, Canada
| | - Walter Swardfager
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- KITE University Health Network Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Wu CY, Iskander C, Wang C, Xiong LY, Shah BR, Edwards JD, Kapral MK, Herrmann N, Lanctôt KL, Masellis M, Swartz RH, Cogo-Moreira H, MacIntosh BJ, Rabin JS, Black SE, Saskin R, Swardfager W. Association of sulfonylureas with the risk of dementia: A population-based cohort study. J Am Geriatr Soc 2023; 71:3059-3070. [PMID: 37218376 DOI: 10.1111/jgs.18397] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/09/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Sulfonylureas are oral glucose-lowering medications positioned as a second-line therapy for type 2 diabetes. Evidence relating them to cognitive decline has been mixed. The objective was to determine whether sulfonylurea use was associated with a differential risk of dementia compared with dipeptidyl peptidase-4 (DPP4) inhibitor use. METHODS Using administrative data from residents in Ontario, Canada, adults aged ≥66 years who were new users of a sulfonylurea or a DPP4 inhibitor from June 14, 2011, to March 31, 2021 entered this population-based retrospective cohort study. Dementia was ascertained using a validated algorithm for Alzheimer's disease and related dementias. Propensity-score weighted Cox proportional hazards models were used to obtain adjusted hazard ratios (aHR) and confidence intervals (CI) for time to incident dementia. The observation window started at 1 year after cohort entry to mitigate protopathic bias due to delayed diagnosis. The primary analysis used an intention-to-treat exposure definition. A separate propensity-score weighted analysis was conducted to explore within-class differences in dementia risk among sulfonylurea new users selected from the primary cohort. RESULTS Among 107,806 DPP4 inhibitor new users and 37,030 sulfonylurea new users, sulfonylureas compared with DPP4 inhibitors were associated with a higher risk of dementia (18.4/1000 person-years; aHR [95% CI] = 1.09 [1.04-1.15]) over a mean follow-up of 4.82 years from cohort entry. Glyburide compared to gliclazide exhibited a higher dementia risk (aHR [95% CI] = 1.17 [1.03-1.32]). CONCLUSION New use of a sulfonylurea especially glyburide was associated with a higher dementia risk compared with new use of a DPP4 inhibitor in older adults with diabetes.
Collapse
Affiliation(s)
- Che-Yuan Wu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | | | - Lisa Y Xiong
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Baiju R Shah
- ICES, Toronto, Ontario, Canada
- Divisions of Endocrinology and Obstetric Medicine, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Jodi D Edwards
- University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- ICES, Ottawa, Ontario, Canada
| | - Moira K Kapral
- ICES, Toronto, Ontario, Canada
- Institute for Health Policy, Management, and Evaluation, University of Toronto, Toronto, Ontario, Canada
- Division of General Internal Medicine, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nathan Herrmann
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Krista L Lanctôt
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- KITE University Health Network Toronto Rehabilitation Institute, Toronto, Ontario, Canada
- Toronto Dementia Research Alliance, Toronto, Ontario, Canada
| | - Mario Masellis
- Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Richard H Swartz
- Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- ICES, Toronto, Ontario, Canada
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Hugo Cogo-Moreira
- Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Faculty of Education, ICT, and Learning, Østfold University College, Halden, Norway
| | - Bradley J MacIntosh
- Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Computational Radiology & Artificial Intelligence (CRAI), Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Jennifer S Rabin
- Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Sandra E Black
- Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Toronto Dementia Research Alliance, Toronto, Ontario, Canada
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | | | - Walter Swardfager
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- KITE University Health Network Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Liang B, Chen SW, Li YY, Zhang SX, Zhang Y. Comprehensive analysis of endoplasmic reticulum stress-related mechanisms in type 2 diabetes mellitus. World J Diabetes 2023; 14:820-845. [PMID: 37383594 PMCID: PMC10294059 DOI: 10.4239/wjd.v14.i6.820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/27/2022] [Accepted: 04/04/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND The endoplasmic reticulum (ER) is closely related to a wide range of cellular functions and is a key component to maintain and restore metabolic health. Type 2 diabetes mellitus (T2DM) is a serious threat to human health, but the ER stress (ERS)-related mechanisms in T2DM have not been fully elucidated.
AIM To identify potential ERS-related mechanisms and crucial biomarkers in T2DM.
METHODS We conducted gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) in myoblast and myotube form GSE166502, and obtained the differentially expressed genes (DEGs). After intersecting with ERS-related genes, we obtained ERS-related DEGs. Finally, functional analyses, immune infiltration, and several networks were established.
RESULTS Through GSEA and GSVA, we identified several metabolic and immune-related pathways. We obtained 227 ERS-related DEGs and constructed several important networks that help to understand the mechanisms and treatment of T2DM. Finally, memory CD4+ T cells accounted for the largest proportion of immune cells.
CONCLUSION This study revealed ERS-related mechanisms in T2DM, which might contribute to new ideas and insights into the mechanisms and treatment of T2DM.
Collapse
Affiliation(s)
- Bo Liang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Shu-Wen Chen
- Department of Endocrinology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 200000, China
| | - Yuan-Yuan Li
- Department of Endocrinology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 200000, China
| | - Shun-Xiao Zhang
- Department of Endocrinology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 200000, China
| | - Yan Zhang
- Department of Endocrinology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 200000, China
| |
Collapse
|
9
|
Zhao H, Zhuo L, Sun Y, Shen P, Lin H, Zhan S. Thiazolidinedione use is associated with reduced risk of dementia in patients with type 2 diabetes mellitus: A retrospective cohort study. J Diabetes 2023; 15:97-109. [PMID: 36660897 PMCID: PMC9934955 DOI: 10.1111/1753-0407.13352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/27/2022] [Accepted: 12/21/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) and dementia cause heavy health burden in mainland China, where few studies have investigated the association between glucose-lowering agents and dementia risk. We aimed to assess the association between use of thiazolidinediones (TZDs) and dementia incidence in a mainland Chinese population with T2DM. METHODS A retrospective cohort of T2DM patients who were new users of TZDs or alpha glucosidase inhibitors (AGIs) was assembled using the Yinzhou Regional Health Care Database. A Cox model with inverse probability of treatment weighting (IPTW) for controlling potential founding was applied to estimate the hazard ratio (HR) of the association between use of TZDs and dementia risk. RESULTS A total of 49 823 new users of AGIs and 12 752 new users of TZDs were included in the final cohort. In the primary analysis, the incidence of dementia was 195.7 and 78.2 per 100 000 person-years in users of AGIs and TZDs respectively. TZD use was associated with a reduced risk of incident dementia after adjusting for potential confounding using IPTW, with a HR of 0.51 (95% CI, 0.38-0.67). The results in various subgroup analyses and sensitivity analyses were consistent with the findings of the primary analysis. CONCLUSIONS Use of TZDs is associated with a decreased risk of dementia incidence in a mainland Chinese population with T2DM.
Collapse
Affiliation(s)
- Houyu Zhao
- Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
| | - Lin Zhuo
- Research Center of Clinical EpidemiologyPeking University Third HospitalBeijingChina
| | - Yexiang Sun
- Yinzhou District Center for Disease Control and PreventionNingboChina
| | - Peng Shen
- Yinzhou District Center for Disease Control and PreventionNingboChina
| | - Hongbo Lin
- Yinzhou District Center for Disease Control and PreventionNingboChina
| | - Siyan Zhan
- Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
- Research Center of Clinical EpidemiologyPeking University Third HospitalBeijingChina
- Center for Intelligent Public Health, Institute for Artificial IntelligencePeking UniversityBeijingChina
| |
Collapse
|
10
|
Wu CY, Iskander C, Wang C, Xiong LY, Shah BR, Edwards JD, Kapral MK, Herrmann N, Lanctôt KL, Masellis M, Swartz RH, Cogo-Moreira H, MacIntosh BJ, Rabin JS, Black SE, Saskin R, Swardfager W. Association of Sodium-Glucose Cotransporter 2 Inhibitors With Time to Dementia: A Population-Based Cohort Study. Diabetes Care 2023; 46:297-304. [PMID: 36508692 DOI: 10.2337/dc22-1705] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Type 2 diabetes (T2D) increases dementia risk, but clear evidence to recommend interventions that can mitigate that risk remains lacking. This population-based retrospective cohort study aimed to determine whether new use of sodium-glucose cotransporter 2 (SGLT2) inhibitors compared with dipeptidyl peptidase 4 (DPP-4) inhibitors was associated with lower dementia risk. RESEARCH DESIGN AND METHODS Ontario residents aged ≥66 years who were new users of an SGLT2 inhibitor or a DPP-4 inhibitor from 1 July 2016 to 31 March 2021 entered the cohort. Incident dementia was identified using a validated algorithm for Alzheimer's disease and related dementias. Propensity score-weighted Cox proportional hazards models were used to obtain adjusted hazard ratios (aHR) and CIs for time to incident dementia. To address reverse causality and disease latency, the observation window started at 1-year lag time from cohort entry. The primary analysis followed intention-to-treat exposure definition, and a secondary as-treated analysis was performed. RESULTS Among 106,903 individuals, SGLT2 inhibitors compared with DPP-4 inhibitors were associated with lower risk of dementia (14.2/1,000 person-years; aHR 0.80 [95% CI 0.71-0.89]) over a mean follow-up of 2.80 years from cohort entry. When stratified by different SGLT2 inhibitors, dapagliflozin exhibited the lowest risk (aHR 0.67 [95% CI 0.53-0.84]), followed by empagliflozin (aHR 0.78 [95% CI 0.69-0.89]), whereas canagliflozin showed no association (aHR 0.96 [95% CI 0.80-1.16]). The as-treated analysis observed a larger association (aHR 0.66 [95% CI 0.57-0.76]) than the intention-to-treat analysis. CONCLUSIONS SGLT2 inhibitors showed an association with lower dementia risk in older people with T2D. Randomized controlled trials are warranted.
Collapse
Affiliation(s)
- Che-Yuan Wu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | | | - Lisa Y Xiong
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Baiju R Shah
- ICES, Toronto, Ontario, Canada
- Divisions of Endocrinology and Obstetric Medicine, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Jodi D Edwards
- University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- ICES, Ottawa, Ontario, Canada
| | - Moira K Kapral
- ICES, Toronto, Ontario, Canada
- Institute for Health Policy, Management, and Evaluation, University of Toronto, Toronto, Ontario, Canada
- Division of General Internal Medicine, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nathan Herrmann
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Krista L Lanctôt
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- KITE University Health Network Toronto Rehabilitation Institute, Toronto, Ontario, Canada
- Toronto Dementia Research Alliance, Toronto, Ontario, Canada
| | - Mario Masellis
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Richard H Swartz
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- ICES, Toronto, Ontario, Canada
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Hugo Cogo-Moreira
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Faculty of Education, ICT, and Learning, Østfold University College, Halden, Norway
| | - Bradley J MacIntosh
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Computational Radiology & Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Jennifer S Rabin
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Sandra E Black
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Toronto Dementia Research Alliance, Toronto, Ontario, Canada
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | | | - Walter Swardfager
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- KITE University Health Network Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| |
Collapse
|