1
|
Thangavelu L, Abdelwahab SI, Farasani A, Ballal S, Bansal P, Nathiya D, Kaur K, Kumar MR, Sinha A, Alrasheed HA, Al-Subaie MF, Al Kaabi NA, bshabshe AA, Al Fares MA, Albayat H, Rabaan AA, Pant K, Zahiruddin QS, Rao AP, Khatib MN, Alfaifi HA, Mohan S, Sah S, Satapathy P. Risk of cognitive decline among patients with dengue virus infection: a systematic review. Int J Neuropsychopharmacol 2024; 27:pyae053. [PMID: 39487786 PMCID: PMC11631092 DOI: 10.1093/ijnp/pyae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 11/01/2024] [Indexed: 11/04/2024] Open
Abstract
Dengue fever, caused by the dengue virus and transmitted through Aedes mosquitoes, is a growing public health concern, particularly in tropical and subtropical regions. Traditionally associated with febrile and hemorrhagic symptoms, recent research suggests a potential link between dengue and cognitive impairments. This systematic review assessed existing research to understand the association between dengue virus infection and cognitive impairments, including dementia, Alzheimer disease, memory loss, and confusion. This systematic review followed preferred reporting items for systematic reviews and meta-analyses guidelines. A comprehensive literature search was conducted in PubMed, EMBASE, and Web of Science up to January 18, 2024. Studies examining the prevalence and association of cognitive impairments in dengue patients were included. Data extraction and quality assessment were performed using Nested Knowledge software and the Newcastle-Ottawa Scale. Of the 1129 articles identified, 5 were included in the review, covering a total of 200 873 participants from Taiwan, Brazil, and France. Evidence from population-based cohort studies indicated short-term cognitive impairments, including confusion and memory loss, in some dengue patients. Additionally, long-term risks of dementia, including Alzheimer disease and vascular dementia, were observed, particularly among older adults. Although the findings suggest there might be an association between dengue infection and cognitive decline, the mechanisms underlying this link remain unclear. This systematic review suggests that dengue virus infection may affect cognitive function in both acute and long-term contexts. However, the current evidence is not strong enough to establish a conclusive link. Further research with larger sample sizes and longitudinal studies is essential to confirm the impact of dengue virus on cognitive health.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveeth University, Chennai 602105, India
| | | | - Abdullah Farasani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka 560069, India
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University, Jaipur, Rajasthan 303121, India
| | - Kiranjeet Kaur
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali - 140307, Punjab, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun 248007, India
| | - Hayam A Alrasheed
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Maha F Al-Subaie
- Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh 13328, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Nawal A Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi, 51900, United Arab Emirates
| | - Ali Al bshabshe
- Adult Critical Care Department of Medicine, Division of Adult Critical Care, College of Medicine, King Khalid University, Abha 62561, Saudi Arabia
| | - Mona A Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Hawra Albayat
- Infectious Disease Department, King Saud Medical City, Riyadh7790, Saudi Arabia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
- Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh 13328, Saudi Arabia
| | - Kumud Pant
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
- Department of Allied Sciences, Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | - Quazi Syed Zahiruddin
- Global South Asia Infant Feeding Research Network (SAIFRN), Division of Evidence Synthesis, Global Consortium of Public Health and Research, Datta Meghe Institute of Higher Education, Wardha 442107, India
| | - Arathi P Rao
- Department of Health Policy, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal 576104, India
| | - Mahalaqua Nazli Khatib
- Division of Evidence Synthesis, Global Consortium of Public Health and Research, Datta Meghe Institute of Higher Education, Wardha 442107, India
| | - Hassan Ahmad Alfaifi
- Pharmaceutical Care Administration (Jeddah Second Health Cluster), Ministry of Health, Jeddah, 22233, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Sanjit Sah
- SR Sanjeevani Hospital, Kalyanpur, Siraha 56517, Nepal
- Department of Paediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune 411018, Maharashtra, India
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune 411018, Maharashtra, India
| | - Prakasini Satapathy
- University Center for Research and Development, Chandigarh University, Mohali, Punjab 140413, India
- Medical Laboratories Techniques Department, AL-Mustaqbal University, 51001 Hillah, Babil, Iraq
| |
Collapse
|
2
|
Kuil LE, Varkevisser TMCK, Huisman MH, Jansen M, Bunt J, Compter A, Ket H, Schagen SB, Meeteren AYNSV, Partanen M. Artificial and natural interventions for chemotherapy- and / or radiotherapy-induced cognitive impairment: A systematic review of animal studies. Neurosci Biobehav Rev 2024; 157:105514. [PMID: 38135266 DOI: 10.1016/j.neubiorev.2023.105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Cancer survivors frequently experience cognitive impairments. This systematic review assessed animal literature to identify artificial (pharmaceutical) or natural interventions (plant/endogenously-derived) to reduce treatment-related cognitive impairments. METHODS PubMed, EMBASE, PsycINFO, Web of Science, and Scopus were searched and SYRCLE's tool was used for risk of bias assessment of the 134 included articles. RESULTS High variability was observed and risk of bias analysis showed overall poor quality of reporting. Results generally showed positive effects in the intervention group versus cancer-therapy only group (67% of 156 cognitive measures), with only 15 (7%) measures reporting cognitive impairment despite intervention. Both artificial (61%) and natural (75%) interventions prevented cognitive impairment. Artificial interventions involving GSK3B inhibitors, PLX5622, and NMDA receptor antagonists, and natural interventions utilizing melatonin, curcumin, and N-acetylcysteine, showed most consistent outcomes. CONCLUSIONS Both artificial and natural interventions may prevent cognitive impairment in rodents, which merit consideration in future clinical trials. Greater consistency in design is needed to enhance the generalizability across studies, including timing of cognitive tests and description of treatments and interventions.
Collapse
Affiliation(s)
- L E Kuil
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - T M C K Varkevisser
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - M H Huisman
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - M Jansen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - J Bunt
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - A Compter
- Department of Neuro-Oncology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - H Ket
- Universiteitsbibliotheek, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - S B Schagen
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | | | - M Partanen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands.
| |
Collapse
|
3
|
Davies MR, Greenberg Z, van Vuurden DG, Cross CB, Zannettino ACW, Bardy C, Wardill HR. More than a small adult brain: Lessons from chemotherapy-induced cognitive impairment for modelling paediatric brain disorders. Brain Behav Immun 2024; 115:229-247. [PMID: 37858741 DOI: 10.1016/j.bbi.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023] Open
Abstract
Childhood is recognised as a period of immense physical and emotional development, and this, in part, is driven by underlying neurophysiological transformations. These neurodevelopmental processes are unique to the paediatric brain and are facilitated by augmented rates of neuroplasticity and expanded neural stem cell populations within neurogenic niches. However, given the immaturity of the developing central nervous system, innate protective mechanisms such as neuroimmune and antioxidant responses are functionally naïve which results in periods of heightened sensitivity to neurotoxic insult. This is highly relevant in the context of paediatric cancer, and in particular, the neurocognitive symptoms associated with treatment, such as surgery, radio- and chemotherapy. The vulnerability of the developing brain may increase susceptibility to damage and persistent symptomology, aligning with reports of more severe neurocognitive dysfunction in children compared to adults. It is therefore surprising, given this intensified neurocognitive burden, that most of the pre-clinical, mechanistic research focuses exclusively on adult populations and extrapolates findings to paediatric cohorts. Given this dearth of age-specific research, throughout this review we will draw comparisons with neurodevelopmental disorders which share comparable pathways to cancer treatment related side-effects. Furthermore, we will examine the unique nuances of the paediatric brain along with the somatic systems which influence neurological function. In doing so, we will highlight the importance of developing in vitro and in vivo paediatric disease models to produce age-specific discovery and clinically translatable research.
Collapse
Affiliation(s)
- Maya R Davies
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia; Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.
| | - Zarina Greenberg
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory of Human Neurophysiology and Genetics, Adelaide, SA, Australia
| | - Dannis G van Vuurden
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the weNetherlands
| | - Courtney B Cross
- Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Andrew C W Zannettino
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Cedric Bardy
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory of Human Neurophysiology and Genetics, Adelaide, SA, Australia; Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Hannah R Wardill
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia; Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| |
Collapse
|