1
|
Vernasco BJ, Long KM, Braun MJ, Brawn JD. Genetic and telomeric variability: Insights from a tropical avian hybrid zone. Mol Ecol 2024; 33:e17491. [PMID: 39192633 DOI: 10.1111/mec.17491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024]
Abstract
Telomere lengths and telomere dynamics can correlate with lifespan, behaviour and individual quality. Such relationships have spurred interest in understanding variation in telomere lengths and their dynamics within and between populations. Many studies have identified how environmental processes can influence telomere dynamics, but the role of genetic variation is much less well characterized. To provide a novel perspective on how telomeric variation relates to genetic variability, we longitudinally sampled individuals across a narrow hybrid zone (n = 127 samples), wherein two Manacus species characterized by contrasting genome-wide heterozygosity interbreed. We measured individual (n = 66) and population (n = 3) differences in genome-wide heterozygosity and, among hybrids, amount of genetic admixture using RADseq-generated SNPs. We tested for population differences in telomere lengths and telomere dynamics. We then examined how telomere lengths and telomere dynamics covaried with genome-wide heterozygosity within populations. Hybrid individuals exhibited longer telomeres, on average, than individuals sampled in the adjacent parental populations. No population differences in telomere dynamics were observed. Within the parental population characterized by relatively low heterozygosity, higher genome-wide heterozygosity was associated with shorter telomeres and higher rates of telomere shortening-a pattern that was less apparent in the other populations. All of these relationships were independent of sex, despite the contrasting life histories of male and female manakins. Our study highlights how population comparisons can reveal interrelationships between genetic variation and telomeres, and how naturally occurring hybridization and genome-wide heterozygosity can relate to telomere lengths and telomere dynamics.
Collapse
Affiliation(s)
- Ben J Vernasco
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Kira M Long
- Program in Ecology, Evolution and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Michael J Braun
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Biology and Biology Graduate Program, University of Maryland, College Park, Maryland, USA
| | - Jeffrey D Brawn
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
2
|
Bartolomucci A, Tung J, Harris KM. The fortunes and misfortunes of social life across the life course: A new era of research from field, laboratory and comparative studies. Neurosci Biobehav Rev 2024; 162:105655. [PMID: 38583652 DOI: 10.1016/j.neubiorev.2024.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
Social gradients in health and aging have been reported in studies across many human populations, and - as the papers included in this special collection highlight - also occur across species. This paper serves as a general introduction to the special collection of Neuroscience and Biobehavioral Reviews entitled "Social dimensions of health and aging: population studies, preclinical research, and comparative research using animal models". Authors of the fourteen reviews are primarily members of a National Institute of Aging-supported High Priority Research Network on "Animal Models for the Social Dimensions of Health and Aging". The collection is introduced by a foreword, commentaries, and opinion pieces by leading experts in related fields. The fourteen reviews are divided into four sections: Section 1: Biodemography and life course studies; Section 2: Social behavior and healthy aging in nonhuman primates; Section 3: Social factors, stress, and hallmarks of aging; Section 4: Neuroscience and social behavior.
Collapse
Affiliation(s)
- Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Jenny Tung
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Department of Evolutionary Anthropology, Duke University, Durham, NC, USA; Department of Biology, Duke University, Durham, NC, USA; Canadian Institute for Advanced Research, Toronto, Canada; Duke Population Research Institute, Duke University, Durham, NC, USA.
| | - Kathleen Mullan Harris
- Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Shan J, Mo J, An C, Xiang L, Qi J. β-Cyclocitral from Lavandula angustifolia Mill. Exerts Anti-Aging Effects on Yeasts and Mammalian Cells via Telomere Protection, Antioxidative Stress, and Autophagy Activation. Antioxidants (Basel) 2024; 13:715. [PMID: 38929154 PMCID: PMC11200722 DOI: 10.3390/antiox13060715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
We used a replicative lifespan (RLS) experiment of K6001 yeast to screen for anti-aging compounds within lavender extract (Lavandula angustifolia Mill.), leading to the discovery of β-cyclocitral (CYC) as a potential anti-aging compound. Concurrently, the chronological lifespan (CLS) of YOM36 yeast and mammalian cells confirmed the anti-aging effect of CYC. This molecule extended the yeast lifespan and inhibited etoposide (ETO)-induced cell senescence. To understand the mechanism of CYC, we analyzed its effects on telomeres, oxidative stress, and autophagy. CYC administration resulted in notable increases in the telomerase content, telomere length, and the expression of the telomeric shelterin protein components telomeric-repeat binding factor 2 (TRF2) and repressor activator protein 1 (RAP1). More interestingly, CYC reversed H2O2-induced telomere damage and exhibited strong antioxidant capacity. Moreover, CYC improved the survival rate of BY4741 yeast under oxidative stress induced by 6.2 mM H2O2, increasing the antioxidant enzyme activity while reducing the reactive oxygen species (ROS), reactive nitrogen species (RNS), and malondialdehyde (MDA) levels. Additionally, CYC enhanced autophagic flux and free green fluorescent protein (GFP) expression in the YOM38-GFP-ATG8 yeast strain. However, CYC did not extend the RLS of K6001 yeast mutants, such as Δsod1, Δsod2, Δcat, Δgpx, Δatg2, and Δatg32, which lack antioxidant enzymes or autophagy-related genes. These findings reveal that CYC acts as an anti-aging agent by modifying telomeres, oxidative stress, and autophagy. It is a promising compound with potential anti-aging effects and warrants further study.
Collapse
Affiliation(s)
| | | | | | - Lan Xiang
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (J.S.); (J.M.); (C.A.)
| | - Jianhua Qi
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (J.S.); (J.M.); (C.A.)
| |
Collapse
|
4
|
Chen P, Wang Y, Zhou B. Insights into targeting cellular senescence with senolytic therapy: The journey from preclinical trials to clinical practice. Mech Ageing Dev 2024; 218:111918. [PMID: 38401690 DOI: 10.1016/j.mad.2024.111918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Interconnected, fundamental aging processes are central to many illnesses and diseases. Cellular senescence is a mechanism that halts the cell cycle in response to harmful stimuli. Senescent cells (SnCs) can emerge at any point in life, and their persistence, along with the numerous proteins they secrete, can negatively affect tissue function. Interventions aimed at combating persistent SnCs, which can destroy tissues, have been used in preclinical models to delay, halt, or even reverse various diseases. Consequently, the development of small-molecule senolytic medicines designed to specifically eliminate SnCs has opened potential avenues for the prevention or treatment of multiple diseases and age-related issues in humans. In this review, we explore the most promising approaches for translating small-molecule senolytics and other interventions targeting senescence in clinical practice. This discussion highlights the rationale for considering SnCs as therapeutic targets for diseases affecting individuals of all ages.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China.
| | - Yulai Wang
- Department of Pharmacy, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, P.R. China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| |
Collapse
|
5
|
Wolf SE, Woodruff MJ, Chang van Oordt DA, Clotfelter ED, Cristol DA, Derryberry EP, Ferguson SM, Stanback MT, Taff CC, Vitousek MN, Westneat DF, Rosvall KA. Among-population variation in telomere regulatory proteins and their potential role as hidden drivers of intraspecific variation in life history. J Anim Ecol 2024. [PMID: 38509838 DOI: 10.1111/1365-2656.14071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/14/2024] [Indexed: 03/22/2024]
Abstract
Biologists aim to explain patterns of growth, reproduction and ageing that characterize life histories, yet we are just beginning to understand the proximate mechanisms that generate this diversity. Existing research in this area has focused on telomeres but has generally overlooked the telomere's most direct mediator, the shelterin protein complex. Shelterin proteins physically interact with the telomere to shape its shortening and repair. They also regulate metabolism and immune function, suggesting a potential role in life history variation in the wild. However, research on shelterin proteins is uncommon outside of biomolecular work. Intraspecific analyses can play an important role in resolving these unknowns because they reveal subtle variation in life history within and among populations. Here, we assessed ecogeographic variation in shelterin protein abundance across eight populations of tree swallow (Tachycineta bicolor) with previously documented variation in environmental and life history traits. Using the blood gene expression of four shelterin proteins in 12-day-old nestlings, we tested the hypothesis that shelterin protein gene expression varies latitudinally and in relation to both telomere length and life history. Shelterin protein gene expression differed among populations and tracked non-linear variation in latitude: nestlings from mid-latitudes expressed nearly double the shelterin mRNA on average than those at more northern and southern sites. However, telomere length was not significantly related to latitude. We next assessed whether telomere length and shelterin protein gene expression correlate with 12-day-old body mass and wing length, two proxies of nestling growth linked to future fecundity and survival. We found that body mass and wing length correlated more strongly (and significantly) with shelterin protein gene expression than with telomere length. These results highlight telomere regulatory shelterin proteins as potential mediators of life history variation among populations. Together with existing research linking shelterin proteins and life history variation within populations, these ecogeographic patterns underscore the need for continued integration of ecology, evolution and telomere biology, which together will advance understanding of the drivers of life history variation in nature.
Collapse
Affiliation(s)
- Sarah E Wolf
- Department of Biology, Indiana University, Bloomington, Indiana, USA
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Mary J Woodruff
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - David A Chang van Oordt
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
- Cornell Lab of Ornithology, Ithaca, New York, USA
| | | | - Daniel A Cristol
- Department of Biology, William & Mary, Williamsburg, Virginia, USA
| | - Elizabeth P Derryberry
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Stephen M Ferguson
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
- Department of Biology, University of Richmond, Richmond, Virginia, USA
| | - Mark T Stanback
- Department of Biology, Davidson College, Davidson, North Carolina, USA
| | - Conor C Taff
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
- Cornell Lab of Ornithology, Ithaca, New York, USA
| | - Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
- Cornell Lab of Ornithology, Ithaca, New York, USA
| | - David F Westneat
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | | |
Collapse
|
6
|
Minoretti P, Emanuele E. Clinically Actionable Topical Strategies for Addressing the Hallmarks of Skin Aging: A Primer for Aesthetic Medicine Practitioners. Cureus 2024; 16:e52548. [PMID: 38371024 PMCID: PMC10874500 DOI: 10.7759/cureus.52548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
In this narrative review, we sought to provide a comprehensive overview of the mechanisms underlying cutaneous senescence, framed by the twelve traditional hallmarks of aging. These include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, impaired macroautophagy, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. We also examined how topical interventions targeting these hallmarks can be integrated with conventional aesthetic medicine techniques to enhance skin rejuvenation. The potential of combining targeted topical therapies against the aging hallmarks with minimally invasive procedures represents a significant advancement in aesthetic medicine, offering personalized and effective strategies to combat skin aging. The reviewed evidence paves the way for future advancements and underscores the transformative potential of integrating scientifically validated interventions targeted against aging hallmarks into traditional aesthetic practices.
Collapse
|
7
|
Etzel L, Garrett-Petters P, Shalev I. Early origins of health and disease risk: The case for investigating adverse exposures and biological aging in utero, across childhood, and into adolescence. CHILD DEVELOPMENT PERSPECTIVES 2023; 17:149-156. [PMID: 38706692 PMCID: PMC11068077 DOI: 10.1111/cdep.12488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
In this article, we suggest that aging and development are two sides of the same coin, and that developing a comprehensive understanding of health and disease risk requires examining age-related processes occurring throughout the earliest years of life. Compared to other periods in life, during this early period of acute vulnerability, when children's biological and regulatory systems are developing, biological aging occurs most rapidly. We review theory and empirical research suggesting that processes of development and aging are intricately linked, and that early adversity may program biological parameters for accelerated aging and disease risk early in life, even though clinical signs of age-related disease onset may not be evident until many years later. Following from this, we make the case for widespread incorporation of biological aging constructs into child development research.
Collapse
Affiliation(s)
- Laura Etzel
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| | | | - Idan Shalev
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
8
|
Ye Q, Apsley AT, Etzel L, Hastings WJ, Kozlosky JT, Walker C, Wolf SE, Shalev I. Telomere length and chronological age across the human lifespan: A systematic review and meta-analysis of 414 study samples including 743,019 individuals. Ageing Res Rev 2023; 90:102031. [PMID: 37567392 PMCID: PMC10529491 DOI: 10.1016/j.arr.2023.102031] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Telomere attrition is a proposed hallmark of aging. To evaluate the association of telomere length (TL) with chronological age across the human lifespan, we conducted a systematic review and meta-analysis of 414 study samples comprising 743,019 individuals aged 0-112 years. We examined both cross-sectional and longitudinal data, and evaluated the impact of various biological and methodological factors including sex, health status, tissue types, DNA extraction procedures, and TL measurement methods. The pooled corrected correlation between TL and age from cross-sectional samples was -0.19 (95%CI: -0.22 to -0.15), which weakened with increased chronological age (β = 0.003, p < 0.001). Z-score change rates of TL across the lifespan showed a gradual decrease in shortening rate until around age 50 and remained at a relatively stable rate towards the elderly period. A greater attrition rate was observed in longitudinal than cross-sectional evaluations. For TL measured in base pairs, the median change rate of TL was -23 bp/year in cross-sectional samples and -38 bp/year in longitudinal samples. Methodological factors including TL measurement methods and tissue types impacted the TL-age correlation, while sex or disease status did not. This meta-analysis revealed the non-linear shortening trend of TL across the human lifespan and provides a reference value for future studies. Results also highlight the importance of methodological considerations when using TL as an aging biomarker.
Collapse
Affiliation(s)
- Qiaofeng Ye
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Abner T Apsley
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA; Department of Molecular, Cellular and Integrative Biological Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Laura Etzel
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Waylon J Hastings
- Department of Psychiatry and Behavioral Science, Tulane University School of Medicine, LA 70112, USA.
| | - John T Kozlosky
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Cade Walker
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Sarah E Wolf
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Idan Shalev
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|