1
|
Barborica A, Oane I, Donos C, Daneasa A, Mihai F, Pistol C, Dabu A, Roceanu A, Mindruta I. Imaging the effective networks associated with cortical function through intracranial high-frequency stimulation. Hum Brain Mapp 2021; 43:1657-1675. [PMID: 34904772 PMCID: PMC8886668 DOI: 10.1002/hbm.25749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/23/2023] Open
Abstract
Direct electrical stimulation (DES) is considered to be the gold standard for mapping cortical function. A careful mapping of the eloquent cortex is key to successful resective or ablative surgeries, with a minimal postoperative deficit, for treatment of drug‐resistant epilepsy. There is accumulating evidence suggesting that not only local, but also remote activations play an equally important role in evoking clinical effects. By introducing a new intracranial stimulation paradigm and signal analysis methodology allowing to disambiguate EEG responses from stimulation artifacts we highlight the spatial extent of the networks associated with clinical effects. Our study includes 26 patients that underwent stereoelectroencephalographic investigations for drug‐resistant epilepsy, having 337 depth electrodes with 4,351 contacts sampling most brain structures. The routine high‐frequency electrical stimulation protocol for eloquent cortex mapping was altered in a subtle way, by alternating the polarity of the biphasic pulses in a train, causing the splitting the spectral lines of the artifactual components, exposing the underlying tissue response. By performing a frequency‐domain analysis of the EEG responses during DES we were able to capture remote activations and highlight the effect's network. By using standard intersubject averaging and a fine granularity HCP‐MMP parcellation, we were able to create local and distant connectivity maps for 614 stimulations evoking specific clinical effects. The clinical value of such maps is not only for a better understanding of the extent of the effects' networks guiding the invasive exploration, but also for understanding the spatial patterns of seizure propagation given the timeline of the seizure semiology.
Collapse
Affiliation(s)
- Andrei Barborica
- Physics Department, University of Bucharest, Bucharest, Romania.,FHC Inc., Bowdoin, Maine, USA
| | - Irina Oane
- Epilepsy Monitoring Unit, Neurology Department, Emergency University Hospital Bucharest, Bucharest, Romania
| | - Cristian Donos
- Physics Department, University of Bucharest, Bucharest, Romania
| | - Andrei Daneasa
- Epilepsy Monitoring Unit, Neurology Department, Emergency University Hospital Bucharest, Bucharest, Romania
| | - Felicia Mihai
- Physics Department, University of Bucharest, Bucharest, Romania
| | | | - Aurelia Dabu
- Epilepsy Monitoring Unit, Neurology Department, Emergency University Hospital Bucharest, Bucharest, Romania
| | - Adina Roceanu
- Epilepsy Monitoring Unit, Neurology Department, Emergency University Hospital Bucharest, Bucharest, Romania
| | - Ioana Mindruta
- Epilepsy Monitoring Unit, Neurology Department, Emergency University Hospital Bucharest, Bucharest, Romania.,Neurology Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy Bucharest, Bucharest, Romania
| |
Collapse
|
2
|
Wu D, Zhang W, Lu H, Liu X, Sun W. Transitional pattern as a potential marker of epileptogenic zone in focal epilepsy - Clinical observations from intracerebral recordings. Epilepsy Res 2021; 174:106676. [PMID: 34051573 DOI: 10.1016/j.eplepsyres.2021.106676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/25/2021] [Accepted: 05/14/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To investigate the characteristics of transition from interictal to ictal phase in intracranial recordings and further to determine the potential marker of epileptogenic zone. METHODS Eighteen patients with drug-refractory epilepsy who underwent stereo-electroencephalography (SEEG) evaluation and subsequent resective surgery were included. All patients were seizure-free post-operatively. The recorded seizures were retrospectively reviewed and time episodes including 5 min before electrographic onset were selected for further analysis to verify the presence of a transitional pattern in the transitional phase, which was distinct from interictal background and ictal onset. Besides, the components of transitional patterns which characterized by different pathological waveforms were identified by visual analysis and time-frequency analysis. The prevalence of transitional patterns between resection and non-resection, lesion and non-lesion sites were compared. In addition, the association between transitional patterns and types of epilepsy was explored. RESULTS Six transitional patterns characterized by different combinations of multiple pathological waveforms by visual analysis combined with time-frequency analysis were identified: spike/spike-waves/polyspikes; spike superimposed by HFOs; spike superimposed by gamma oscillations; spike followed by suppression; spike superimposed by HFOs and followed by suppression; and spike superimposed by gamma oscillations and followed by suppression. A higher prevalence of transitional patterns in resection than non-resection (p < 0.001) and in lesion than non-lesion contacts (p < 0.001). The pattern characterized by spike superimposed by HFOs and followed by suppression was more prevalent in resection than non-resection sites (p = 0.004). Further, there was an association between the complexity of transitional patterns and the location of contacts. Patterns with higher degree of complexity were more likely to be inside the resection area (p = 0.035). Besides, we found the pattern with spike superimposed by HFOs was associated more with limbic epilepsy than neocortical epilepsy (p < 0.001), whereas another 3 patterns, spike superimposed by gamma oscillation, spike followed by suppression and spike combined with HFOs and suppression, were observed more frequently in neocortical epilepsy than limbic epilepsy (p = 0.018, 0.011 and < 0.001, respectively). CONCLUSION Transitional patterns from interictal to ictal state were characterized by different combinations of multiple pathological waveforms, which may be a potential marker of epileptogenic zone. Our findings support that the interaction of different neuronal oscillations or waveforms generated by different neuronal populations may be the potential mechanism of seizure generation.
Collapse
Affiliation(s)
- Dan Wu
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Hongjuan Lu
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Xingzhou Liu
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Wei Sun
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Oane I, Barborica A, Chetan F, Donos C, Maliia MD, Arbune AA, Daneasa A, Pistol C, Nica AE, Bajenaru OA, Mindruta I. Cingulate cortex function and multi-modal connectivity mapped using intracranial stimulation. Neuroimage 2020; 220:117059. [PMID: 32562780 DOI: 10.1016/j.neuroimage.2020.117059] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/19/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
The cingulate cortex is part of the limbic system. Its function and connectivity are organized in a rostro-caudal and ventral-dorsal manner which was addressed by various other studies using rather coarse cortical parcellations. In this study, we aim at describing its function and connectivity using invasive recordings from patients explored for focal drug-resistant epilepsy. We included patients that underwent stereo-electroencephalographic recordings using intracranial electrodes in the University Emergency Hospital Bucharest between 2012 and 2019. We reviewed all high frequency stimulations (50 Hz) performed for functional mapping of the cingulate cortex. We used two methods to characterize brain connectivity. Effective connectivity was inferred based on the analysis of cortico-cortical potentials (CCEPs) evoked by single pulse electrical stimulation (SPES) (15 s inter-pulse interval). Functional connectivity was estimated using the non-linear regression method applied to 60 s spontaneous electrical brain signal intervals. The effective (stimulation-evoked) and functional (non-evoked) connectivity analyses highlight brain networks in a different way. While non-evoked connectivity evidences areas having related activity, often in close proximity to each other, evoked connectivity highlights spatially extended networks. To highlight in a comprehensive way the cingulate cortex's network, we have performed a bi-modal connectivity analysis that combines the resting-state broadband h2 non-linear correlation with cortico-cortical evoked potentials. We co-registered the patient's anatomy with the fsaverage FreeSurfer template to perform the automatic labeling based on HCP-MMP parcellation. At a group level, connectivity was estimated by averaging responses over stimulated/recorded or recorded sites in each pair of parcels. Finally, for multiple regions that evoked a clinical response during high frequency stimulation, we combined the connectivity of individual pairs using maximum intensity projection. Connectivity was assessed by applying SPES on 2094 contact pairs and recording CCEPs on 3580 contacts out of 8582 contacts of 660 electrodes implanted in 47 patients. Clinical responses elicited by high frequency stimulations in 107 sites (pairs of contacts) located in the cingulate cortex were divided in 10 groups: affective, motor behavior, motor elementary, versive, speech, vestibular, autonomic, somatosensory, visual and changes in body perception. Anterior cingulate cortex was shown to be connected to the mesial temporal, orbitofrontal and prefrontal cortex. In the middle cingulate cortex, we located affective, motor behavior in the anterior region, and elementary motor and somatosensory in the posterior part. This region is connected to the prefrontal, premotor and primary motor network. Finally, the posterior cingulate was shown to be connected with the visual areas, mesial and lateral parietal and temporal cortex.
Collapse
Affiliation(s)
- Irina Oane
- Epilepsy Monitoring Unit, Neurology Department, Emergency University Hospital Bucharest, 169 Splaiul Independentei Street, Bucharest, Romania; Neurology Department, Medical Faculty, Carol Davila University of Medicine and Pharmacy Bucharest, 8 Eroii Sanitari Boulevard 8, Bucharest, Romania.
| | - Andrei Barborica
- Physics Department, University of Bucharest, 405 Atomistilor Street, Bucharest, Romania.
| | - Filip Chetan
- Epilepsy Monitoring Unit, Neurology Department, Emergency University Hospital Bucharest, 169 Splaiul Independentei Street, Bucharest, Romania.
| | - Cristian Donos
- Physics Department, University of Bucharest, 405 Atomistilor Street, Bucharest, Romania.
| | - Mihai Dragos Maliia
- Epilepsy Monitoring Unit, Neurology Department, Emergency University Hospital Bucharest, 169 Splaiul Independentei Street, Bucharest, Romania; Physics Department, University of Bucharest, 405 Atomistilor Street, Bucharest, Romania.
| | - Anca Adriana Arbune
- Epilepsy Monitoring Unit, Neurology Department, Emergency University Hospital Bucharest, 169 Splaiul Independentei Street, Bucharest, Romania; Neurology Department, Medical Faculty, Carol Davila University of Medicine and Pharmacy Bucharest, 8 Eroii Sanitari Boulevard 8, Bucharest, Romania.
| | - Andrei Daneasa
- Epilepsy Monitoring Unit, Neurology Department, Emergency University Hospital Bucharest, 169 Splaiul Independentei Street, Bucharest, Romania.
| | - Constantin Pistol
- Physics Department, University of Bucharest, 405 Atomistilor Street, Bucharest, Romania.
| | - Adriana Elena Nica
- Intensive Care Unit Department, Emergency University Hospital Bucharest, 169 Splaiul Independentei Street, Bucharest, Romania.
| | - Ovidiu Alexandru Bajenaru
- Epilepsy Monitoring Unit, Neurology Department, Emergency University Hospital Bucharest, 169 Splaiul Independentei Street, Bucharest, Romania; Neurology Department, Medical Faculty, Carol Davila University of Medicine and Pharmacy Bucharest, 8 Eroii Sanitari Boulevard 8, Bucharest, Romania; Brain Research Group, Romanian Academy, 125 Calea Victoriei Street, Bucharest, Romania.
| | - Ioana Mindruta
- Epilepsy Monitoring Unit, Neurology Department, Emergency University Hospital Bucharest, 169 Splaiul Independentei Street, Bucharest, Romania; Neurology Department, Medical Faculty, Carol Davila University of Medicine and Pharmacy Bucharest, 8 Eroii Sanitari Boulevard 8, Bucharest, Romania; Brain Research Group, Romanian Academy, 125 Calea Victoriei Street, Bucharest, Romania.
| |
Collapse
|
4
|
Amorim-Leite R, Remick M, Welch W, Abel TJ. History of the Network Approach in Epilepsy Surgery. Neurosurg Clin N Am 2020; 31:301-308. [PMID: 32475480 DOI: 10.1016/j.nec.2020.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We provide a history and overview of the network approach to epilepsy surgery. Models of the epileptogenic zone (EZ) have evolved considerably over the years with more recent models accounting for the connectivity and network properties of epileptic foci. Next, we describe several examples of network phenotypes of focal epilepsy and how these have the potential to influence surgical decision-making and patient outcome. Future research will provide new insight into how network models of the EZ can determine optimal surgical interventions that improve seizure outcomes and optimize cognitive outcomes.
Collapse
Affiliation(s)
- Ricardo Amorim-Leite
- Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Madison Remick
- Department of Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - William Welch
- Division of Pediatric Neurology, Department of Pediatrics, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Taylor J Abel
- Department of Neurological Surgery, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| |
Collapse
|
5
|
Sleep modulates effective connectivity: A study using intracranial stimulation and recording. Clin Neurophysiol 2019; 131:529-541. [PMID: 31708382 DOI: 10.1016/j.clinph.2019.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Sleep is an active process with an important role in memory. Epilepsy patients often display a disturbed sleep architecture, with consequences on cognition. We aimed to investigate the effect of sleep on cortical networks' organization. METHODS We analyzed cortico-cortical evoked responses elicited by single pulse electrical stimulation (SPES) using intracranial depth electrodes in 25 patients with drug-resistant focal epilepsy explored using stereo-EEG. We applied the SPES protocol during wakefulness and NREM - N2 sleep. We analyzed 31,710 significant responses elicited by 799 stimulations covering most brain structures, epileptogenic or non-epileptogenic. We analyzed effective connectivity between structures using a graph-theory approach. RESULTS Sleep increases excitability in the brain, regardless of epileptogenicity. Local and distant connections are differently modulated by sleep, depending on the tissue epileptogenicity. In non-epileptogenic areas, frontal lobe connectivity is enhanced during sleep. There is increased connectivity between the hippocampus and temporal neocortex, while perisylvian structures are disconnected from the temporal lobe. In epileptogenic areas, we found a clear interhemispheric difference, with decreased connectivity in the right hemisphere during sleep. CONCLUSIONS Sleep modulates brain excitability and reconfigures functional brain networks, depending on tissue epileptogenicity. SIGNIFICANCE We found specific patterns of information flow during sleep in physiologic and pathologic structures, with possible implications for cognition.
Collapse
|
6
|
Popa I, Barborica A, Scholly J, Donos C, Bartolomei F, Lagarde S, Hirsch E, Valenti‐Hirsch M, Maliia MD, Arbune AA, Daneasa A, Ciurea J, Bajenaru O, Mindruta I. Illusory own body perceptions mapped in the cingulate cortex-An intracranial stimulation study. Hum Brain Mapp 2019; 40:2813-2826. [PMID: 30868705 PMCID: PMC6865384 DOI: 10.1002/hbm.24563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 11/07/2022] Open
Abstract
Body awareness is the result of sensory integration in the posterior parietal cortex; however, other brain structures are part of this process. Our goal is to determine how the cingulate cortex is involved in the representation of our body. We retrospectively selected patients with drug-resistant epilepsy, explored by stereo-electroencephalography, that had the cingulate cortex sampled outside the epileptogenic zone. The clinical effects of high-frequency electrical stimulation were reviewed and only those sites that elicited changes related to body perception were included. Connectivity of the cingulate cortex and other cortical structures was assessed using the h2 coefficient, following a nonlinear regression analysis of the broadband EEG signal. Poststimulation changes in connectivity were compared between two sets of stimulations eliciting or not eliciting symptoms related to body awareness (interest and control groups). We included 17 stimulations from 12 patients that reported different types of body perception changes such as sensation of being pushed toward right/left/up, one limb becoming heavier/lighter, illusory sensation of movement, sensation of pressure, sensation of floating or detachment of one hemi-body. High-frequency stimulation in the cingulate cortex (1 anterior, 15 middle, 1 posterior part) elicits body perception changes, associated with a decreased connectivity of the dominant posterior insula and increased coupling between other structures, located particularly in the nondominant hemisphere.
Collapse
Grants
- COFUND-FLAGERA II-CAUSALTOMICS Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- COFUND-FLAGERA II-SCALES Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- PN-III-P1-1.1-TE-2016-0706 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- PN-III-P4-ID-PCE-2016-0588 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- European Commission
- Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- European Commission
Collapse
Affiliation(s)
- Irina Popa
- Neurology DepartmentUniversity Emergency Hospital BucharestBucharestRomania
- Neurology DepartmentUniversity of Medicine and Pharmacy “Carol Davila”BucharestRomania
| | - Andrei Barborica
- Physics DepartmentUniversity of BucharestBucharestRomania
- FHC Inc.BowdoinMaine
| | - Julia Scholly
- Neurology DepartmentStrasbourg University HospitalStrasbourgFrance
| | - Cristian Donos
- Physics DepartmentUniversity of BucharestBucharestRomania
| | - Fabrice Bartolomei
- Aix Marseille Univ, APHM, INSERM, INS, Inst Neurosci SystTimone Hospital, Clinical NeurophysiologyMarseilleFrance
| | - Stanislas Lagarde
- Aix Marseille Univ, APHM, INSERM, INS, Inst Neurosci SystTimone Hospital, Clinical NeurophysiologyMarseilleFrance
| | - Edouard Hirsch
- Neurology DepartmentStrasbourg University HospitalStrasbourgFrance
| | | | | | | | - Andrei Daneasa
- Neurology DepartmentUniversity Emergency Hospital BucharestBucharestRomania
| | - Jean Ciurea
- Neurosurgery DepartmentBagdasar‐Arseni HospitalBucharestRomania
| | - Ovidiu‐Alexandru Bajenaru
- Neurology DepartmentUniversity Emergency Hospital BucharestBucharestRomania
- Neurology DepartmentUniversity of Medicine and Pharmacy “Carol Davila”BucharestRomania
| | - Ioana Mindruta
- Neurology DepartmentUniversity Emergency Hospital BucharestBucharestRomania
- Neurology DepartmentUniversity of Medicine and Pharmacy “Carol Davila”BucharestRomania
| |
Collapse
|
7
|
Despouy E, Curot J, Denuelle M, Deudon M, Sol JC, Lotterie JA, Reddy L, Nowak LG, Pariente J, Thorpe SJ, Valton L, Barbeau EJ. Neuronal spiking activity highlights a gradient of epileptogenicity in human tuberous sclerosis lesions. Clin Neurophysiol 2019; 130:537-547. [DOI: 10.1016/j.clinph.2018.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/12/2018] [Accepted: 12/25/2018] [Indexed: 11/26/2022]
|
8
|
Chassoux F, Navarro V, Catenoix H, Valton L, Vignal JP. Planning and management of SEEG. Neurophysiol Clin 2018; 48:25-37. [DOI: 10.1016/j.neucli.2017.11.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
9
|
What is the concordance between the seizure onset zone and the irritative zone? A SEEG quantified study. Clin Neurophysiol 2016; 127:1157-1162. [DOI: 10.1016/j.clinph.2015.10.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 09/30/2015] [Accepted: 10/03/2015] [Indexed: 11/15/2022]
|
10
|
Serletis D, Bulacio J, Alexopoulos A, Najm I, Bingaman W, González-Martínez J. Tailored unilobar and multilobar resections for orbitofrontal-plus epilepsy. Neurosurgery 2015; 75:388-97; discussion 397. [PMID: 24991708 DOI: 10.1227/neu.0000000000000481] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Surgery for frontal lobe epilepsy often has poor results, likely because of incomplete resection of the epileptogenic zone. OBJECTIVE To present our experience with a series of patients manifesting 2 different anatomo-electro-clinical patterns of refractory orbitofrontal epilepsy, necessitating different surgical approaches for resection in each group. METHODS Eleven patients with refractory epilepsy involving the orbitofrontal region were consecutively identified over 3 years in whom stereoelectroencephalography identified the epileptogenic zone. All patients underwent preoperative evaluation, stereoelectroencephalography, and postoperative magnetic resonance imaging. Demographic features, seizure semiology, imaging characteristics, location of the epileptogenic zone, surgical resection site, and pathological diagnosis were analyzed. Surgical outcome was correlated with type of resection. RESULTS Five patients exhibited orbitofrontal plus frontal epilepsy with the epileptogenic zone consistently residing in the frontal lobe; after surgery, 4 patients were free of disabling seizures (Engel I) and 1 patient improved (Engel II). The remaining 6 patients had multilobar epilepsy with the epileptogenic zone located in the orbitofrontal cortex associated with the temporal polar region (orbitofrontal plus temporal polar epilepsy). After surgery, all 6 patients were free of disabling seizures (Engel I). Pathology confirmed focal cortical dysplasia in all patients. We report no complications or mortalities in this series. CONCLUSION Our findings highlight the importance of differentiating between orbitofrontal plus frontal and orbitofrontal plus temporal polar epilepsy in patients afflicted with seizures involving the orbitofrontal cortex. For identified cases of orbitofrontal plus temporal polar epilepsy, a multilobar resection including the temporal pole may lead to improved postoperative outcomes with minimal morbidity or mortality.
Collapse
Affiliation(s)
- Demitre Serletis
- *Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas; ‡Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
| | | | | | | | | | | |
Collapse
|
11
|
Serletis D, Bulacio J, Bingaman W, Najm I, González-Martínez J. The stereotactic approach for mapping epileptic networks: a prospective study of 200 patients. J Neurosurg 2014; 121:1239-46. [DOI: 10.3171/2014.7.jns132306] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Stereoelectroencephalography (SEEG) is a methodology that permits accurate 3D in vivo electroclinical recordings of epileptiform activity. Among other general indications for invasive intracranial electroencephalography (EEG) monitoring, its advantages include access to deep cortical structures, its ability to localize the epileptogenic zone when subdural grids have failed to do so, and its utility in the context of possible multifocal seizure onsets with the need for bihemispheric explorations. In this context, the authors present a brief historical overview of the technique and report on their experience with 2 SEEG techniques (conventional Leksell frame-based stereotaxy and frameless stereotaxy under robotic guidance) for the purpose of invasively monitoring difficult-to-localize refractory focal epilepsy.
Methods
Over a period of 4 years, the authors prospectively identified 200 patients with refractory epilepsy who collectively underwent 2663 tailored SEEG electrode implantations for invasive intracranial EEG monitoring and extraoperative mapping. The first 122 patients underwent conventional Leksell frame-based SEEG electrode placement; the remaining 78 patients underwent frameless stereotaxy under robotic guidance, following acquisition of a stereotactic ROSA robotic device at the authors' institution. Electrodes were placed according to a preimplantation hypothesis of the presumed epileptogenic zone, based on a standardized preoperative workup including video-EEG monitoring, MRI, PET, ictal SPECT, and neuropsychological assessment. Demographic features, seizure semiology, number and location of implanted SEEG electrodes, and location of the epileptogenic zone were recorded and analyzed for all patients. For patients undergoing subsequent craniotomy for resection, the type of resection and procedure-related complications were prospectively recorded. These results were analyzed and correlated with pathological diagnosis and postoperative seizure outcomes.
Results
The epileptogenic zone was confirmed by SEEG in 154 patients (77%), of which 134 (87%) underwent subsequent craniotomy for epileptogenic zone resection. Within this cohort, 90 patients had a minimum follow-up of at least 12 months; therein, 61 patients (67.8%) remained seizure free, with an average follow-up period of 2.4 years. The most common pathological diagnosis was focal cortical dysplasia Type I (55 patients, 61.1%). Per electrode, the surgical complications included wound infection (0.08%), hemorrhagic complications (0.08%), and a transient neurological deficit (0.04%) in a total of 5 patients (2.5%). One patient (0.5%) ultimately died due to intracerebral hematoma directly ensuing from SEEG electrode placement.
Conclusions
Based on these results, SEEG methodology is safe, reliable, and effective. It is associated with minimal morbidity and mortality, and serves as a practical, minimally invasive approach to extraoperative localization of the epileptogenic zone in patients with refractory epilepsy.
Collapse
Affiliation(s)
- Demitre Serletis
- 1Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and
| | - Juan Bulacio
- 2Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
| | - William Bingaman
- 2Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
| | - Imad Najm
- 2Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
| | | |
Collapse
|
12
|
Halász P. How sleep activates epileptic networks? EPILEPSY RESEARCH AND TREATMENT 2013; 2013:425697. [PMID: 24159386 PMCID: PMC3789502 DOI: 10.1155/2013/425697] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/24/2013] [Indexed: 11/17/2022]
Abstract
Background. The relationship between sleep and epilepsy has been long ago studied, and several excellent reviews are available. However, recent development in sleep research, the network concept in epilepsy, and the recognition of high frequency oscillations in epilepsy and more new results may put this matter in a new light. Aim. The review address the multifold interrelationships between sleep and epilepsy networks and with networks of cognitive functions. Material and Methods. The work is a conceptual update of the available clinical data and relevant studies. Results and Conclusions. Studies exploring dynamic microstructure of sleep have found important gating mechanisms for epileptic activation. As a general rule interictal epileptic manifestations seem to be linked to the slow oscillations of sleep and especially to the reactive delta bouts characterized by A1 subtype in the CAP system. Important link between epilepsy and sleep is the interference of epileptiform discharges with the plastic functions in NREM sleep. This is the main reason of cognitive impairment in different forms of early epileptic encephalopathies affecting the brain in a special developmental window. The impairment of cognitive functions via sleep is present especially in epileptic networks involving the thalamocortical system and the hippocampocortical memory encoding system.
Collapse
Affiliation(s)
- Peter Halász
- National Institute of Clinical Neuroscience, Lotz K. Straße 18, Budapest 1026, Hungary
| |
Collapse
|
13
|
|