1
|
Rigoard P, Ounajim A, Moens M, Goudman L, Roulaud M, Lorgeoux B, Baron S, Nivole K, Many M, Lampert L, David R, Billot M. Should we Oppose or Combine Waveforms for Spinal Cord Stimulation in PSPS-T2 Patients? A Prospective Randomized Crossover Trial (MULTIWAVE Study). THE JOURNAL OF PAIN 2023; 24:2319-2339. [PMID: 37473903 DOI: 10.1016/j.jpain.2023.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/16/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
Refractory persistent spinal pain syndrome after surgery (PSPS-T2) can be successfully addressed by spinal cord stimulation (SCS). While conventional stimulation generates paresthesia, recent systems enable the delivery of paresthesia-free stimulation. Studies have claimed non-inferiority/superiority of selected paresthesia-free stimulation compared with paresthesia-based stimulation, but the comparative efficacy between different waveforms still needs to be determined in a given patient. We designed a randomized controlled 3-month crossover trial to compare pain relief of paresthesia-based stimulation versus high frequency versus burst in 28 PSPS-T2 patients implanted with multiwave SCS systems. Our secondary objectives were to determine the efficacy of these 3 waveforms on pain surface, quality of life, functional capacity, psychological distress, and validated composite multidimensional clinical response index to provide holistic comparisons at 3-, 6-, 9-, and 15-month post-randomization. The preferred stimulation modality was documented during the follow-up periods. No difference between the waveforms was observed in this study (P = .08). SCS led to significant pain relief, quality of life improvement, improvement of multidimensional clinical response index, and of all other clinical outcomes at all follow-up visits. Forty-four percent of the patients chose to keep the paresthesia-based stimulation modality after the 15-month follow-up period. By giving the possibility to switch and/or to combine several waveforms, the overall rate of SCS responders further increased with 25%. In this study, high frequency or burst do not appear superior to paresthesia-based stimulation, wherefore paresthesia-based stimulation should still be considered as a valid option. However, combining paresthesia-based stimulation with paresthesia-free stimulation, through personalized multiwave therapy, might significantly improve SCS responses. PERSPECTIVE: This article assesses clinical SCS efficacy on pain relief, by comparing paresthesia-based stimulation and paresthesia-free stimulation (including high frequency and burst) modalities in patient presenting with PSPS-T2. Switching and/or combining waveforms contribute to increasing the global SCS responders rate.
Collapse
Affiliation(s)
- Philippe Rigoard
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, France; Department of Neuro-Spine & Neuromodulation, Poitiers University Hospital, Poitiers, France; Pprime Institute UPR 3346, CNRS, ISAE-ENSMA, University of Poitiers, Chasseneuil-du-Poitou, France
| | - Amine Ounajim
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | - Maarten Moens
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Brussels, Belgium; STIMULUS research group, Vrije Universiteit Brussel, Brussels, Belgium; Department of Radiology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Lisa Goudman
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Brussels, Belgium; STIMULUS research group, Vrije Universiteit Brussel, Brussels, Belgium; Research Foundation-Flanders (FWO), Brussels, Belgium
| | - Manuel Roulaud
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | - Bertille Lorgeoux
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | - Sandrine Baron
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | - Kévin Nivole
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | - Mathilde Many
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | - Lucie Lampert
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | - Romain David
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, France; Department of Physical and Rehabilitation Medicine Unit, Poitiers University Hospital, University of Poitiers, Poitiers, France
| | - Maxime Billot
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| |
Collapse
|
2
|
Liang L, Damiani A, Del Brocco M, Rogers ER, Jantz MK, Fisher LE, Gaunt RA, Capogrosso M, Lempka SF, Pirondini E. A systematic review of computational models for the design of spinal cord stimulation therapies: from neural circuits to patient-specific simulations. J Physiol 2023; 601:3103-3121. [PMID: 36409303 PMCID: PMC10259770 DOI: 10.1113/jp282884] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/08/2022] [Indexed: 08/02/2023] Open
Abstract
Seventy years ago, Hodgkin and Huxley published the first mathematical model to describe action potential generation, laying the foundation for modern computational neuroscience. Since then, the field has evolved enormously, with studies spanning from basic neuroscience to clinical applications for neuromodulation. Computer models of neuromodulation have evolved in complexity and personalization, advancing clinical practice and novel neurostimulation therapies, such as spinal cord stimulation. Spinal cord stimulation is a therapy widely used to treat chronic pain, with rapidly expanding indications, such as restoring motor function. In general, simulations contributed dramatically to improve lead designs, stimulation configurations, waveform parameters and programming procedures and provided insight into potential mechanisms of action of electrical stimulation. Although the implementation of neural models are relentlessly increasing in number and complexity, it is reasonable to ask whether this observed increase in complexity is necessary for improved accuracy and, ultimately, for clinical efficacy. With this aim, we performed a systematic literature review and a qualitative meta-synthesis of the evolution of computational models, with a focus on complexity, personalization and the use of medical imaging to capture realistic anatomy. Our review showed that increased model complexity and personalization improved both mechanistic and translational studies. More specifically, the use of medical imaging enabled the development of patient-specific models that can help to transform clinical practice in spinal cord stimulation. Finally, we combined our results to provide clear guidelines for standardization and expansion of computational models for spinal cord stimulation.
Collapse
Affiliation(s)
- Lucy Liang
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Arianna Damiani
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matteo Del Brocco
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Evan R Rogers
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Maria K Jantz
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Lee E Fisher
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert A Gaunt
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marco Capogrosso
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Elvira Pirondini
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Shanthanna H, Eldabe S, Provenzano DA, Bouche B, Buchser E, Chadwick R, Doshi TL, Duarte R, Hunt C, Huygen FJPM, Knight J, Kohan L, North R, Rosenow J, Winfree CJ, Narouze S. Evidence-based consensus guidelines on patient selection and trial stimulation for spinal cord stimulation therapy for chronic non-cancer pain. Reg Anesth Pain Med 2023; 48:273-287. [PMID: 37001888 PMCID: PMC10370290 DOI: 10.1136/rapm-2022-104097] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/18/2023] [Indexed: 04/03/2023]
Abstract
Spinal cord stimulation (SCS) has demonstrated effectiveness for neuropathic pain. Unfortunately, some patients report inadequate long-term pain relief. Patient selection is emphasized for this therapy; however, the prognostic capabilities and deployment strategies of existing selection techniques, including an SCS trial, have been questioned. After approval by the Board of Directors of the American Society of Regional Anesthesia and Pain Medicine, a steering committee was formed to develop evidence-based guidelines for patient selection and the role of an SCS trial. Representatives of professional organizations with clinical expertize were invited to participate as committee members. A comprehensive literature review was carried out by the steering committee, and the results organized into narrative reports, which were circulated to all the committee members. Individual statements and recommendations within each of seven sections were formulated by the steering committee and circulated to members for voting. We used a modified Delphi method wherein drafts were circulated to each member in a blinded fashion for voting. Comments were incorporated in the subsequent revisions, which were recirculated for voting to achieve consensus. Seven sections with a total of 39 recommendations were approved with 100% consensus from all the members. Sections included definitions and terminology of SCS trial; benefits of SCS trial; screening for psychosocial characteristics; patient perceptions on SCS therapy and the use of trial; other patient predictors of SCS therapy; conduct of SCS trials; and evaluation of SCS trials including minimum criteria for success. Recommendations included that SCS trial should be performed before a definitive SCS implant except in anginal pain (grade B). All patients must be screened with an objective validated instrument for psychosocial factors, and this must include depression (grade B). Despite some limitations, a trial helps patient selection and provides patients with an opportunity to experience the therapy. These recommendations are expected to guide practicing physicians and other stakeholders and should not be mistaken as practice standards. Physicians should continue to make their best judgment based on individual patient considerations and preferences.
Collapse
Affiliation(s)
| | - Sam Eldabe
- James Cook University Hospital, Middlesbrough, UK
| | | | | | - Eric Buchser
- Pain Management and Neuromodulation Centre, EHC, Morges, Switzerland
- Pain, EHC, Morges, Switzerland
| | | | - Tina L Doshi
- Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rui Duarte
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Christine Hunt
- Anesthesiology - Pain Medicine, Mayo Clinic in Florida, Jacksonville, Florida, USA
| | | | - Judy Knight
- Summa Western Reserve Hospital, Cuyahoga Falls, Ohio, USA
| | - Lynn Kohan
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA
| | - Richard North
- Neurosurgery, Anesthesiology and Critical Care Medicine (ret.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joshua Rosenow
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Samer Narouze
- Center for Pain Medicine, Summa Western Reserve Hospital, Cuyahoga Falls, Ohio, USA
| |
Collapse
|
4
|
ElSaban M, Kleppel DJ, Kubrova E, Martinez Alvarez GA, Hussain N, D'Souza RS. Physical functioning following spinal cord stimulation: a systematic review and meta-analysis. Reg Anesth Pain Med 2023; 48:302-311. [PMID: 37080578 DOI: 10.1136/rapm-2022-104295] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/07/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Spinal cord stimulation (SCS) has emerged as an important treatment for chronic pain disorders. While there is evidence supporting improvement in pain intensity with SCS therapy, efforts to synthesize the evidence on physical functioning are lacking. OBJECTIVE The primary objective of this meta-analysis was to assess long-term physical function following 12 months of SCS for chronic back pain. EVIDENCE REVIEW PubMed, EMBASE, Scopus, and CENTRAL databases were searched for original peer-reviewed publications investigating physical function following SCS. The primary outcome was physical function at 12 months following SCS therapy for chronic back pain compared with baseline. A random effects model with an inverse variable method was used. The Grading of Recommendation, Assessment, Development, and Evaluation (GRADE) framework was used to determine the certainty of evidence. FINDINGS A total of 518 studies were screened, of which 36 were included. Twenty-two studies were pooled in the meta-analysis. There was a significant reduction in Oswestry Disability Index (ODI) scores at all time frames up to 24 months following implantation. Pooled results revealed significant improvement in ODI scores at 12 months with a mean difference of -17.00% (95% CI -23.07 to -10.94, p<0.001). There was a very low certainty of evidence in this finding as per the GRADE framework. There was no significant difference in subgroup analyses based on study design (randomised controlled trials (RCTs) vs non-RCTs), study funding, or stimulation type. CONCLUSION This meta-analysis highlights significant improvements in physical function after SCS therapy. However, this finding was limited by a very low GRADE certainty of evidence and high heterogeneity.
Collapse
Affiliation(s)
- Mariam ElSaban
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Donald J Kleppel
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Eva Kubrova
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Nasir Hussain
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Ryan S D'Souza
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic Rochester, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Rigoard P, Ounajim A, Goudman L, Wood C, Roulaud M, Page P, Lorgeoux B, Baron S, Nivole K, Many M, Cuny E, Voirin J, Fontaine D, Raoul S, Mertens P, Peruzzi P, Caire F, Buisset N, David R, Moens M, Billot M. Combining Awake Anesthesia with Minimal Invasive Surgery Optimizes Intraoperative Surgical Spinal Cord Stimulation Lead Placement. J Clin Med 2022; 11:5575. [PMID: 36233439 PMCID: PMC9571566 DOI: 10.3390/jcm11195575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Spinal cord stimulation (SCS) is an effective and validated treatment to address chronic refractory neuropathic pain in persistent spinal pain syndrome-type 2 (PSPS-T2) patients. Surgical SCS lead placement is traditionally performed under general anesthesia due to its invasiveness. In parallel, recent works have suggested that awake anesthesia (AA), consisting of target controlled intra-venous anesthesia (TCIVA), could be an interesting tool to optimize lead anatomical placement using patient intra-operative feedback. We hypothesized that combining AA with minimal invasive surgery (MIS) could improve SCS outcomes. The goal of this study was to evaluate SCS lead performance (defined by the area of pain adequately covered by paraesthesia generated via SCS), using an intraoperative objective quantitative mapping tool, and secondarily, to assess pain relief, functional improvement and change in quality of life with a composite score. We analyzed data from a prospective multicenter study (ESTIMET) to compare the outcomes of 115 patients implanted with MIS under AA (MISAA group) or general anesthesia (MISGA group), or by laminectomy under general anesthesia (LGA group). All in all, awake surgery appears to show significantly better performance than general anesthesia in terms of patient pain coverage (65% vs. 34-62%), pain surface (50-76% vs. 50-61%) and pain intensity (65% vs. 35-40%), as well as improved secondary outcomes (quality of life, functional disability and depression). One step further, our results suggest that MISAA combined with intra-operative hypnosis could potentialize patient intraoperative cooperation and could be proposed as a personalized package offered to PSPS-T2 patients eligible for SCS implantation in highly dedicated neuromodulation centers.
Collapse
Affiliation(s)
- Philippe Rigoard
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
- Department of Neuro-Spine & Neuromodulation, Poitiers University Hospital, 86000 Poitiers, France
- Pprime Institute UPR 3346, CNRS, ISAE-ENSMA, University of Poitiers, 86000 Poitiers, France
| | - Amine Ounajim
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
| | - Lisa Goudman
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
- STIMULUS Consortium (reSearch and TeachIng neuroModULation Uz bruSsel), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
- Research Foundation—Flanders (FWO), 1090 Brussels, Belgium
| | - Chantal Wood
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
| | - Manuel Roulaud
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
| | - Philippe Page
- Department of Neuro-Spine & Neuromodulation, Poitiers University Hospital, 86000 Poitiers, France
| | - Bertille Lorgeoux
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
| | - Sandrine Baron
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
| | - Kevin Nivole
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
| | - Mathilde Many
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
| | - Emmanuel Cuny
- Department of Neurosurgery, Bordeaux University Hospital, 33000 Bordeaux, France
| | - Jimmy Voirin
- Department of Neurosurgery, Colmar Hospital, 68000 Colmar, France
| | - Denys Fontaine
- Centre Hospitalier Universitaire de Nice, Department of Neurosurgery, Université Côte d’Azur, 06000 Nice, France
- FHU InovPain, Côte Azur University, 06000 Nice, France
| | - Sylvie Raoul
- Department of Neurosurgery, Nantes University Hospital, 44000 Nantes, France
| | - Patrick Mertens
- Department of Neurosurgery, Lyon University Hospital, 69000 Lyon, France
| | - Philippe Peruzzi
- Department of Neurosurgery, Reims University Hospital, 51100 Reims, France
| | - François Caire
- Department of Neurosurgery, Limoges University Hospital, 87000 Limoges, France
| | - Nadia Buisset
- Department of Neurosurgery, Lille University Hospital, 59000 Lille, France
| | - Romain David
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
- Physical and Rehabilitation Medicine Unit, Poitiers University Hospital, University of Poitiers, 86021 Poitiers, France
| | - Maarten Moens
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
- STIMULUS Consortium (reSearch and TeachIng neuroModULation Uz bruSsel), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
- Department of Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Maxime Billot
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
| |
Collapse
|
6
|
Lempka SF, Zander HJ, Anaya CJ, Wyant A, Ozinga JG, Machado AG. Patient-Specific Analysis of Neural Activation During Spinal Cord Stimulation for Pain. Neuromodulation 2019; 23:572-581. [PMID: 31464040 DOI: 10.1111/ner.13037] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Despite the widespread use of spinal cord stimulation (SCS) for chronic pain management, its neuromodulatory effects remain poorly understood. Computational models provide a valuable tool to study SCS and its effects on axonal pathways within the spinal cord. However, these models must include sufficient detail to correlate model predictions with clinical effects, including patient-specific data. Therefore, the goal of this study was to investigate axonal activation at clinically relevant SCS parameters using a computer model that incorporated patient-specific anatomy and electrode locations. METHODS We developed a patient-specific computer model for a patient undergoing SCS to treat chronic pain. This computer model consisted of two main components: 1) finite element model of the extracellular voltages generated by SCS and 2) multicompartment cable models of axons in the spinal cord. To determine the potential significance of a patient-specific approach, we also performed simulations with standard canonical models of SCS. We used the computer models to estimate axonal activation at clinically measured sensory, comfort, and discomfort thresholds. RESULTS The patient-specific and canonical models predicted significantly different axonal activation. Relative to the canonical models, the patient-specific model predicted sensory threshold estimates that were more consistent with the corresponding clinical measurements. These results suggest that it is important to account for sources of interpatient variability (e.g., anatomy, electrode locations) in model-based analysis of SCS. CONCLUSIONS This study demonstrates the potential for patient-specific computer models to quantitatively describe the axonal response to SCS and to address scientific questions related to clinical SCS.
Collapse
Affiliation(s)
- Scott F Lempka
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA.,Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Hans J Zander
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Carlos J Anaya
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Alexandria Wyant
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - John G Ozinga
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andre G Machado
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|