1
|
Jolly AE, Bălăeţ M, Azor A, Friedland D, Sandrone S, Graham NSN, Zimmerman K, Sharp DJ. Detecting axonal injury in individual patients after traumatic brain injury. Brain 2021; 144:92-113. [PMID: 33257929 PMCID: PMC7880666 DOI: 10.1093/brain/awaa372] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/11/2020] [Accepted: 08/17/2020] [Indexed: 12/04/2022] Open
Abstract
Poor outcomes after traumatic brain injury (TBI) are common yet remain difficult to predict. Diffuse axonal injury is important for outcomes, but its assessment remains limited in the clinical setting. Currently, axonal injury is diagnosed based on clinical presentation, visible damage to the white matter or via surrogate markers of axonal injury such as microbleeds. These do not accurately quantify axonal injury leading to misdiagnosis in a proportion of patients. Diffusion tensor imaging provides a quantitative measure of axonal injury in vivo, with fractional anisotropy often used as a proxy for white matter damage. Diffusion imaging has been widely used in TBI but is not routinely applied clinically. This is in part because robust analysis methods to diagnose axonal injury at the individual level have not yet been developed. Here, we present a pipeline for diffusion imaging analysis designed to accurately assess the presence of axonal injury in large white matter tracts in individuals. Average fractional anisotropy is calculated from tracts selected on the basis of high test-retest reliability, good anatomical coverage and their association to cognitive and clinical impairments after TBI. We test our pipeline for common methodological issues such as the impact of varying control sample sizes, focal lesions and age-related changes to demonstrate high specificity, sensitivity and test-retest reliability. We assess 92 patients with moderate-severe TBI in the chronic phase (≥6 months post-injury), 25 patients in the subacute phase (10 days to 6 weeks post-injury) with 6-month follow-up and a large control cohort (n = 103). Evidence of axonal injury is identified in 52% of chronic and 28% of subacute patients. Those classified with axonal injury had significantly poorer cognitive and functional outcomes than those without, a difference not seen for focal lesions or microbleeds. Almost a third of patients with unremarkable standard MRIs had evidence of axonal injury, whilst 40% of patients with visible microbleeds had no diffusion evidence of axonal injury. More diffusion abnormality was seen with greater time since injury, across individuals at various chronic injury times and within individuals between subacute and 6-month scans. We provide evidence that this pipeline can be used to diagnose axonal injury in individual patients at subacute and chronic time points, and that diffusion MRI provides a sensitive and complementary measure when compared to susceptibility weighted imaging, which measures diffuse vascular injury. Guidelines for the implementation of this pipeline in a clinical setting are discussed.
Collapse
Affiliation(s)
- Amy E Jolly
- Clinical, cognitive and computational neuroimaging laboratory (C3NL), Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.,UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, London, W12 0NN UK
| | - Maria Bălăeţ
- Clinical, cognitive and computational neuroimaging laboratory (C3NL), Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Adriana Azor
- Clinical, cognitive and computational neuroimaging laboratory (C3NL), Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Daniel Friedland
- Clinical, cognitive and computational neuroimaging laboratory (C3NL), Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Stefano Sandrone
- Clinical, cognitive and computational neuroimaging laboratory (C3NL), Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Neil S N Graham
- Clinical, cognitive and computational neuroimaging laboratory (C3NL), Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Karl Zimmerman
- Clinical, cognitive and computational neuroimaging laboratory (C3NL), Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - David J Sharp
- Clinical, cognitive and computational neuroimaging laboratory (C3NL), Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.,UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, London, W12 0NN UK
| |
Collapse
|
2
|
Makino Y, Arai N, Hoshioka Y, Yoshida M, Kojima M, Horikoshi T, Mukai H, Iwase H. Traumatic axonal injury revealed by postmortem magnetic resonance imaging: A case report. Leg Med (Tokyo) 2018; 36:9-16. [PMID: 30312836 DOI: 10.1016/j.legalmed.2018.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 09/03/2018] [Accepted: 09/30/2018] [Indexed: 11/26/2022]
Abstract
In forensic investigations, it is important to detect traumatic axonal injuries (TAIs) to reveal head trauma that might otherwise remain occult. These lesions are subtle and frequently ambiguous on macroscopic evaluations. We present a case of TAI revealed by pre-autopsy postmortem magnetic resonance imaging (PMMR). A man in his sixties was rendered unconscious in a motor vehicle accident. CT scans revealed traumatic mild subarachnoid hemorrhage. Two weeks after the accident he regained consciousness, but displayed an altered mental state. Seven weeks after the accident, he suddenly died in hospital. Postmortem computed tomography (PMCT) and PMMR were followed by a forensic autopsy. PMMR showed low-intensity lesions in parasagittal white matter, deep white matter, and corpus callosum on three-dimensional gradient-echo T1-weighted imaging (3D-GRE T1WI). In some of these lesions, T2∗-weighted imaging also showed low-intensity foci suggesting hemorrhagic axonal injury. The lesions were difficult to find on PMCT and macroscopic evaluation, but were visible on antemortem MRI and confirmed as TAIs on histopathology. From this case, it can be said that PMMR can detect subtle TAIs missed by PMCT and macroscopic evaluation. Hence, pre-autopsy PMMR scanning could be useful for identifying TAIs during forensic investigations.
Collapse
Affiliation(s)
- Yohsuke Makino
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Nobutaka Arai
- Laboratory of Neuropathology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Yumi Hoshioka
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Maiko Yoshida
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Masatoshi Kojima
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Takuro Horikoshi
- Department of Radiology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Hiroki Mukai
- Department of Radiology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Hirotaro Iwase
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|