1
|
Wang S, Li T, He H, Li Y. Dynamical changes of interaction across functional brain communities during propofol-induced sedation. Cereb Cortex 2024; 34:bhae263. [PMID: 38918077 DOI: 10.1093/cercor/bhae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
It is crucial to understand how anesthetics disrupt information transmission within the whole-brain network and its hub structure to gain insight into the network-level mechanisms underlying propofol-induced sedation. However, the influence of propofol on functional integration, segregation, and community structure of whole-brain networks were still unclear. We recruited 12 healthy subjects and acquired resting-state functional magnetic resonance imaging data during 5 different propofol-induced effect-site concentrations (CEs): 0, 0.5, 1.0, 1.5, and 2.0 μg/ml. We constructed whole-brain functional networks for each subject under different conditions and identify community structures. Subsequently, we calculated the global and local topological properties of whole-brain network to investigate the alterations in functional integration and segregation with deepening propofol sedation. Additionally, we assessed the alteration of key nodes within the whole-brain community structure at each effect-site concentrations level. We found that global participation was significantly increased at high effect-site concentrations, which was mediated by bilateral postcentral gyrus. Meanwhile, connector hubs appeared and were located in posterior cingulate cortex and precentral gyrus at high effect-site concentrations. Finally, nodal participation coefficients of connector hubs were closely associated to the level of sedation. These findings provide valuable insights into the relationship between increasing propofol dosage and enhanced functional interaction within the whole-brain networks.
Collapse
Affiliation(s)
- Shengpei Wang
- Laboratory of Brain Atlas and Brain-Inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Rd, Haidian District, Beijing 100190, PR China
- Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, Chinese Academy of Sciences, No. 95 Zhongguancun East Rd, Haidian District, Beijing 100190, PR China
| | - Tianzuo Li
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, No. 10 Yangfangdian Tieyi Rd, Haidian District, Beijing 100038, PR China
| | - Huiguang He
- Laboratory of Brain Atlas and Brain-Inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Rd, Haidian District, Beijing 100190, PR China
- Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, Chinese Academy of Sciences, No. 95 Zhongguancun East Rd, Haidian District, Beijing 100190, PR China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Huairou District, Beijing 101408, PR China
| | - Yun Li
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing 100070, PR China
| |
Collapse
|
2
|
Grouper H, Löffler M, Flor H, Eisenberg E, Pud D. Increased functional connectivity between limbic brain areas in healthy individuals with high versus low sensitivity to cold pain: A resting state fMRI study. PLoS One 2022; 17:e0267170. [PMID: 35442971 PMCID: PMC9020745 DOI: 10.1371/journal.pone.0267170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/03/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The representation of variability in sensitivity to pain by differences in neural connectivity patterns and its association with psychological factors needs further investigation. This study assessed differences in resting-state functional connectivity (rsFC) and its association to cognitive-affective aspects of pain in two groups of healthy subjects with low versus high sensitivity to pain (LSP vs. HSP). We hypothesized that HSP will show stronger connectivity in brain regions involved in the affective-motivational processing of pain and that this higher connectivity would be related to negative affective and cognitive evaluations of pain. METHODS Forty-eight healthy subjects were allocated to two groups according to their tolerability to cold stimulation (cold pressor test, CPT, 1°C). Group LSP (N = 24) reached the cut-off time of 180±0 sec and group HSP tolerated the CPT for an average of 13±4.8 sec. Heat, cold and mechanical evoked pain were measured, as well as pain-catastrophizing (PCS), depression, anxiety and stress (DASS-21). All subjects underwent resting state fMRI. ROI-to-ROI analysis was performed. RESULTS In comparison to the LSP, the HSP had stronger interhemispheric connectivity of the amygdala (p = 0.01) and between the amygdala and nucleus accumbens (NAc) (p = 0.01). Amygdala connectivity was associated with higher pain catastrophizing in the HSP only (p<0.01). CONCLUSIONS These findings suggest that high sensitivity to pain may be reflected by neural circuits involved in affective and motivational aspects of pain. To what extent this connectivity within limbic brain structures relates to higher alertness and more profound withdrawal behavior to aversive events needs to be further investigated.
Collapse
Affiliation(s)
- Hadas Grouper
- Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Martin Löffler
- Medical Faculty Mannheim, Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Heidelberg University, Heidelberg, Germany
| | - Herta Flor
- Medical Faculty Mannheim, Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Heidelberg University, Heidelberg, Germany
| | - Elon Eisenberg
- The Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
- Institute of Pain Medicine, Haifa, Israel
| | - Dorit Pud
- Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
3
|
Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Scale-free functional brain dynamics during recovery from sport-related concussion. Hum Brain Mapp 2020; 41:2567-2582. [PMID: 32348019 PMCID: PMC7294069 DOI: 10.1002/hbm.24962] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 11/24/2022] Open
Abstract
Studies using blood‐oxygenation‐level‐dependent functional magnetic resonance imaging (BOLD fMRI) have characterized how the resting brain is affected by concussion. The literature to date, however, has largely focused on measuring changes in the spatial organization of functional brain networks. In the present study, changes in the temporal dynamics of BOLD signals are examined throughout concussion recovery using scaling (or fractal) analysis. Imaging data were collected for 228 university‐level athletes, 61 with concussion and 167 athletic controls. Concussed athletes were scanned at the acute phase of injury (1–7 days postinjury), the subacute phase (8–14 days postinjury), medical clearance to return to sport (RTS), 1 month post‐RTS and 1 year post‐RTS. The wavelet leader multifractal approach was used to assess scaling (c1) and multifractal (c2) behavior. Significant longitudinal changes were identified for c1, which was lowest at acute injury, became significantly elevated at RTS, and returned near control levels by 1 year post‐RTS. No longitudinal changes were identified for c2. Secondary analyses showed that clinical measures of acute symptom severity and time to RTP were related to longitudinal changes in c1. Athletes with both higher symptoms and prolonged recovery had elevated c1 values at RTS, while athletes with higher symptoms but rapid recovery had reduced c1 at acute injury. This study provides the first evidence for long‐term recovery of BOLD scale‐free brain dynamics after a concussion.
Collapse
Affiliation(s)
- Nathan W Churchill
- Neuroscience Research Program, St. Michael's Hospital, Toronto, Canada.,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Canada
| | - Michael G Hutchison
- Neuroscience Research Program, St. Michael's Hospital, Toronto, Canada.,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Canada
| | - Simon J Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto Faculty of Medicine, Toronto, Canada
| | - Tom A Schweizer
- Neuroscience Research Program, St. Michael's Hospital, Toronto, Canada.,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Canada.,Faculty of Medicine (Neurosurgery), University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Exercise and movement are increasingly used in pain management and in palliative care, outside the traditional context of physical medicine and rehabilitation. This critical review aims to provide specialists in pain and palliative medicine with recent insights into the use of exercise and movement in the approach to musculoskeletal disorders when pain and disability are the major complaints. RECENT FINDINGS If there is a common sense linking pain and movement in both directions, that is pain influencing movement - as a withdrawal movement or a reduction of mobility as a defense reaction - or movement evoking pain, not so clear and recognized is the link between exercise and movement in controlling pain. SUMMARY Conflicting results emerge between absolutely convincing basic science research confirming important effects induced by movement and exercise on pain and substantial poor low evidence level from clinical research as stated by almost all systematic reviews. The need of rigorous clinical trials is mandatory to ascertain a real clinical benefit for the use of movement and exercise for pain control.
Collapse
|
5
|
Peyron R, Fauchon C. The posterior insular-opercular cortex: An access to the brain networks of thermosensory and nociceptive processes? Neurosci Lett 2019; 702:34-39. [DOI: 10.1016/j.neulet.2018.11.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Lichtner G, Auksztulewicz R, Kirilina E, Velten H, Mavrodis D, Scheel M, Blankenburg F, von Dincklage F. Effects of propofol anesthesia on the processing of noxious stimuli in the spinal cord and the brain. Neuroimage 2018; 172:642-653. [DOI: 10.1016/j.neuroimage.2018.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/03/2018] [Accepted: 02/02/2018] [Indexed: 12/20/2022] Open
|
7
|
Perrotta A, Chiacchiaretta P, Anastasio MG, Pavone L, Grillea G, Bartolo M, Siravo E, Colonnese C, De Icco R, Serrao M, Sandrini G, Pierelli F, Ferretti A. Temporal summation of the nociceptive withdrawal reflex involves deactivation of posterior cingulate cortex. Eur J Pain 2016; 21:289-301. [PMID: 27452295 DOI: 10.1002/ejp.923] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND Temporal summation of pain sensation is pivotal both in physiological and pathological nociception. In humans, it develops in parallel with temporal summation of the nociceptive withdrawal reflex (NWR) of the lower limb, an objective representation of the temporal processing of nociceptive signals into the spinal cord. METHODS To study the contribution of cortical and subcortical structures in temporal summation of pain reflex responses, we compared the fMRI signal changes related to the temporal summation threshold (TST) of the NWR with that related to the single NWR response. We studied 17 healthy subjects using a stimulation paradigm previously determined to evoke both the TST of the NWR (SUMM) and the NWR single response (SING). RESULTS We found a significant activation in left (contralateral) primary somatosensory cortex (SI), bilateral secondary somatosensory cortex (SII), bilateral insula, anterior cingulate cortex (ACC) and bilateral thalamus during both SUMM and SING conditions. The SUMM versus SING contrast revealed a significant deactivation in the posterior cingulate cortex (PCC) and bilateral middle occipital gyrus in SUMM when compared to SING condition. CONCLUSIONS Our data support the hypothesis that temporal summation of nociceptive reflex responses is driven through a switch between activation and deactivation of a specific set of brain areas linked to the default mode network. This behaviour could be explained in view of the relevance of the pain processing induced by temporal summation, recognized as a more significant potential damaging condition with respect to a single, isolated, painful stimulation of comparable pain intensity. SIGNIFICANCE The study demonstrated that TST of the NWR involves a selective deactivation of PCC.
Collapse
Affiliation(s)
- A Perrotta
- IRCCS Neuromed, Pozzilli (Isernia), Italy
| | - P Chiacchiaretta
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), University "G. d'Annunzio" of Chieti, Italy
| | | | - L Pavone
- IRCCS Neuromed, Pozzilli (Isernia), Italy
| | - G Grillea
- IRCCS Neuromed, Pozzilli (Isernia), Italy.,Department of Neurology and Psychiatry, "Sapienza" University of Rome, Italy
| | - M Bartolo
- IRCCS Neuromed, Pozzilli (Isernia), Italy
| | - E Siravo
- IRCCS Neuromed, Pozzilli (Isernia), Italy
| | - C Colonnese
- IRCCS Neuromed, Pozzilli (Isernia), Italy.,Department of Neurology and Psychiatry, "Sapienza" University of Rome, Italy
| | - R De Icco
- C. Mondino National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - M Serrao
- Unit of Neurorehabilitation, Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, ICOT, Latina, Italy
| | - G Sandrini
- C. Mondino National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - F Pierelli
- IRCCS Neuromed, Pozzilli (Isernia), Italy.,Unit of Neurorehabilitation, Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, ICOT, Latina, Italy
| | - A Ferretti
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), University "G. d'Annunzio" of Chieti, Italy
| |
Collapse
|
8
|
Cottam WJ, Condon L, Alshuft H, Reckziegel D, Auer DP. Associations of limbic-affective brain activity and severity of ongoing chronic arthritis pain are explained by trait anxiety. Neuroimage Clin 2016; 12:269-76. [PMID: 27504262 PMCID: PMC4969259 DOI: 10.1016/j.nicl.2016.06.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 12/25/2022]
Abstract
Functional magnetic resonance imaging studies (fMRI) have transformed our understanding of central processing of evoked pain but the typically used block and event-related designs are not best suited to the study of ongoing pain. Here we used arterial spin labelling (ASL) for cerebral blood flow mapping to characterise the neural correlates of perceived intensity of osteoarthritis (OA) pain and its interrelation with negative affect. Twenty-six patients with painful knee OA and twenty-seven healthy controls underwent pain phenotyping and ASL MRI at 3T. Intensity of OA pain correlated positively with blood flow in the anterior mid-cingulate cortex (aMCC), subgenual cingulate cortex (sgACC), bilateral hippocampi, bilateral amygdala, left central operculum, mid-insula, putamen and the brainstem. Additional control for trait anxiety scores reduced the pain-CBF association to the aMCC, whilst pain catastrophizing scores only explained some of the limbic correlations. In conclusion, we found that neural correlates of reported intensity of ongoing chronic pain intensity mapped to limbic-affective circuits, and that the association pattern apart from aMCC was explained by trait anxiety thus highlighting the importance of aversiveness in the experience of clinical pain.
Collapse
Affiliation(s)
- William J. Cottam
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
- Division of Clinical Neuroscience, Radiological Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Laura Condon
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK
- Division of Clinical Neuroscience, Radiological Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Hamza Alshuft
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
- Division of Clinical Neuroscience, Radiological Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Diane Reckziegel
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
- Division of Clinical Neuroscience, Radiological Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Dorothee P. Auer
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
- Division of Clinical Neuroscience, Radiological Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
9
|
|
10
|
Abstract
In this review, we summarize the contribution of functional imaging to the question of nociception in humans. In the beginning of the 90's, brain areas supposed to be involved in physiological pain processes essentially concerned the primary somatosensory area (SI), thalamus, and anterior cingulate cortex. In spite of these a priori hypotheses, the first imaging studies revealed that the main brain areas and those providing the most consistent activations in pain conditions were the insular and the SII cortices, bilaterally. This has been checked with other techniques such as intracerebral recordings of evoked potentials after nociceptive stimulations with laser showing a consistent response in the operculo-insular area whose amplitude correlates with pain intensity. In spite of electrode implantations in other areas of the brain, only rare and inconsistent responses have been found outside the operculo-insular cortices. With electrical stimulation delivered directly in the brain, it has also been shown that stimulation in this area only - and not in other brain areas - was able to elicit a painful sensation. Thus, over the last 15 years, the operculo-insular cortex has been re-discovered as a main area of pain integration, mainly in its sensory and intensity aspects. In neuropathic pain also, these areas have been demonstrated as being abnormally recruited, bilaterally, in response to innocuous stimuli. These results suggest that plastic changes may occur in brain areas that were pre-defined for generating pain sensations. Conversely, when the brain activations concomitant to pain relief were taken in account, a large number of studies pointed out medial prefrontal and rostral cingulate areas as being associated with pain controls. Interestingly, these activations may correlate with the magnitude of pain relief, with the activation of the peri-acqueductal grey (PAG) and, at least in some instances, with the involvement of endogenous opioids.
Collapse
Affiliation(s)
- Roland Peyron
- Département de Neurologie et Centre de la Douleur, CHU, 42055 Saint-Étienne, France - Inserm U879/1028, UCBL Lyon 1, UJM Saint-Étienne, 42023 Saint-Étienne, France - Hôpital Nord, Bâtiment A, Niveau 0, Avenue A. Raimond, 42055 Saint-Étienne Cedex 02, France
| |
Collapse
|
11
|
Favril L, Mouraux A, Sambo CF, Legrain V. Shifting attention between the space of the body and external space: Electrophysiological correlates of visual-nociceptive crossmodal spatial attention. Psychophysiology 2014; 51:464-77. [DOI: 10.1111/psyp.12157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 07/18/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Louis Favril
- Department of Experimental Clinical and Health Psychology; Ghent University; Ghent Belgium
| | - André Mouraux
- Institute of Neuroscience; Université catholique de Louvain; Brussels Belgium
| | - Chiara F. Sambo
- Department of Neuroscience; Physiology and Pharmacology; University College London; London UK
| | - Valéry Legrain
- Department of Experimental Clinical and Health Psychology; Ghent University; Ghent Belgium
- Institute of Neuroscience; Université catholique de Louvain; Brussels Belgium
| |
Collapse
|
12
|
Garcia-Larrea L, Peyron R. Pain matrices and neuropathic pain matrices: A review. Pain 2013; 154 Suppl 1:S29-S43. [PMID: 24021862 DOI: 10.1016/j.pain.2013.09.001] [Citation(s) in RCA: 322] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 08/19/2013] [Accepted: 09/02/2013] [Indexed: 01/18/2023]
|
13
|
Jones AKP, Huneke NTM, Lloyd DM, Brown CA, Watson A. Role of functional brain imaging in understanding rheumatic pain. Curr Rheumatol Rep 2013; 14:557-67. [PMID: 22936576 DOI: 10.1007/s11926-012-0287-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rheumatic pain and, in particular, rheumatoid arthritis, osteoarthritis and fibromyalgia, are common and debilitating chronic pain syndromes. Recently, human functional neuroimaging, for example EEG, fMRI, and PET has begun to reveal some of the crucial central nervous system mechanisms underlying these diseases. The purpose of this review is to summarise current knowledge on the brain mechanisms of rheumatic pain revealed by functional neuroimaging techniques. The evidence suggests that two mechanisms may be largely responsible for the clinical pain associated with these rheumatic diseases: abnormalities in the medial pain system and/or central nervous system sensitisation and inhibition. If we can understand how functioning of the central nociceptive system becomes altered, even in the absence of peripheral nociceptive input, by using functional neuroimaging techniques, in the future we may be able to develop improved, more effective treatments for patients with chronic rheumatic pain.
Collapse
Affiliation(s)
- Anthony K P Jones
- Human Pain Research Group, School of Translational Medicine, University of Manchester, Clinical Sciences Building, Salford Royal NHS Foundation Trust, Salford, M6 8HD, UK.
| | | | | | | | | |
Collapse
|
14
|
Mutschler I, Reinbold C, Wankerl J, Seifritz E, Ball T. Structural basis of empathy and the domain general region in the anterior insular cortex. Front Hum Neurosci 2013; 7:177. [PMID: 23675334 PMCID: PMC3648769 DOI: 10.3389/fnhum.2013.00177] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/20/2013] [Indexed: 01/10/2023] Open
Abstract
Empathy is key for healthy social functioning and individual differences in empathy have strong implications for manifold domains of social behavior. Empathy comprises of emotional and cognitive components and may also be closely linked to sensorimotor processes, which go along with the motivation and behavior to respond compassionately to another person's feelings. There is growing evidence for local plastic change in the structure of the healthy adult human brain in response to environmental demands or intrinsic factors. Here we have investigated changes in brain structure resulting from or predisposing to empathy. Structural MRI data of 101 healthy adult females was analyzed. Empathy in fictitious as well as real-life situations was assessed using a validated self-evaluation measure. Furthermore, empathy-related structural effects were also put into the context of a functional map of the anterior insular cortex (AIC) determined by activation likelihood estimate (ALE) meta-analysis of previous functional imaging studies. We found that gray matter (GM) density in the left dorsal AIC correlates with empathy and that this area overlaps with the domain general region (DGR) of the anterior insula that is situated in-between functional systems involved in emotion-cognition, pain, and motor tasks as determined by our meta-analysis. Thus, we propose that this insular region where we find structural differences depending on individual empathy may play a crucial role in modulating the efficiency of neural integration underlying emotional, cognitive, and sensorimotor information which is essential for global empathy.
Collapse
Affiliation(s)
- Isabella Mutschler
- Department of Psychology, Division of Clinical Psychology and Epidemiology, University of Basel Basel, Switzerland ; Department of Psychiatry, University of California San Diego (UCSD) La Jolla, California, USA
| | | | | | | | | |
Collapse
|
15
|
Guérit JM. Neurophysiological pain assessment: how to objectify a subjective phenomenon? Neurophysiol Clin 2012; 42:263-5. [PMID: 23040697 DOI: 10.1016/j.neucli.2012.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 08/10/2012] [Indexed: 11/15/2022] Open
|
16
|
Shimo K, Ueno T, Younger J, Nishihara M, Inoue S, Ikemoto T, Taniguchi S, Ushida T. Visualization of painful experiences believed to trigger the activation of affective and emotional brain regions in subjects with low back pain. PLoS One 2011; 6:e26681. [PMID: 22073183 PMCID: PMC3206847 DOI: 10.1371/journal.pone.0026681] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/02/2011] [Indexed: 12/30/2022] Open
Abstract
In the management of clinical low back pain (LBP), actual damage to lower back areas such as muscles, intervertebral discs etc. are normally targeted for therapy. However, LBP may involve not only sensory pain, but also underlying affective pain which may also play an important role overall in painful events. Therefore we hypothesized that visualization of a painful event may trigger painful memories, thus provoking the affective dimension of pain. The present study investigated neural correlates of affect processing in subjects with LBP (n = 11) and subjects without LBP (n = 11) through the use of virtual LBP stimuli. Whole brain functional magnetic resonance imaging (MRI) was performed for all subjects while they were shown a picture of a man carrying luggage in a half-crouching position. All subjects with LBP reported experiencing discomfort and 7 LBP subjects reported experiencing pain. In contrast to subjects without LBP, subjects with LBP displayed activation of the cortical area related to pain and emotions: the insula, supplementary motor area, premotor area, thalamus, pulvinar, posterior cingulate cortex, hippocampus, fusiform, gyrus, and cerebellum. These results suggest that the virtual LBP stimuli caused memory retrieval of unpleasant experiences and therefore may be associated with prolonged chronic LBP conditions.
Collapse
Affiliation(s)
- Kazuhiro Shimo
- Multidisciplinary Pain Center, Aichi Medical University, Aichi, Japan
| | - Takefumi Ueno
- Department of Neuropsychiatry, Kyushu University, Fukuoka, Japan
| | - Jarred Younger
- Department of Anesthesia, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Makoto Nishihara
- Multidisciplinary Pain Center, Aichi Medical University, Aichi, Japan
| | - Shinsuke Inoue
- Multidisciplinary Pain Center, Aichi Medical University, Aichi, Japan
| | | | | | - Takahiro Ushida
- Multidisciplinary Pain Center, Aichi Medical University, Aichi, Japan
- Department of Orthopaedic Surgery, Kochi Medical School, Kochi, Japan
- * E-mail:
| |
Collapse
|
17
|
Lapate RC, Lee H, Salomons TV, van Reekum CM, Greischar LL, Davidson RJ. Amygdalar function reflects common individual differences in emotion and pain regulation success. J Cogn Neurosci 2011; 24:148-58. [PMID: 21861676 DOI: 10.1162/jocn_a_00125] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Although the co-occurrence of negative affect and pain is well recognized, the mechanism underlying their association is unclear. To examine whether a common self-regulatory ability impacts the experience of both emotion and pain, we integrated neuroimaging, behavioral, and physiological measures obtained from three assessments separated by substantial temporal intervals. Our results demonstrated that individual differences in emotion regulation ability, as indexed by an objective measure of emotional state, corrugator electromyography, predicted self-reported success while regulating pain. In both emotion and pain paradigms, the amygdala reflected regulatory success. Notably, we found that greater emotion regulation success was associated with greater change of amygdalar activity following pain regulation. Furthermore, individual differences in degree of amygdalar change following emotion regulation were a strong predictor of pain regulation success, as well as of the degree of amygdalar engagement following pain regulation. These findings suggest that common individual differences in emotion and pain regulatory success are reflected in a neural structure known to contribute to appraisal processes.
Collapse
|
18
|
Takahashi K, Taguchi T, Tanaka S, Sadato N, Qiu Y, Kakigi R, Mizumura K. Painful muscle stimulation preferentially activates emotion-related brain regions compared to painful skin stimulation. Neurosci Res 2011; 70:285-93. [DOI: 10.1016/j.neures.2011.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 11/16/2022]
|
19
|
Oertel BG, Preibisch C, Martin T, Walter C, Gamer M, Deichmann R, Lötsch J. Separating brain processing of pain from that of stimulus intensity. Hum Brain Mapp 2011; 33:883-94. [PMID: 21681856 DOI: 10.1002/hbm.21256] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 11/03/2010] [Accepted: 12/16/2010] [Indexed: 12/24/2022] Open
Abstract
Regions of the brain network activated by painful stimuli are also activated by nonpainful and even nonsomatosensory stimuli. We therefore analyzed where the qualitative change from nonpainful to painful perception at the pain thresholds is coded. Noxious stimuli of gaseous carbon dioxide (n = 50) were applied to the nasal mucosa of 24 healthy volunteers at various concentrations from 10% below to 10% above the individual pain threshold. Functional magnetic resonance images showed that these trigeminal stimuli activated brain regions regarded as the "pain matrix." However, most of these activations, including the posterior insula, the primary and secondary somatosensory cortex, the amygdala, and the middle cingulate cortex, were associated with quantitative changes in stimulus intensity and did not exclusively reflect the qualitative change from nonpainful to pain. After subtracting brain activations associated with quantitative changes in the stimuli, the qualitative change, reflecting pain-exclusive activations, could be localized mainly in the posterior insular cortex. This shows that cerebral processing of noxious stimuli focuses predominately on the quantitative properties of stimulus intensity in both their sensory and affective dimensions, whereas the integration of this information into the perception of pain is restricted to a small part of the pain matrix.
Collapse
Affiliation(s)
- Bruno G Oertel
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University, Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
In this review, we summarize the contribution of functional imaging to the question of nociception in humans. In the beginning of the 90's, brain areas supposed to be involved in physiological pain processes were almost exclusively the primary somatosensory area (SI), thalamus, and anterior cingulate cortex. In spite of these a priori hypotheses, the first imaging studies revealed that the main brain areas and those providing the most consistent activations in pain conditions were the insular and the SII cortices, bilaterally. This has been confirmed with other techniques such as intracerebral recordings of evoked potentials after nociceptive stimulations with laser showing a consistent response in the operculo-insular area which amplitude correlates with pain intensity. In spite of electrode implantations in other areas of the brain, only rare and inconsistent responses have been found outside the operculo-insular cortices. With electrical stimulation delivered directly in the brain, it has also been shown that stimulation in this area only--and not in other brain areas--was able to elicit a painful sensation. Thus, over the last 15 years, the operculo-insular cortex has been re-discovered as a main area of pain integration, mainly in its sensory and intensity aspects. In neuropathic pain also, these areas have been demonstrated as being abnormally recruited, bilaterally, in response to innocuous stimuli. These results suggest that plastic changes may occur in brain areas that were pre-defined for generating pain sensations. Conversely, when the brain activations concomitant to pain relief is taken into account, a large number of studies pointed out medial prefrontal and rostral cingulate areas as being associated with pain controls. Interestingly, these activations may correlate with the magnitude of pain relief, with the activation of the PAG, and, at least in some instances, with the involvement of endogenous opioids.
Collapse
Affiliation(s)
- Roland Peyron
- Département de Neurologie et Centre de la Douleur, CHU, F-42055 Saint-Étienne, Inserm U879, UCBL Lyon 1, UJM Saint-Étienne, F-42023 Saint-Étienne, France.
| | | |
Collapse
|
21
|
Brügger M, Ettlin DA, Meier M, Keller T, Luechinger R, Barlow A, Palla S, Jäncke L, Lutz K. Taking Sides with Pain - Lateralization aspects Related to Cerebral Processing of Dental Pain. Front Hum Neurosci 2011; 5:12. [PMID: 21344018 PMCID: PMC3036976 DOI: 10.3389/fnhum.2011.00012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 01/21/2011] [Indexed: 01/01/2023] Open
Abstract
The current fMRI study investigated cortical processing of electrically induced painful tooth stimulation of both maxillary canines and central incisors in 21 healthy, right-handed volunteers. A constant current, 150% above tooth specific pain perception thresholds was applied and corresponding online ratings of perceived pain intensity were recorded with a computerized visual analog scale during fMRI measurements. Lateralization of cortical activations was investigated by a region of interest analysis. A wide cortical network distributed over several areas, typically described as the pain or nociceptive matrix, was activated on a conservative significance level. Distinct lateralization patterns of analyzed structures allow functional classification of the dental pain processing system. Namely, certain parts are activated independent of the stimulation site, and hence are interpreted to reflect cognitive emotional aspects. Other parts represent somatotopic processing and therefore reflect discriminative perceptive analysis. Of particular interest is the observed amygdala activity depending on the stimulated tooth that might indicate a role in somatotopic encoding.
Collapse
Affiliation(s)
- Mike Brügger
- Division of Neuropsychology, Department of Psychology, University of Zurich Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
[Studies on cerebral processing of pain using functional imaging : Somatosensory, emotional, cognitive, autonomic and motor aspects]. Schmerz 2010; 24:114-21. [PMID: 20376599 DOI: 10.1007/s00482-010-0896-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Functional neuroimaging methods such as positron emission tomography (PET) or functional magnetic resonance imaging (fMRI) provide fascinating insights into the cerebral processing of pain. Neuroimaging studies have shown that no clearly defined "pain centre" exists. Rather, an entire network of brain regions is involved in the processing of nociceptive information, which leads to the subjective impression of "pain". Sophisticated study designs nowadays permit the characterisation of different components of pain processing. In this review, we summarise neuroimaging studies, which contributed to the characterisation of these different aspects of cerebral pain processing, such as somatosensory (discrimination of different stimulus modalities, noxious vs non-noxious, summation), emotional, cognitive (attention, anticipation, distraction), vegetative (homeostasis) and motor aspects.
Collapse
|
23
|
Veldhuijzen DS, Nemenov MI, Keaser M, Zhuo J, Gullapalli RP, Greenspan JD. Differential brain activation associated with laser-evoked burning and pricking pain: An event-related fMRI study. Pain 2008; 141:104-13. [PMID: 19058914 DOI: 10.1016/j.pain.2008.10.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 10/23/2008] [Accepted: 10/28/2008] [Indexed: 11/30/2022]
Abstract
An important question remains as to how the brain differentially processes first (pricking) pain mediated by Adelta-nociceptors versus second (burning) pain mediated by C-nociceptors. In the present cross-over randomized, within-subjects controlled study, brain activity patterns were examined with event-related fMRI while pricking and burning pain were selectively evoked using a diode laser. Stimuli evoking equivalent pain intensities were delivered to the dorsum of the left foot. Different laser parameters were used to elicit pricking (60ms pulse duration) and burning (2.0s pulse duration) pain. Whole brain group analysis showed that several brain areas were commonly activated by pricking and burning pain, including bilateral thalamus, bilateral anterior insula, bilateral posterior parietal lobule, contralateral dorsolateral prefrontal cortex, ipsilateral cerebellum, and mid anterior cingulate cortex. These findings show that pricking and burning pain were associated with activity in many of the same nociceptive processing brain regions. This may be expected given that Adelta-and C-nociceptive signals converge to a great extent at the level of the dorsal horn. Other brain regions showed differential processing. Stronger activation in the pricking pain condition was found in the ipsilateral hippocampus, bilateral parahippocampal gyrus, bilateral fusiform gyrus, contralateral cerebellum and contralateral cuneus/parieto-occipital sulcus. Stronger activation in the burning pain condition was found in the ipsilateral dorsolateral prefrontal cortex. These differential activation patterns suggest preferential importance of Adelta-fiber signals versus C-fiber signals for these specific brain regions.
Collapse
Affiliation(s)
- Dieuwke S Veldhuijzen
- Department of Biomedical Sciences, Dental School, University of Maryland, Baltimore, MD, USA.
| | | | | | | | | | | |
Collapse
|