• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4693415)   Today's Articles (337)
For: Xia Y, Cao J, Sun Cheng S. Global exponential stability of delayed cellular neural networks with impulses. Neurocomputing 2007. [DOI: 10.1016/j.neucom.2006.08.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Number Cited by Other Article(s)
1
Wu D, Zhang Y. Discrete-time ZNN-based noise-handling ten-instant algorithm solving Yang-Baxter-like matrix equation with disturbances. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.02.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
2
Jia S, Chen Y. Discrete analogue of impulsive recurrent neural networks with both discrete and finite distributive asynchronous time-varying delays. Cogn Neurodyn 2022;16:733-744. [PMID: 35603055 PMCID: PMC9120330 DOI: 10.1007/s11571-021-09739-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]  Open
3
Global Stability of Fractional Order Coupled Systems with Impulses via a Graphic Approach. MATHEMATICS 2019. [DOI: 10.3390/math7080744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
4
Guan K, Wang Q. Impulsive Control for a Class of Cellular Neural Networks with Proportional Delay. Neural Process Lett 2018. [DOI: 10.1007/s11063-017-9776-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
5
Long S, Li H, Zhang Y. Dynamic behavior of nonautonomous cellular neural networks with time-varying delays. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2015.05.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
6
Li L, Jian J. Delay-dependent passivity analysis of impulsive neural networks with time-varying delays. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2015.05.098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
7
Wang F, Sun D, Wu H. Global exponential stability and periodic solutions of high-order bidirectional associative memory (BAM) neural networks with time delays and impulses. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
8
Zhao Y, Feng Z, Ding W. Existence and stability of periodic solution of impulsive neural systems with complex deviating arguments. JOURNAL OF BIOLOGICAL DYNAMICS 2014;9 Suppl 1:291-306. [PMID: 25397685 DOI: 10.1080/17513758.2014.978401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
9
Complete Stability Analysis of Complex-Valued Neural Networks with Time Delays and Impulses. Neural Process Lett 2014. [DOI: 10.1007/s11063-014-9349-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
10
Improved stochastic dissipativity of uncertain discrete-time neural networks with multiple delays and impulses. INT J MACH LEARN CYB 2013. [DOI: 10.1007/s13042-013-0215-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
11
Analysis on equilibrium points of cellular neural networks with thresholding activation function. Neural Comput Appl 2013. [DOI: 10.1007/s00521-012-1173-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
12
Li X, Song S. Impulsive control for existence, uniqueness, and global stability of periodic solutions of recurrent neural networks with discrete and continuously distributed delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2013;24:868-877. [PMID: 24808469 DOI: 10.1109/tnnls.2012.2236352] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
13
Analysis on equilibrium points of cells in cellular neural networks described using cloning templates. Neurocomputing 2012. [DOI: 10.1016/j.neucom.2012.02.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
14
Song X, Xin X, Huang W. Exponential stability of delayed and impulsive cellular neural networks with partially Lipschitz continuous activation functions. Neural Netw 2012;29-30:80-90. [PMID: 22425550 DOI: 10.1016/j.neunet.2012.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 01/10/2012] [Accepted: 01/27/2012] [Indexed: 11/17/2022]
15
Wu B, Liu Y, Lu J. New results on global exponential stability for impulsive cellular neural networks with any bounded time-varying delays. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.mcm.2011.09.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
16
Li X, Rakkiyappan R. Stability results for Takagi–Sugeno fuzzy uncertain BAM neural networks with time delays in the leakage term. Neural Comput Appl 2012. [DOI: 10.1007/s00521-012-0839-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
17
ZHAO YONG, XIA YONGHUI, LU QISHAO. STABILITY ANALYSIS OF A CLASS OF GENERAL PERIODIC NEURAL NETWORKS WITH DELAYS AND IMPULSES. Int J Neural Syst 2011;19:375-86. [DOI: 10.1142/s012906570900204x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
18
Zhang Y. Robust exponential stability of uncertain impulsive neural networks with time-varying delays and delayed impulses. Neurocomputing 2011. [DOI: 10.1016/j.neucom.2011.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
19
Stability analysis of stochastic reaction-diffusion delayed neural networks with Levy noise. Neural Comput Appl 2011. [DOI: 10.1007/s00521-011-0541-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
20
Zhong S, Li C, Liao X. Global stability of discrete-time Cohen–Grossberg neural networks with impulses. Neurocomputing 2010. [DOI: 10.1016/j.neucom.2010.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
21
Xiaodi Li, Jianhua Shen. LMI Approach for Stationary Oscillation of Interval Neural Networks With Discrete and Distributed Time-Varying Delays Under Impulsive Perturbations. ACTA ACUST UNITED AC 2010;21:1555-63. [DOI: 10.1109/tnn.2010.2061865] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
22
Xia Y. Impulsive effect on the delayed Cohen–Grossberg-type BAM neural networks. Neurocomputing 2010. [DOI: 10.1016/j.neucom.2010.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
23
Hu C, Jiang H, Teng Z. Globally Exponential Stability for Delayed Neural Networks Under Impulsive Control. Neural Process Lett 2010. [DOI: 10.1007/s11063-009-9128-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
24
Global exponential stability of cellular neural networks with time-varying discrete and distributed delays. Neurocomputing 2009. [DOI: 10.1016/j.neucom.2008.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA