1
|
Xu F, Pan D, Zheng H, Ouyang Y, Jia Z, Zeng H. EESCN: A novel spiking neural network method for EEG-based emotion recognition. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107927. [PMID: 38000320 DOI: 10.1016/j.cmpb.2023.107927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/16/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND AND OBJECTIVE Although existing artificial neural networks have achieved good results in electroencephalograph (EEG) emotion recognition, further improvements are needed in terms of bio-interpretability and robustness. In this research, we aim to develop a highly efficient and high-performance method for emotion recognition based on EEG. METHODS We propose an Emo-EEGSpikeConvNet (EESCN), a novel emotion recognition method based on spiking neural network (SNN). It consists of a neuromorphic data generation module and a NeuroSpiking framework. The neuromorphic data generation module converts EEG data into 2D frame format as input to the NeuroSpiking framework, while the NeuroSpiking framework is used to extract spatio-temporal features of EEG for classification. RESULTS EESCN achieves high emotion recognition accuracies on DEAP and SEED-IV datasets, ranging from 94.56% to 94.81% on DEAP and a mean accuracy of 79.65% on SEED-IV. Compared to existing SNN methods, EESCN significantly improves EEG emotion recognition performance. In addition, it also has the advantages of faster running speed and less memory footprint. CONCLUSIONS EESCN has shown excellent performance and efficiency in EEG-based emotion recognition with potential for practical applications requiring portability and resource constraints.
Collapse
Affiliation(s)
- FeiFan Xu
- Hangzhou Dianzi University, School of Computer Science and Technology, HangZhou, ZheJiang, China.
| | - Deng Pan
- Hangzhou Dianzi University, School of Computer Science and Technology, HangZhou, ZheJiang, China.
| | - Haohao Zheng
- Hangzhou Dianzi University, School of Computer Science and Technology, HangZhou, ZheJiang, China.
| | - Yu Ouyang
- Hangzhou Dianzi University, School of Computer Science and Technology, HangZhou, ZheJiang, China.
| | - Zhe Jia
- Hangzhou Dianzi University, School of Computer Science and Technology, HangZhou, ZheJiang, China.
| | - Hong Zeng
- Hangzhou Dianzi University, School of Computer Science and Technology, HangZhou, ZheJiang, China; Key Laboratory of Brain Machine Collaborative of Zhejiang Province, HangZhou, ZheJiang, China.
| |
Collapse
|
2
|
Weerasinghe MMA, Wang G, Whalley J, Crook-Rumsey M. Mental stress recognition on the fly using neuroplasticity spiking neural networks. Sci Rep 2023; 13:14962. [PMID: 37696860 PMCID: PMC10495416 DOI: 10.1038/s41598-023-34517-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 05/03/2023] [Indexed: 09/13/2023] Open
Abstract
Mental stress is found to be strongly connected with human cognition and wellbeing. As the complexities of human life increase, the effects of mental stress have impacted human health and cognitive performance across the globe. This highlights the need for effective non-invasive stress detection methods. In this work, we introduce a novel, artificial spiking neural network model called Online Neuroplasticity Spiking Neural Network (O-NSNN) that utilizes a repertoire of learning concepts inspired by the brain to classify mental stress using Electroencephalogram (EEG) data. These models are personalized and tested on EEG data recorded during sessions in which participants listen to different types of audio comments designed to induce acute stress. Our O-NSNN models learn on the fly producing an average accuracy of 90.76% (σ = 2.09) when classifying EEG signals of brain states associated with these audio comments. The brain-inspired nature of the individual models makes them robust and efficient and has the potential to be integrated into wearable technology. Furthermore, this article presents an exploratory analysis of trained O-NSNNs to discover links between perceived and acute mental stress. The O-NSNN algorithm proved to be better for personalized stress recognition in terms of accuracy, efficiency, and model interpretability.
Collapse
Affiliation(s)
- Mahima Milinda Alwis Weerasinghe
- School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand.
- Brain-Inspired AI and Neuroinformatics Lab, Department of Data Science, Sri Lanka Technological Campus, Padukka, Sri Lanka.
| | - Grace Wang
- School of Psychology and Wellbeing, University of Southern Queensland, Toowoomba, Australia
- Centre for Health Research, University of Southern Queensland, Toowoomba, Australia
| | - Jacqueline Whalley
- Department of Computer Science and Software Engineering, Auckland University of Technology, Auckland, New Zealand
| | - Mark Crook-Rumsey
- Department of Basic and Clinical Neuroscience, King's College London, London, UK
- UK Dementia Research Institute, Centre for Care Research and Technology, Imperial College London, London, UK
| |
Collapse
|
3
|
Wang Z, Liu J, Ma Y, Chen B, Zheng N, Ren P. Perturbation of Spike Timing Benefits Neural Network Performance on Similarity Search. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:4361-4372. [PMID: 33606643 DOI: 10.1109/tnnls.2021.3056694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Perturbation has a positive effect, as it contributes to the stability of neural systems through adaptation and robustness. For example, deep reinforcement learning generally engages in exploratory behavior by injecting noise into the action space and network parameters. It can consistently increase the agent's exploration ability and lead to richer sets of behaviors. Evolutionary strategies also apply parameter perturbations, which makes network architecture robust and diverse. Our main concern is whether the notion of synaptic perturbation introduced in a spiking neural network (SNN) is biologically relevant or if novel frameworks and components are desired to account for the perturbation properties of artificial neural systems. In this work, we first review part of the locality-sensitive hashing (LSH) of similarity search, the FLY algorithm, as recently published in Science, and propose an improved architecture, time-shifted spiking LSH (TS-SLSH), with the consideration of temporal perturbations of the firing moments of spike pulses. Experiment results show promising performance of the proposed method and demonstrate its generality to various spiking neuron models. Therefore, we expect temporal perturbation to play an active role in SNN performance.
Collapse
|
4
|
Xing D, Li J, Zhang T, Xu B. A Brain-Inspired Approach for Collision-Free Movement Planning in the Small Operational Space. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:2094-2105. [PMID: 34520379 DOI: 10.1109/tnnls.2021.3111051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In a small operational space, e.g., mesoscale or microscale, we need to control movements carefully because of fragile objects. This article proposes a novel structure based on spiking neural networks to imitate the joint function of multiple brain regions in visual guiding in the small operational space and offers two channels to achieve collision-free movements. For the state sensation, we simulate the primary visual cortex to directly extract features from multiple input images and the high-level visual cortex to obtain the object distance, which is indirectly measurable, in the Cartesian coordinates. Our approach emulates the prefrontal cortex from two aspects: multiple liquid state machines to predict distances of the next several steps based on the preceding trajectory and a block-based excitation-inhibition feedforward network to plan movements considering the target and prediction. Responding to "too close" states needs rich temporal information, and we leverage a cerebellar network for the subconscious reaction. From the viewpoint of the inner pathway, they also form two channels. One channel starts from state extraction to attraction movement planning, both in the camera coordinates, behaving visual-servo control. The other is the collision-avoidance channel, which calculates distances, predicts trajectories, and reacts to the repulsion, all in the Cartesian coordinates. We provide appropriate supervised signals for coarse training and apply reinforcement learning to modify synapses in accordance with reality. Simulation and experiment results validate the proposed method.
Collapse
|
5
|
Spiking Neural Networks for Computational Intelligence: An Overview. BIG DATA AND COGNITIVE COMPUTING 2021. [DOI: 10.3390/bdcc5040067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Deep neural networks with rate-based neurons have exhibited tremendous progress in the last decade. However, the same level of progress has not been observed in research on spiking neural networks (SNN), despite their capability to handle temporal data, energy-efficiency and low latency. This could be because the benchmarking techniques for SNNs are based on the methods used for evaluating deep neural networks, which do not provide a clear evaluation of the capabilities of SNNs. Particularly, the benchmarking of SNN approaches with regards to energy efficiency and latency requires realization in suitable hardware, which imposes additional temporal and resource constraints upon ongoing projects. This review aims to provide an overview of the current real-world applications of SNNs and identifies steps to accelerate research involving SNNs in the future.
Collapse
|
6
|
Auge D, Hille J, Mueller E, Knoll A. A Survey of Encoding Techniques for Signal Processing in Spiking Neural Networks. Neural Process Lett 2021. [DOI: 10.1007/s11063-021-10562-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractBiologically inspired spiking neural networks are increasingly popular in the field of artificial intelligence due to their ability to solve complex problems while being power efficient. They do so by leveraging the timing of discrete spikes as main information carrier. Though, industrial applications are still lacking, partially because the question of how to encode incoming data into discrete spike events cannot be uniformly answered. In this paper, we summarise the signal encoding schemes presented in the literature and propose a uniform nomenclature to prevent the vague usage of ambiguous definitions. Therefore we survey both, the theoretical foundations as well as applications of the encoding schemes. This work provides a foundation in spiking signal encoding and gives an overview over different application-oriented implementations which utilise the schemes.
Collapse
|
7
|
The effects of eye movements on the visual cortical responding variability based on a spiking network. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Cachi PG, Ventura S, Cios KJ. CRBA: A Competitive Rate-Based Algorithm Based on Competitive Spiking Neural Networks. Front Comput Neurosci 2021; 15:627567. [PMID: 33967726 PMCID: PMC8100331 DOI: 10.3389/fncom.2021.627567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/22/2021] [Indexed: 11/30/2022] Open
Abstract
In this paper we present a Competitive Rate-Based Algorithm (CRBA) that approximates operation of a Competitive Spiking Neural Network (CSNN). CRBA is based on modeling of the competition between neurons during a sample presentation, which can be reduced to ranking of the neurons based on a dot product operation and the use of a discrete Expectation Maximization algorithm; the latter is equivalent to the spike time-dependent plasticity rule. CRBA's performance is compared with that of CSNN on the MNIST and Fashion-MNIST datasets. The results show that CRBA performs on par with CSNN, while using three orders of magnitude less computational time. Importantly, we show that the weights and firing thresholds learned by CRBA can be used to initialize CSNN's parameters that results in its much more efficient operation.
Collapse
Affiliation(s)
- Paolo G Cachi
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Sebastián Ventura
- Department of Computer Science, Universidad de Córdoba, Córdoba, Spain
| | - Krzysztof J Cios
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States.,Polish Academy of Sciences, Gliwice, Poland
| |
Collapse
|
9
|
Yang D, Zhong X, Gu D, Peng X, Hu H. Unsupervised framework for depth estimation and camera motion prediction from video. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.12.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Taherkhani A, Belatreche A, Li Y, Cosma G, Maguire LP, McGinnity TM. A review of learning in biologically plausible spiking neural networks. Neural Netw 2019; 122:253-272. [PMID: 31726331 DOI: 10.1016/j.neunet.2019.09.036] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 11/30/2022]
Abstract
Artificial neural networks have been used as a powerful processing tool in various areas such as pattern recognition, control, robotics, and bioinformatics. Their wide applicability has encouraged researchers to improve artificial neural networks by investigating the biological brain. Neurological research has significantly progressed in recent years and continues to reveal new characteristics of biological neurons. New technologies can now capture temporal changes in the internal activity of the brain in more detail and help clarify the relationship between brain activity and the perception of a given stimulus. This new knowledge has led to a new type of artificial neural network, the Spiking Neural Network (SNN), that draws more faithfully on biological properties to provide higher processing abilities. A review of recent developments in learning of spiking neurons is presented in this paper. First the biological background of SNN learning algorithms is reviewed. The important elements of a learning algorithm such as the neuron model, synaptic plasticity, information encoding and SNN topologies are then presented. Then, a critical review of the state-of-the-art learning algorithms for SNNs using single and multiple spikes is presented. Additionally, deep spiking neural networks are reviewed, and challenges and opportunities in the SNN field are discussed.
Collapse
Affiliation(s)
- Aboozar Taherkhani
- School of Computer Science and Informatics, Faculty of Computing, Engineering and Media, De Montfort University, Leicester, UK.
| | - Ammar Belatreche
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Yuhua Li
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | - Georgina Cosma
- Department of Computer Science, Loughborough University, Loughborough, UK
| | - Liam P Maguire
- Intelligent Systems Research Centre, Ulster University, Northern Ireland, Derry, UK
| | - T M McGinnity
- Intelligent Systems Research Centre, Ulster University, Northern Ireland, Derry, UK; School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
11
|
Galán-Prado F, Morán A, Font J, Roca M, Rosselló JL. Compact Hardware Synthesis of Stochastic Spiking Neural Networks. Int J Neural Syst 2019; 29:1950004. [DOI: 10.1142/s0129065719500047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Spiking neural networks (SNN) are able to emulate real neural behavior with high confidence due to their bio-inspired nature. Many designs have been proposed for the implementation of SNN in hardware, although the realization of high-density and biologically-inspired SNN is currently a complex challenge of high scientific and technical interest. In this work, we propose a compact digital design for the implementation of high-volume SNN that considers the intrinsic stochastic processes present in biological neurons and enables high-density hardware implementation. The proposed stochastic SNN model (SSNN) is compared with previous SSNN models, achieving a higher processing speed. We also show how the proposed model can be scaled to high-volume neural networks trained by using back propagation and applied to a pattern classification task. The proposed model achieves better results compared with other recently-published SNN models configured with unsupervised STDP learning.
Collapse
Affiliation(s)
- Fabio Galán-Prado
- Electronics Engineering Group, Physics Department, Universitat de les Illes Balears, Mateu Orfila Building, Ctra. Valldemossa km. 7.5, Palma de Mallorca, Balears 07122, Spain
| | - Alejandro Morán
- Electronics Engineering Group, Physics Department, Universitat de les Illes Balears, Mateu Orfila Building, Ctra. Valldemossa km. 7.5, Palma de Mallorca, Balears 07122, Spain
| | - Joan Font
- Electronics Engineering Group, Physics Department, Universitat de les Illes Balears, Mateu Orfila Building, Ctra. Valldemossa km. 7.5, Palma de Mallorca, Balears 07122, Spain
| | - Miquel Roca
- Electronics Engineering Group, Physics Department, Universitat de les Illes Balears, Mateu Orfila Building, Ctra. Valldemossa km. 7.5, Palma de Mallorca, Balears 07122, Spain
| | - Josep L. Rosselló
- Electronics Engineering Group, Physics Department, Universitat de les Illes Balears, Mateu Orfila Building, Ctra. Valldemossa km. 7.5, Palma de Mallorca, Balears 07122, Spain
| |
Collapse
|
12
|
Tavanaei A, Ghodrati M, Kheradpisheh SR, Masquelier T, Maida A. Deep learning in spiking neural networks. Neural Netw 2018; 111:47-63. [PMID: 30682710 DOI: 10.1016/j.neunet.2018.12.002] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/02/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022]
Abstract
In recent years, deep learning has revolutionized the field of machine learning, for computer vision in particular. In this approach, a deep (multilayer) artificial neural network (ANN) is trained, most often in a supervised manner using backpropagation. Vast amounts of labeled training examples are required, but the resulting classification accuracy is truly impressive, sometimes outperforming humans. Neurons in an ANN are characterized by a single, static, continuous-valued activation. Yet biological neurons use discrete spikes to compute and transmit information, and the spike times, in addition to the spike rates, matter. Spiking neural networks (SNNs) are thus more biologically realistic than ANNs, and are arguably the only viable option if one wants to understand how the brain computes at the neuronal description level. The spikes of biological neurons are sparse in time and space, and event-driven. Combined with bio-plausible local learning rules, this makes it easier to build low-power, neuromorphic hardware for SNNs. However, training deep SNNs remains a challenge. Spiking neurons' transfer function is usually non-differentiable, which prevents using backpropagation. Here we review recent supervised and unsupervised methods to train deep SNNs, and compare them in terms of accuracy and computational cost. The emerging picture is that SNNs still lag behind ANNs in terms of accuracy, but the gap is decreasing, and can even vanish on some tasks, while SNNs typically require many fewer operations and are the better candidates to process spatio-temporal data.
Collapse
Affiliation(s)
- Amirhossein Tavanaei
- School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA.
| | - Masoud Ghodrati
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Saeed Reza Kheradpisheh
- Department of Computer Science, Faculty of Mathematical Sciences and Computer, Kharazmi University, Tehran, Iran
| | | | - Anthony Maida
- School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| |
Collapse
|
13
|
Luo Y, Wan L, Liu J, Harkin J, McDaid L, Cao Y, Ding X. Low Cost Interconnected Architecture for the Hardware Spiking Neural Networks. Front Neurosci 2018; 12:857. [PMID: 30524230 PMCID: PMC6258738 DOI: 10.3389/fnins.2018.00857] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 11/02/2018] [Indexed: 11/13/2022] Open
Abstract
A novel low cost interconnected architecture (LCIA) is proposed in this paper, which is an efficient solution for the neuron interconnections for the hardware spiking neural networks (SNNs). It is based on an all-to-all connection that takes each paired input and output nodes of multi-layer SNNs as the source and destination of connections. The aim is to maintain an efficient routing performance under low hardware overhead. A Networks-on-Chip (NoC) router is proposed as the fundamental component of the LCIA, where an effective scheduler is designed to address the traffic challenge due to irregular spikes. The router can find requests rapidly, make the arbitration decision promptly, and provide equal services to different network traffic requests. Experimental results show that the LCIA can manage the intercommunication of the multi-layer neural networks efficiently and have a low hardware overhead which can maintain the scalability of hardware SNNs.
Collapse
Affiliation(s)
- Yuling Luo
- Faculty of Electronic Engineering, Guangxi Normal University, Guilin, China
| | - Lei Wan
- Faculty of Electronic Engineering, Guangxi Normal University, Guilin, China
| | - Junxiu Liu
- Faculty of Electronic Engineering, Guangxi Normal University, Guilin, China
| | - Jim Harkin
- School of Computing, Engineering and Intelligent Systems, University of Ulster, Londonderry, United Kingdom
| | - Liam McDaid
- School of Computing, Engineering and Intelligent Systems, University of Ulster, Londonderry, United Kingdom
| | - Yi Cao
- Management Science and Business Economics Group, Business School, University of Edinburgh, Edinburgh, United Kingdom
| | - Xuemei Ding
- School of Computing, Engineering and Intelligent Systems, University of Ulster, Londonderry, United Kingdom
- College of Mathematics and Informatics, Fujian Normal University, Fuzhou, China
| |
Collapse
|
14
|
Representation learning using event-based STDP. Neural Netw 2018; 105:294-303. [DOI: 10.1016/j.neunet.2018.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/06/2018] [Accepted: 05/25/2018] [Indexed: 11/18/2022]
|
15
|
Tavanaei A, Maida AS. A spiking network that learns to extract spike signatures from speech signals. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2017.01.088] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Sun QY, Wu QX, Wang X, Hou L. A spiking neural network for extraction of features in colour opponent visual pathways and FPGA implementation. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2016.09.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Rosselló JL, Alomar ML, Morro A, Oliver A, Canals V. High-Density Liquid-State Machine Circuitry for Time-Series Forecasting. Int J Neural Syst 2016; 26:1550036. [DOI: 10.1142/s0129065715500367] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Spiking neural networks (SNN) are the last neural network generation that try to mimic the real behavior of biological neurons. Although most research in this area is done through software applications, it is in hardware implementations in which the intrinsic parallelism of these computing systems are more efficiently exploited. Liquid state machines (LSM) have arisen as a strategic technique to implement recurrent designs of SNN with a simple learning methodology. In this work, we show a new low-cost methodology to implement high-density LSM by using Boolean gates. The proposed method is based on the use of probabilistic computing concepts to reduce hardware requirements, thus considerably increasing the neuron count per chip. The result is a highly functional system that is applied to high-speed time series forecasting.
Collapse
Affiliation(s)
- Josep L. Rosselló
- Electronics Engineering Group, Physics Department, Universitat de les Illes Balears, Mateu Orfila Building, Cra. Valldemossa km. 7.5, Palma de Mallorca, Balears 07122, Spain
| | - Miquel L. Alomar
- Electronics Engineering Group, Physics Department, Universitat de les Illes Balears, Mateu Orfila Building, Cra. Valldemossa km. 7.5, Palma de Mallorca, Balears 07122, Spain
| | - Antoni Morro
- Electronics Engineering Group, Physics Department, Universitat de les Illes Balears, Mateu Orfila Building, Cra. Valldemossa km. 7.5, Palma de Mallorca, Balears 07122, Spain
| | - Antoni Oliver
- Electronics Engineering Group, Physics Department, Universitat de les Illes Balears, Mateu Orfila Building, Cra. Valldemossa km. 7.5, Palma de Mallorca, Balears 07122, Spain
| | - Vincent Canals
- Electronics Engineering Group, Physics Department, Universitat de les Illes Balears, Mateu Orfila Building, Cra. Valldemossa km. 7.5, Palma de Mallorca, Balears 07122, Spain
| |
Collapse
|
18
|
|
19
|
|
20
|
|
21
|
Yu Q, Tang H, Tan KC, Yu H. A brain-inspired spiking neural network model with temporal encoding and learning. Neurocomputing 2014. [DOI: 10.1016/j.neucom.2013.06.052] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Wang X, Hou ZG, Lv F, Tan M, Wang Y. Mobile robots׳ modular navigation controller using spiking neural networks. Neurocomputing 2014. [DOI: 10.1016/j.neucom.2013.07.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
|
24
|
A spiking neural network based cortex-like mechanism and application to facial expression recognition. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2012; 2012:946589. [PMID: 23193391 PMCID: PMC3501821 DOI: 10.1155/2012/946589] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/03/2012] [Indexed: 11/28/2022]
Abstract
In this paper, we present a quantitative, highly structured cortex-simulated model, which can be simply described as feedforward, hierarchical simulation of ventral stream of visual cortex using biologically plausible, computationally convenient spiking neural network system. The motivation comes directly from recent pioneering works on detailed functional decomposition analysis of the feedforward pathway of the ventral stream of visual cortex and developments on artificial spiking neural networks (SNNs). By combining the logical structure of the cortical hierarchy and computing power of the spiking neuron model, a practical framework has been presented. As a proof of principle, we demonstrate our system on several facial expression recognition tasks. The proposed cortical-like feedforward hierarchy framework has the merit of capability of dealing with complicated pattern recognition problems, suggesting that, by combining the cognitive models with modern neurocomputational approaches, the neurosystematic approach to the study of cortex-like mechanism has the potential to extend our knowledge of brain mechanisms underlying the cognitive analysis and to advance theoretical models of how we recognize face or, more specifically, perceive other people's facial expression in a rich, dynamic, and complex environment, providing a new starting point for improved models of visual cortex-like mechanism.
Collapse
|
25
|
Yang W, Yang J, Wu W. A Modified Spiking Neuron that Involves Derivative of the State Function at Firing Time. Neural Process Lett 2012. [DOI: 10.1007/s11063-012-9226-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Stroffek J, Marsalek P. Short-term potentiation effect on pattern recall in sparsely coded neural network. Neurocomputing 2012. [DOI: 10.1016/j.neucom.2011.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Soltic S, Kasabov N. Knowledge extraction from evolving spiking neural networks with rank order population coding. Int J Neural Syst 2011; 20:437-45. [PMID: 21117268 DOI: 10.1142/s012906571000253x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This paper demonstrates how knowledge can be extracted from evolving spiking neural networks with rank order population coding. Knowledge discovery is a very important feature of intelligent systems. Yet, a disproportionally small amount of research is centered on the issue of knowledge extraction from spiking neural networks which are considered to be the third generation of artificial neural networks. The lack of knowledge representation compatibility is becoming a major detriment to end users of these networks. We show that a high-level knowledge can be obtained from evolving spiking neural networks. More specifically, we propose a method for fuzzy rule extraction from an evolving spiking network with rank order population coding. The proposed method was used for knowledge discovery on two benchmark taste recognition problems where the knowledge learnt by an evolving spiking neural network was extracted in the form of zero-order Takagi-Sugeno fuzzy IF-THEN rules.
Collapse
Affiliation(s)
- Snjezana Soltic
- School of Electrical Engineering, Manukau Institute of Technology, Auckland, New Zealand.
| | | |
Collapse
|
28
|
|
29
|
Russell A, Orchard G, Dong Y, Mihalaş Ş, Niebur E, Tapson J, Etienne-Cummings R. Optimization methods for spiking neurons and networks. IEEE TRANSACTIONS ON NEURAL NETWORKS 2010; 21:1950-62. [PMID: 20959265 PMCID: PMC3164281 DOI: 10.1109/tnn.2010.2083685] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Spiking neurons and spiking neural circuits are finding uses in a multitude of tasks such as robotic locomotion control, neuroprosthetics, visual sensory processing, and audition. The desired neural output is achieved through the use of complex neuron models, or by combining multiple simple neurons into a network. In either case, a means for configuring the neuron or neural circuit is required. Manual manipulation of parameters is both time consuming and non-intuitive due to the nonlinear relationship between parameters and the neuron's output. The complexity rises even further as the neurons are networked and the systems often become mathematically intractable. In large circuits, the desired behavior and timing of action potential trains may be known but the timing of the individual action potentials is unknown and unimportant, whereas in single neuron systems the timing of individual action potentials is critical. In this paper, we automate the process of finding parameters. To configure a single neuron we derive a maximum likelihood method for configuring a neuron model, specifically the Mihalas-Niebur Neuron. Similarly, to configure neural circuits, we show how we use genetic algorithms (GAs) to configure parameters for a network of simple integrate and fire with adaptation neurons. The GA approach is demonstrated both in software simulation and hardware implementation on a reconfigurable custom very large scale integration chip.
Collapse
Affiliation(s)
- Alexander Russell
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Garrick Orchard
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Yi Dong
- Zanvyl-Krieger Mind Brain Institute and Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Ştefan Mihalaş
- Zanvyl-Krieger Mind Brain Institute and Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Ernst Niebur
- Zanvyl-Krieger Mind Brain Institute and Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Jonathan Tapson
- Department of Electrical Engineering, University of Cape Town, Rondebosch 7701, South Africa
| | - Ralph Etienne-Cummings
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| |
Collapse
|
30
|
Evolving spiking neural networks for audiovisual information processing. Neural Netw 2010; 23:819-35. [DOI: 10.1016/j.neunet.2010.04.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 01/26/2010] [Accepted: 04/27/2010] [Indexed: 11/18/2022]
|
31
|
|
32
|
Schliebs S, Defoin-Platel M, Worner S, Kasabov N. Integrated feature and parameter optimization for an evolving spiking neural network: Exploring heterogeneous probabilistic models. Neural Netw 2009; 22:623-32. [DOI: 10.1016/j.neunet.2009.06.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/03/2009] [Accepted: 06/25/2009] [Indexed: 10/20/2022]
|
33
|
Kasabov N. Evolving Intelligence in Humans and Machines: Integrative Evolving Connectionist Systems Approach. IEEE COMPUT INTELL M 2008. [DOI: 10.1109/mci.2008.926584] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Wysoski SG, Benuskova L, Kasabov N. Adaptive Spiking Neural Networks for Audiovisual Pattern Recognition. NEURAL INFORMATION PROCESSING 2008. [DOI: 10.1007/978-3-540-69162-4_42] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|