1
|
Charte D, Charte F, Herrera F. Reducing Data Complexity Using Autoencoders With Class-Informed Loss Functions. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2022; 44:9549-9560. [PMID: 34767504 DOI: 10.1109/tpami.2021.3127698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Available data in machine learning applications is becoming increasingly complex, due to higher dimensionality and difficult classes. There exists a wide variety of approaches to measuring complexity of labeled data, according to class overlap, separability or boundary shapes, as well as group morphology. Many techniques can transform the data in order to find better features, but few focus on specifically reducing data complexity. Most data transformation methods mainly treat the dimensionality aspect, leaving aside the available information within class labels which can be useful when classes are somehow complex. This paper proposes an autoencoder-based approach to complexity reduction, using class labels in order to inform the loss function about the adequacy of the generated variables. This leads to three different new feature learners, Scorer, Skaler and Slicer. They are based on Fisher's discriminant ratio, the Kullback-Leibler divergence and least-squares support vector machines, respectively. They can be applied as a preprocessing stage for a binary classification problem. A thorough experimentation across a collection of 27 datasets and a range of complexity and classification metrics shows that class-informed autoencoders perform better than 4 other popular unsupervised feature extraction techniques, especially when the final objective is using the data for a classification task.
Collapse
|
2
|
Pudjihartono N, Fadason T, Kempa-Liehr AW, O'Sullivan JM. A Review of Feature Selection Methods for Machine Learning-Based Disease Risk Prediction. FRONTIERS IN BIOINFORMATICS 2022; 2:927312. [PMID: 36304293 PMCID: PMC9580915 DOI: 10.3389/fbinf.2022.927312] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/03/2022] [Indexed: 01/14/2023] Open
Abstract
Machine learning has shown utility in detecting patterns within large, unstructured, and complex datasets. One of the promising applications of machine learning is in precision medicine, where disease risk is predicted using patient genetic data. However, creating an accurate prediction model based on genotype data remains challenging due to the so-called “curse of dimensionality” (i.e., extensively larger number of features compared to the number of samples). Therefore, the generalizability of machine learning models benefits from feature selection, which aims to extract only the most “informative” features and remove noisy “non-informative,” irrelevant and redundant features. In this article, we provide a general overview of the different feature selection methods, their advantages, disadvantages, and use cases, focusing on the detection of relevant features (i.e., SNPs) for disease risk prediction.
Collapse
Affiliation(s)
| | - Tayaza Fadason
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Andreas W. Kempa-Liehr
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
- *Correspondence: Andreas W. Kempa-Liehr, ; Justin M. O'Sullivan,
| | - Justin M. O'Sullivan
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Australian Parkinson’s Mission, Garvan Institute of Medical Research, Sydney, NSW, Australia
- *Correspondence: Andreas W. Kempa-Liehr, ; Justin M. O'Sullivan,
| |
Collapse
|
3
|
Diagnostic classification of Parkinson’s disease based on non-motor manifestations and machine learning strategies. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractNon-motor manifestations of Parkinson’s disease (PD) appear early and have a significant impact on the quality of life of patients, but few studies have evaluated their predictive potential with machine learning algorithms. We evaluated 9 algorithms for discriminating PD patients from controls using a wide collection of non-motor clinical PD features from two databases: Biocruces (96 subjects) and PPMI (687 subjects). In addition, we evaluated whether the combination of both databases could improve the individual results. For each database 2 versions with different granularity were created and a feature selection process was performed. We observed that most of the algorithms were able to detect PD patients with high accuracy (>80%). Support Vector Machine and Multi-Layer Perceptron obtained the best performance, with an accuracy of 86.3% and 84.7%, respectively. Likewise, feature selection led to a significant reduction in the number of variables and to better performance. Besides, the enrichment of Biocruces database with data from PPMI moderately benefited the performance of the classification algorithms, especially the recall and to a lesser extent the accuracy, while the precision worsened slightly. The use of interpretable rules obtained by the RIPPER algorithm showed that simply using two variables (autonomic manifestations and olfactory dysfunction), it was possible to achieve an accuracy of 84.4%. Our study demonstrates that the analysis of non-motor parameters of PD through machine learning techniques can detect PD patients with high accuracy and recall, and allows us to select the most discriminative non-motor variables to create potential tools for PD screening.
Collapse
|
4
|
Dubnov YA. The Feature Selection Method Based on a Probabilistic Approach and a Cross-Entropy Metric for the Image Recognition Problem. SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING 2022. [DOI: 10.3103/s0147688221060022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Brockkötter J, Ahndorf J, Jupke A. Prediction of Flooding in Packed Liquid‐Liquid and High‐Pressure Extraction Columns Using a Gaussian Process. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Johannes Brockkötter
- RWTH Aachen University Fluid Process Engineering (AVT.FVT) Forckenbeckstraße 51 52074 Aachen Germany
| | - Johannes Ahndorf
- RWTH Aachen University Fluid Process Engineering (AVT.FVT) Forckenbeckstraße 51 52074 Aachen Germany
| | - Andreas Jupke
- RWTH Aachen University Fluid Process Engineering (AVT.FVT) Forckenbeckstraße 51 52074 Aachen Germany
| |
Collapse
|
6
|
Asad E, Mollah AF. Biomarker Identification From Gene Expression Based on Symmetrical Uncertainty. INTERNATIONAL JOURNAL OF INTELLIGENT INFORMATION TECHNOLOGIES 2021. [DOI: 10.4018/ijiit.289966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this paper, we present an effective information theoretic feature selection method, Symmetrical Uncertainty to classify gene expression microarray data and detect biomarkers from it. Here, Information Gain and Symmetrical Uncertainty contribute for ranking the features. Based on computed values of Symmetrical Uncertainty, features were sorted from most informative to least informative ones. Then, the top features from the sorted list are passed to Random Forest, Logistic Regression and other well-known classifiers with Leave-One-Out cross validation to construct the best classification model(s) and accordingly select the most important genes from microarray datasets. Obtained results in terms of classification accuracy, running time, root mean square error and other parameters computed on Leukemia and Colon cancer datasets demonstrate the effectiveness of the proposed approach. The proposed method is relatively much faster than many other wrapper or ensemble methods.
Collapse
|
7
|
Monaco A, Pantaleo E, Amoroso N, Lacalamita A, Lo Giudice C, Fonzino A, Fosso B, Picardi E, Tangaro S, Pesole G, Bellotti R. A primer on machine learning techniques for genomic applications. Comput Struct Biotechnol J 2021; 19:4345-4359. [PMID: 34429852 PMCID: PMC8365460 DOI: 10.1016/j.csbj.2021.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 11/28/2022] Open
Abstract
High throughput sequencing technologies have enabled the study of complex biological aspects at single nucleotide resolution, opening the big data era. The analysis of large volumes of heterogeneous "omic" data, however, requires novel and efficient computational algorithms based on the paradigm of Artificial Intelligence. In the present review, we introduce and describe the most common machine learning methodologies, and lately deep learning, applied to a variety of genomics tasks, trying to emphasize capabilities, strengths and limitations through a simple and intuitive language. We highlight the power of the machine learning approach in handling big data by means of a real life example, and underline how described methods could be relevant in all cases in which large amounts of multimodal genomic data are available.
Collapse
Affiliation(s)
- Alfonso Monaco
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Via A. Orabona 4, 70125 Bari, Italy
| | - Ester Pantaleo
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari "Aldo Moro", Via G. Amendola 173, 70125 Bari, Italy
| | - Nicola Amoroso
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Via A. Orabona 4, 70125 Bari, Italy.,Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Via A. Orabona 4, 70125 Bari, Italy
| | - Antonio Lacalamita
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, 70013 Castellana Grotte (Bari), Italy
| | - Claudio Lo Giudice
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", Via A. Orabona 4, 70125 Bari, Italy
| | - Adriano Fonzino
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", Via A. Orabona 4, 70125 Bari, Italy
| | - Bruno Fosso
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Ernesto Picardi
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", Via A. Orabona 4, 70125 Bari, Italy.,Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Sabina Tangaro
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Via A. Orabona 4, 70125 Bari, Italy.,Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Bari, Via G. Amendola 165, 70125 Bari, Italy
| | - Graziano Pesole
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", Via A. Orabona 4, 70125 Bari, Italy.,Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Roberto Bellotti
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Via A. Orabona 4, 70125 Bari, Italy.,Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari "Aldo Moro", Via G. Amendola 173, 70125 Bari, Italy
| |
Collapse
|
8
|
Dhal P, Azad C. A comprehensive survey on feature selection in the various fields of machine learning. APPL INTELL 2021. [DOI: 10.1007/s10489-021-02550-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
|
10
|
|
11
|
Chen Z, Wu C, Zhang Y, Huang Z, Ran B, Zhong M, Lyu N. Feature selection with redundancy-complementariness dispersion. Knowl Based Syst 2015. [DOI: 10.1016/j.knosys.2015.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Zhang Y, Yang C, Yang A, Xiong C, Zhou X, Zhang Z. Feature selection for classification with class-separability strategy and data envelopment analysis. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2015.03.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Scardapane S, Wang D, Panella M, Uncini A. Distributed learning for Random Vector Functional-Link networks. Inf Sci (N Y) 2015. [DOI: 10.1016/j.ins.2015.01.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
de la Hoz E, de la Hoz E, Ortiz A, Ortega J, Martínez-Álvarez A. Feature selection by multi-objective optimisation: Application to network anomaly detection by hierarchical self-organising maps. Knowl Based Syst 2014. [DOI: 10.1016/j.knosys.2014.08.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Zhang Y, Yang A, Xiong C, Wang T, Zhang Z. Feature selection using data envelopment analysis. Knowl Based Syst 2014. [DOI: 10.1016/j.knosys.2014.03.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
|