Shao S, Chen M, Zhang Y. Adaptive Discrete-Time Flight Control Using Disturbance Observer and Neural Networks.
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019;
30:3708-3721. [PMID:
30763247 DOI:
10.1109/tnnls.2019.2893643]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper studies the adaptive neural control (ANC)-based tracking problem for discrete-time nonlinear dynamics of an unmanned aerial vehicle subject to system uncertainties, bounded time-varying disturbances, and input saturation by using a discrete-time disturbance observer (DTDO). Based on the approximation approach of neural network, system uncertainties are tackled approximately. To restrain the negative effects of bounded disturbances, a nonlinear DTDO is designed. Then, a backstepping technique-based ANC strategy is proposed by utilizing a constructed auxiliary system and a discrete-time tracking differentiator. The boundness of all signals is proven in the closed-loop system under the discrete-time Lyapunov analysis. Finally, the feasibility of the proposed ANC technique is further specified based on numerical simulation results.
Collapse