1
|
Kr Ghosh S, Biswas B, Ghosh A. Development of intuitionistic fuzzy special embedded convolutional neural network for mammography enhancement. Comput Intell 2020. [DOI: 10.1111/coin.12391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Swarup Kr Ghosh
- Department of Computer Science & Engineering Maulana Abul Kalam Azad University of Technology Kolkata India
| | - Biswajit Biswas
- Department of Computer Science & Engineering University of Calcutta Kolkata India
| | - Anupam Ghosh
- Department of Computer Science & Engineering Netaji Subhash Engineering College Kolkata India
| |
Collapse
|
2
|
Biswas B, Ghosh SK, Bhattacharyya S, Platos J, Snasel V, Chakrabarti A. Chest X-ray enhancement to interpret pneumonia malformation based on fuzzy soft set and Dempster–Shafer theory of evidence. Appl Soft Comput 2020. [DOI: 10.1016/j.asoc.2019.105889] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Rundo L, Tangherloni A, Cazzaniga P, Nobile MS, Russo G, Gilardi MC, Vitabile S, Mauri G, Besozzi D, Militello C. A novel framework for MR image segmentation and quantification by using MedGA. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 176:159-172. [PMID: 31200903 DOI: 10.1016/j.cmpb.2019.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND OBJECTIVES Image segmentation represents one of the most challenging issues in medical image analysis to distinguish among different adjacent tissues in a body part. In this context, appropriate image pre-processing tools can improve the result accuracy achieved by computer-assisted segmentation methods. Taking into consideration images with a bimodal intensity distribution, image binarization can be used to classify the input pictorial data into two classes, given a threshold intensity value. Unfortunately, adaptive thresholding techniques for two-class segmentation work properly only for images characterized by bimodal histograms. We aim at overcoming these limitations and automatically determining a suitable optimal threshold for bimodal Magnetic Resonance (MR) images, by designing an intelligent image analysis framework tailored to effectively assist the physicians during their decision-making tasks. METHODS In this work, we present a novel evolutionary framework for image enhancement, automatic global thresholding, and segmentation, which is here applied to different clinical scenarios involving bimodal MR image analysis: (i) uterine fibroid segmentation in MR guided Focused Ultrasound Surgery, and (ii) brain metastatic cancer segmentation in neuro-radiosurgery therapy. Our framework exploits MedGA as a pre-processing stage. MedGA is an image enhancement method based on Genetic Algorithms that improves the threshold selection, obtained by the efficient Iterative Optimal Threshold Selection algorithm, between the underlying sub-distributions in a nearly bimodal histogram. RESULTS The results achieved by the proposed evolutionary framework were quantitatively evaluated, showing that the use of MedGA as a pre-processing stage outperforms the conventional image enhancement methods (i.e., histogram equalization, bi-histogram equalization, Gamma transformation, and sigmoid transformation), in terms of both MR image enhancement and segmentation evaluation metrics. CONCLUSIONS Thanks to this framework, MR image segmentation accuracy is considerably increased, allowing for measurement repeatability in clinical workflows. The proposed computational solution could be well-suited for other clinical contexts requiring MR image analysis and segmentation, aiming at providing useful insights for differential diagnosis and prognosis.
Collapse
Affiliation(s)
- Leonardo Rundo
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy; Institute of Molecular Bioimaging and Physiology, Italian National Research Council, Cefalù, PA, Italy; Department of Radiology, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Centre, Cambridge, UK.
| | - Andrea Tangherloni
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy; Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.
| | - Paolo Cazzaniga
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy; SYSBIO.IT Centre of Systems Biology, Milan, Italy.
| | - Marco S Nobile
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy; SYSBIO.IT Centre of Systems Biology, Milan, Italy.
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, Italian National Research Council, Cefalù, PA, Italy.
| | - Maria Carla Gilardi
- Institute of Molecular Bioimaging and Physiology, Italian National Research Council, Cefalù, PA, Italy.
| | - Salvatore Vitabile
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy.
| | - Giancarlo Mauri
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy; SYSBIO.IT Centre of Systems Biology, Milan, Italy.
| | - Daniela Besozzi
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy.
| | - Carmelo Militello
- Institute of Molecular Bioimaging and Physiology, Italian National Research Council, Cefalù, PA, Italy.
| |
Collapse
|