• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4646951)   Today's Articles (2594)   Subscriber (50684)
For: Mao M, Li J, Jin L, Li S, Zhang Y. Enhanced discrete-time Zhang neural network for time-variant matrix inversion in the presence of bias noises. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2016.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Number Cited by Other Article(s)
1
Li H, Liao B, Li J, Li S. A Survey on Biomimetic and Intelligent Algorithms with Applications. Biomimetics (Basel) 2024;9:453. [PMID: 39194432 DOI: 10.3390/biomimetics9080453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]  Open
2
Guo J, Tan N, Zhang Y. General ELLRFS-DAZN algorithm for solving future linear equation system under various noises. Neurocomputing 2023. [DOI: 10.1016/j.neucom.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
3
Wu D, Zhang Y. Discrete-time ZNN-based noise-handling ten-instant algorithm solving Yang-Baxter-like matrix equation with disturbances. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.02.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
4
Real-domain QR decomposition models employing zeroing neural network and time-discretization formulas for time-varying matrices. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
5
Xiao X, Fu D, Wang G, Liao S, Qi Y, Huang H, Jin L. Two neural dynamics approaches for computing system of time-varying nonlinear equations. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
6
Online singular value decomposition of time-varying matrix via zeroing neural dynamics. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.11.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
7
Miao P, Wu D, Shen Y, Zhang Z. Discrete-time neural network with two classes of bias noises for solving time-variant matrix inversion and application to robot tracking. Neural Comput Appl 2019. [DOI: 10.1007/s00521-018-03986-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
8
Zhang Y, Qi Z, Qiu B, Yang M, Xiao M. Zeroing Neural Dynamics and Models for Various Time-Varying Problems Solving with ZLSF Models as Minimization-Type and Euler-Type Special Cases [Research Frontier]. IEEE COMPUT INTELL M 2019. [DOI: 10.1109/mci.2019.2919397] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
9
A varying-gain recurrent neural-network with super exponential convergence rate for solving nonlinear time-varying systems. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
10
Qiu B, Zhang Y. Two New Discrete-Time Neurodynamic Algorithms Applied to Online Future Matrix Inversion With Nonsingular or Sometimes-Singular Coefficient. IEEE TRANSACTIONS ON CYBERNETICS 2019;49:2032-2045. [PMID: 29993939 DOI: 10.1109/tcyb.2018.2818747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
11
Zhang Z, Zheng L, Wang M. An exponential-enhanced-type varying-parameter RNN for solving time-varying matrix inversion. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.01.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
12
Li J, Zhang Y, Mao M. General Square-Pattern Discretization Formulas via Second-Order Derivative Elimination for Zeroing Neural Network Illustrated by Future Optimization. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019;30:891-901. [PMID: 30072348 DOI: 10.1109/tnnls.2018.2853732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
13
Li J, Zhang Y, Mao M. Five-instant type discrete-time ZND solving discrete time-varying linear system, division and quadratic programming. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.11.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
14
Integration enhanced and noise tolerant ZNN for computing various expressions involving outer inverses. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.10.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
15
Stanimirović PS, Katsikis VN, Li S. Hybrid GNN-ZNN models for solving linear matrix equations. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.07.058] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
16
Zhang Z, Zheng L, Weng J, Mao Y, Lu W, Xiao L. A New Varying-Parameter Recurrent Neural-Network for Online Solution of Time-Varying Sylvester Equation. IEEE TRANSACTIONS ON CYBERNETICS 2018;48:3135-3148. [PMID: 29994381 DOI: 10.1109/tcyb.2017.2760883] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
17
Hu C, Kang X, Zhang Y. Three-step general discrete-time Zhang neural network design and application to time-variant matrix inversion. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.03.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
18
Guo D, Yan L, Nie Z. Design, Analysis, and Representation of Novel Five-Step DTZD Algorithm for Time-Varying Nonlinear Optimization. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018;29:4248-4260. [PMID: 29990090 DOI: 10.1109/tnnls.2017.2761443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
19
Modified discrete iterations for computing the inverse and pseudoinverse of the time-varying matrix. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
20
Shi Y, Zhang Y. Discrete time-variant nonlinear optimization and system solving via integral-type error function and twice ZND formula with noises suppressed. Soft comput 2018. [DOI: 10.1007/s00500-018-3020-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
21
Jin L, Li S, Liao B, Zhang Z. Zeroing neural networks: A survey. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2017.06.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA