1
|
Ugarte JP, Gómez-Echavarría A, Tobón C. Quantifying the frequency modulation in electrograms during simulated atrial fibrillation in 2D domains. Comput Biol Med 2024; 182:109228. [PMID: 39362005 DOI: 10.1016/j.compbiomed.2024.109228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Atrial fibrillation (AF) affects millions of people in the world, causing increased morbidity and mortality. Treatment involves antiarrhythmic drugs and catheter ablation, showing high success for paroxysmal AF but challenges for persistent AF. Experimental evidence suggests reentrant waves and rotors contribute to AF substrates. Ablation procedures rely on electroanatomical maps and electrogram (EGM) signals; however, current methods used in clinical practice lack consideration for time-frequency varying EGM components. The fractional Fourier transform (FrFT) can be adopted to capture time-varying frequency components, thereby enhancing the comprehension of arrhythmogenic substrates during AF for improved ablation strategies. To this end, a FrFT-based algorithm is developed to characterize non-stationary components in EGM signals from simulated AF episodes. The proposed algorithm comprises a pre-processing step to enhance the coarser features of the EGM waveform, a windowing process for dynamic assessment of the EGM, and a FrFT order optimization stage that seeks compact signal representations in fractional Fourier domains. The resulting order is related to the rate of frequency change in the signal, making it a useful indicator for frequency-modulated components. The FrFT-based algorithm is implemented on EGM signals from AF simulations in 2D domains representing a region of the atrial tissue. Consequently, the computed optimum FrFT orders are used to build maps that are spatially correlated to the underlying propagation dynamics of the simulated AF episode. The results evince that the extreme values in the optimum orders map pinpoint the localization of fibrillatory mechanisms, generating EGM activation waveforms with varying frequency content over time.
Collapse
Affiliation(s)
- Juan P Ugarte
- GIMSC, Universidad de San Buenaventura, Medellin, Colombia.
| | | | | |
Collapse
|
2
|
Shi Y, Tang S, Li Y, He Z, Tang S, Wang R, Zheng W, Chen Z, Zhou Y. Continual learning for seizure prediction via memory projection strategy. Comput Biol Med 2024; 181:109028. [PMID: 39173485 DOI: 10.1016/j.compbiomed.2024.109028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/30/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
Despite extensive algorithms for epilepsy prediction via machine learning, most models are tailored for offline scenarios and cannot handle actual scenarios where data changes over time. Catastrophic forgetting(CF) for learned electroencephalogram(EEG) data occurs when EEG changes dynamically in the clinical setting. This paper implements a continual learning(CL) strategy Memory Projection(MP) for epilepsy prediction, which can be combined with other algorithms to avoid CF. Such a strategy enables the model to learn EEG data from each patient in dynamic subspaces with weak correlation layer by layer to minimize interference and promote knowledge transfer. Regularization Loss Reconstruction Algorithm and Matrix Dimensionality Reduction Algorithm are introduced into the core of MP. Experimental results show that MP exhibits excellent performance and low forgetting rates in sequential learning of seizure prediction. The forgetting rate of accuracy and sensitivity under multiple experiments are below 5%. When learning from multi-center datasets, the forgetting rates for accuracy and sensitivity decrease to 0.65% and 1.86%, making it comparable to state-of-the-art CL strategies. Through ablation experiments, we have analyzed that MP can operate with minimal storage and computational cost, which demonstrates practical potential for seizure prediction in clinical scenarios.
Collapse
Affiliation(s)
- Yufei Shi
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Shishi Tang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Yuxuan Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Zhipeng He
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Shengsheng Tang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Ruixuan Wang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Weishi Zheng
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Ziyi Chen
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Yi Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
3
|
Zhang F, Zhang B, Guo S, Zhang X. MFCC-CNN: A patient-independent seizure prediction model. Neurol Sci 2024:10.1007/s10072-024-07718-y. [PMID: 39120777 DOI: 10.1007/s10072-024-07718-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Automatic prediction of seizures is a major goal in the field of epilepsy. However, the high variability of Electroencephalogram (EEG) signals in different patients limits the use of prediction models in clinical applications. METHODS This paper proposes a patient-independent seizure prediction model, named MFCC-CNN, to improve the generalization ability. MFCC-CNN model introduces Mel-Frequency Cepstrum Coefficients (MFCC) features and Linear Predictive Cepstral Coefficients (LPCC) features concentrated in the low frequency region, which contains more detailed information. Convolutional neural network (CNN) is used to construct a seizure prediction model. RESULTS Experimental results showed that the proposed model obtained accuracy of 96 % , sensitivity of 92 % , specificity of 84 % and F1-score of 85 % for 24 cases in CNHB-MIT dataset. The overall performance of MFCC-CNN model is better than the other models. CONCLUSION MFCC-CNN model does not need to be specifically customized for different patients. As a patient-independent seizure prediction model, it has good generalization ability.
Collapse
Affiliation(s)
- Fan Zhang
- Radiology department, Huaihe Hospital of Henan University, Kaifeng, 475004, China
- School of Computer and Information Engineering, Henan University, Kaifeng, 475004, China
| | - Boyan Zhang
- School of Software, Henan University, Kaifeng, 475004, China
| | - Siyuan Guo
- School of Computer and Information Engineering, Henan University, Kaifeng, 475004, China
| | - Xinhong Zhang
- School of Software, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
4
|
Georgis-Yap Z, Popovic MR, Khan SS. Supervised and Unsupervised Deep Learning Approaches for EEG Seizure Prediction. JOURNAL OF HEALTHCARE INFORMATICS RESEARCH 2024; 8:286-312. [PMID: 38681760 PMCID: PMC11052752 DOI: 10.1007/s41666-024-00160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 05/01/2024]
Abstract
Epilepsy affects more than 50 million people worldwide, making it one of the world's most prevalent neurological diseases. The main symptom of epilepsy is seizures, which occur abruptly and can cause serious injury or death. The ability to predict the occurrence of an epileptic seizure could alleviate many risks and stresses people with epilepsy face. We formulate the problem of detecting preictal (or pre-seizure) with reference to normal EEG as a precursor to incoming seizure. To this end, we developed several supervised deep learning approaches model to identify preictal EEG from normal EEG. We further develop novel unsupervised deep learning approaches to train the models on only normal EEG, and detecting pre-seizure EEG as an anomalous event. These deep learning models were trained and evaluated on two large EEG seizure datasets in a person-specific manner. We found that both supervised and unsupervised approaches are feasible; however, their performance varies depending on the patient, approach and architecture. This new line of research has the potential to develop therapeutic interventions and save human lives.
Collapse
Affiliation(s)
- Zakary Georgis-Yap
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 550, University Avenue, Toronto, M5G 2A2 Ontario Canada
- Institute of Biomedical Engineering, University of Toronto, 64 College St., Toronto, M5S 3G9 Ontario Canada
| | - Milos R. Popovic
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 550, University Avenue, Toronto, M5G 2A2 Ontario Canada
- Institute of Biomedical Engineering, University of Toronto, 64 College St., Toronto, M5S 3G9 Ontario Canada
| | - Shehroz S. Khan
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 550, University Avenue, Toronto, M5G 2A2 Ontario Canada
- Institute of Biomedical Engineering, University of Toronto, 64 College St., Toronto, M5S 3G9 Ontario Canada
| |
Collapse
|
5
|
Ying T, Ya-Ling C, Yu Y, Rui-Qing H. Breast ultrasound image despeckling using multi-filtering DFrFT and adaptive fast BM3D. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 246:108042. [PMID: 38310712 DOI: 10.1016/j.cmpb.2024.108042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Improving the quality of breast ultrasound images is of great significance for clinical diagnosis which can greatly boost the diagnostic accuracy of ultrasonography. However, due to the influence of ultrasound imaging principles and acquisition equipment, the collected ultrasound images naturally contain a large amount of speckle noise, which leads to a decrease in image quality and affects clinical diagnosis. To overcome this problem, we propose an improved denoising algorithm combining multi-filter DFrFT (Discrete Fractional Fourier Transform) and the adaptive fast BM3D (Block Matching and 3D collaborative filtering) method. Firstly, we provide the multi-filtering DFrFT method for preprocessing the original breast ultrasound image so as to remove some speckle noise early in fractional transformation domain. Based on the fractional frequency spectrum characteristics of breast ultrasound images, three types of filters are designed correspondingly in low, medium, and high frequency domains. And by integrating filtered images, the enhanced images are obtained which not only remove some speckle noise in background but also preserve the details of breast lesions. Secondly, for further enhancing the image quality on the basis of multi-filter DFrFT, we propose the adaptive fast BM3D method by introducing the DBSCAN-based super pixel segmentation to block matching process, which utilizes super pixel segmentation labels to provide a reference on how similar it is between target block and retrieval blocks. It reduces the number of blocks to be retrieved and make the matched blocks with more similar features. At last, the local noise parameter estimation is also adopted in the hard threshold filtering process of traditional BM3D algorithm to achieve local adaptive filtering and further improving the denoising effect. The synthetic data and real breast ultrasound data examples show that this combined method can improve the speckle suppression level and keep the fidelity of structure effectively without increasing time cost.
Collapse
Affiliation(s)
- Tong Ying
- School of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Chen Ya-Ling
- School of Information and Communication Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Yan Yu
- Department of Medical Engineering, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| | - He Rui-Qing
- School of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| |
Collapse
|
6
|
Djemili R, Djemili I. Nonlinear and chaos features over EMD/VMD decomposition methods for ictal EEG signals detection. Comput Methods Biomech Biomed Engin 2023:1-20. [PMID: 37861376 DOI: 10.1080/10255842.2023.2271603] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023]
Abstract
The detection and identification of epileptic seizures attracted considerable relevance for the neurophysiologists. In order to accomplish the detection of epileptic seizures or equivalently ictal EEG states, this paper proposes the use of nonlinear and chaos features not computed over the raw EEG signals as it was commonly experienced, but instead over intrinsic mode functions (IMFs) extracted subsequently to the application of newly time-frequency signal decomposition methods on the basis of empirical mode decomposition (EMD) and variational mode decomposition (VMD) methods. The first step within the proposed methodology is to excerpt the various components of the IMFs by EMD and VMD decomposition methods on time EEG segments. The Hjorth parameters, the Hurst exponent, the Recurrence Quantification Analysis (RQA), the detrended fluctuation analysis (DFA), the Largest Lyapunov Exponent (LLE), The Higuchi and Katz fractal dimensions (HFD and KFD), seven nonlinear and chaos features computed over the IMFs were investigated and their classification performances evaluated using the k-nearest neighbor (KNN) and the multilayer perceptron neural network (MLPNN) classifiers. Furthermore, the combination of the best nonlinear features has also been examined in terms of sensitivity, specificity and overall classification accuracy. The publicly available Bonn EEG dataset has been has been employed to validate the efficiency of the proposed method for detecting ictal EEG signals from normal or interictal EEG segments. Among the several experiments involved in the current study, the ultimate results establish that the overall classification accuracy can achieve 100%, 99.45%, 99.8%, 99.8%, 98.6% and 99.1% for six different epileptic seizure detection case problems studied, confirming the ability of the proposed methodology in helping the clinic practitioners in the epilepsy detection care units to classify seizure events with a great confidence.
Collapse
Affiliation(s)
| | - Ilyes Djemili
- Lab. Electrotech, Université 20 Août, Skikda, Algeria
| |
Collapse
|
7
|
Ji H, Xu T, Xue T, Xu T, Yan Z, Liu Y, Chen B, Jiang W. An effective fusion model for seizure prediction: GAMRNN. Front Neurosci 2023; 17:1246995. [PMID: 37674519 PMCID: PMC10477703 DOI: 10.3389/fnins.2023.1246995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/24/2023] [Indexed: 09/08/2023] Open
Abstract
The early prediction of epileptic seizures holds paramount significance in patient care and medical research. Extracting useful spatial-temporal features to facilitate seizure prediction represents a primary challenge in this field. This study proposes GAMRNN, a novel methodology integrating a dual-layer gated recurrent unit (GRU) model with a convolutional attention module. GAMRNN aims to capture intricate spatial-temporal characteristics by highlighting informative feature channels and spatial pattern dynamics. We employ the Lion optimization algorithm to enhance the model's generalization capability and predictive accuracy. Our evaluation of GAMRNN on the widely utilized CHB-MIT EEG dataset demonstrates its effectiveness in seizure prediction. The results include an impressive average classification accuracy of 91.73%, sensitivity of 88.09%, specificity of 92.09%, and a low false positive rate of 0.053/h. Notably, GAMRNN enables early seizure prediction with a lead time ranging from 5 to 35 min, exhibiting remarkable performance improvements compared to similar prediction models.
Collapse
Affiliation(s)
- Hong Ji
- Shaanxi Provincial Key Laboratory of Fashion Design Intelligence, Xi'an Polytechnic University, Xi'an, China
| | - Ting Xu
- Shaanxi Provincial Key Laboratory of Fashion Design Intelligence, Xi'an Polytechnic University, Xi'an, China
| | - Tao Xue
- Shaanxi Provincial Key Laboratory of Fashion Design Intelligence, Xi'an Polytechnic University, Xi'an, China
| | - Tao Xu
- School of Software, Northwestern Polytechnical University, Xi'an, China
| | - Zhiqiang Yan
- Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yonghong Liu
- Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Badong Chen
- Institute of Artistic Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China
| | - Wen Jiang
- Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Lu X, Wen A, Sun L, Wang H, Guo Y, Ren Y. An Epileptic Seizure Prediction Method Based on CBAM-3D CNN-LSTM Model. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2023; 11:417-423. [PMID: 37426305 PMCID: PMC10328218 DOI: 10.1109/jtehm.2023.3290036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/30/2023] [Accepted: 06/18/2023] [Indexed: 07/11/2023]
Abstract
Epilepsy as a common disease of the nervous system, with high incidence, sudden and recurrent characteristics. Therefore, timely prediction of seizures and intervention treatment can significantly reduce the accidental injury of patients and protect the life and health of patients. Epilepsy seizures is the result of temporal and spatial evolution, Existing deep learning methods often ignore its spatial features, in order to make better use of the temporal and spatial characteristics of epileptic EEG signals. We propose a CBAM-3D CNN-LSTM model to predict epilepsy seizures. First, we apply short-time Fourier transform(STFT) to preprocess EEG signals. Secondly, the 3D CNN model was used to extract the features of preictal stage and interictal stage from the preprocessed signals. Thirdly, Bi-LSTM is connected to 3D CNN for classification. Finally CBAM is introduced into the model. Different attention is given to the data channel and space to extract key information, so that the model can accurately extract interictal and pre-ictal features. Our proposed approach achieved an accuracy of 97.95%, a sensitivity of 98.40%, and a false alarm rate of 0.017 h-1 on 11 patients from the public CHB-MIT scalp EEG dataset. Clinical and Translational Impact Statement-Timely prediction of epileptic seizures and intervention treatment can significantly reduce the accidental injury of patients and protect the life and health of patients.
Collapse
Affiliation(s)
- Xiang Lu
- College of Electronic and Information EngineeringShandong University of Science and TechnologyQingdaoShandong266590China
| | - Anhao Wen
- College of Electronic and Information EngineeringShandong University of Science and TechnologyQingdaoShandong266590China
| | - Lei Sun
- Taian Second Hospital of Traditional Chinese MedicineQingdaoShandong271000China
| | - Hao Wang
- College of Electronic and Information EngineeringShandong University of Science and TechnologyQingdaoShandong266590China
| | - Yinjing Guo
- College of Electronic and Information EngineeringShandong University of Science and TechnologyQingdaoShandong266590China
| | - Yande Ren
- The Affiliated Hospital of Qingdao UniversityQingdaoShandong266003China
| |
Collapse
|
9
|
Zhong L, Wu J, He S, Yi F, Zeng C, Li X, Li Z, Huang Z. Epileptic seizure prediction in intracranial EEG using critical nucleus based on phase transition. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107091. [PMID: 36096023 DOI: 10.1016/j.cmpb.2022.107091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/30/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Epilepsy is the second most prevalent neurological disorder of brain activity, affecting about seventy million people, or nearly 1% of the world population. Epileptic seizures prediction is extremely important for improving the epileptic patients' life. This paper proposed a novel method to predict seizures by detecting the critical transition of brain activities with intracranial EEG (iEEG) signals. METHODS This article used three key measures of fluctuation, correlation and percolation to quantify pre-ictal states of epilepsy. Based on these measures, a ritical nucleus of iEEG signals was constructed and a composite index was introduced to detect the likelihood of impending seizures. In addition, we analyzed the dynamical mechanism of seizures at the tipping point from the perspective of spatial diffusion and temporal fluctuation. RESULTS The empirical results supported that the seizures are self-initiated via a critical transition in pre-ictal state and showed that the proposed model can achieve a good prediction performance. The average accuracy, sensitivity, specificity and false-positive rate (FPR) attain 87.96%, 82.93%, 89.33% and 0.11/h respectively. The results also suggest that the temporal and spatial factors have strong synergistic effect on triggering seizures. For those seizures consistent with critical transition, the predictive performance was greatly improved with sensitivity up to 96.88%. CONCLUSIONS This article proposed a critical nucleus model combined with spatial and temporal features of iEEG signals capable of seizure prediction. The proposed model brings insight from phase transition into epileptic iEEG signals analysis and quantifies the transition of the state to predict epileptic seizures with high accuracy.
Collapse
Affiliation(s)
- Lisha Zhong
- School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China; School of Medical Information and Engineering, Southwest Medical University Sichuan, China; Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan, China
| | - Jia Wu
- School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China; School of Medical Information and Engineering, Southwest Medical University Sichuan, China
| | - Shuling He
- School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Fangji Yi
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Chen Zeng
- Department of Physics, The George Washington University, Washington, D. C., United States
| | - Xi Li
- School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Zhangyong Li
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China.
| | - Zhiwei Huang
- School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China; School of Medical Information and Engineering, Southwest Medical University Sichuan, China; Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan, China.
| |
Collapse
|
10
|
Wu X, Zhang T, Zhang L, Qiao L. Epileptic seizure prediction using successive variational mode decomposition and transformers deep learning network. Front Neurosci 2022; 16:982541. [PMID: 36225738 PMCID: PMC9548615 DOI: 10.3389/fnins.2022.982541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/24/2022] [Indexed: 12/01/2022] Open
Abstract
As one of the most common neurological disorders, epilepsy causes great physical and psychological damage to the patients. The long-term recurrent and unprovoked seizures make the prediction necessary. In this paper, a novel approach for epileptic seizure prediction based on successive variational mode decomposition (SVMD) and transformers is proposed. SVMD is extended to multidimensional form for time-frequency analysis of multi-channel signals. It could adaptively extract common band-limited intrinsic modes among all channels on different time scales by solving a variational optimization problem. In the proposed seizure prediction method, data are first decomposed into multiple modes on different time scales by multivariate SVMD, and then, irrelevant modes are removed for preprocessing. Finally, power spectrum of denoised data is input to a pre-trained bidirectional encoder representations from transformers (BERTs) for prediction. The BERT could identify the mode information related to epileptic seizures in time-frequency domain. It shows fair prediction performance on an intracranial EEG dataset with the average sensitivity of 0.86 and FPR of 0.18/h.
Collapse
Affiliation(s)
- Xiao Wu
- School of Mathematics Science, Liaocheng University, Liaocheng, China
| | - Tinglin Zhang
- School of Mathematics Science, Liaocheng University, Liaocheng, China
| | - Limei Zhang
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, China
| | - Lishan Qiao
- School of Mathematics Science, Liaocheng University, Liaocheng, China
| |
Collapse
|
11
|
Classification of EEG Signals for Prediction of Epileptic Seizures. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epilepsy is a common brain disorder that causes patients to face multiple seizures in a single day. Around 65 million people are affected by epilepsy worldwide. Patients with focal epilepsy can be treated with surgery, whereas generalized epileptic seizures can be managed with medications. It has been noted that in more than 30% of cases, these medications fail to control epileptic seizures, resulting in accidents and limiting the patient’s life. Predicting epileptic seizures in such patients prior to the commencement of an oncoming seizure is critical so that the seizure can be treated with preventive medicines before it occurs. Electroencephalogram (EEG) signals of patients recorded to observe brain electrical activity during a seizure can be quite helpful in predicting seizures. Researchers have proposed methods that use machine and/or deep learning techniques to predict epileptic seizures using scalp EEG signals; however, prediction of seizures with increased accuracy is still a challenge. Therefore, we propose a three-step approach. It includes preprocessing of scalp EEG signals with PREP pipeline, which is a more sophisticated alternative to basic notch filtering. This method uses a regression-based technique to further enhance the SNR, with a combination of handcrafted, i.e., statistical features such as temporal mean, variance, and skewness, and automated features using CNN, followed by classification of interictal state and preictal state segments using LSTM to predict seizures. We train and validate our proposed technique on the CHB-MIT scalp EEG dataset and achieve accuracy of 94%, sensitivity of 93.8%, and 91.2% specificity. The proposed technique achieves better sensitivity and specificity than existing methods.
Collapse
|
12
|
Peng P, Song Y, Yang L, Wei H. Seizure Prediction in EEG Signals Using STFT and Domain Adaptation. Front Neurosci 2022; 15:825434. [PMID: 35115906 PMCID: PMC8805457 DOI: 10.3389/fnins.2021.825434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 12/04/2022] Open
Abstract
Epileptic seizure prediction is one of the most used therapeutic adjuvant strategies for drug-resistant epilepsy. Conventional approaches commonly collect training and testing samples from the same patient due to inter-individual variability. However, the challenging problem of domain shift between various subjects remains unsolved, resulting in a low conversion rate to the clinic. In this work, a domain adaptation (DA)-based model is proposed to circumvent this issue. The short-time Fourier transform (STFT) is employed to extract the time-frequency features from raw EEG data, and an autoencoder is developed to map these features into high-dimensional space. By minimizing the inter-domain distance in the embedding space, this model learns the domain-invariant information, such that the generalization ability is improved by distribution alignment. Besides, to increase the feasibility of its application, this work mimics the data distribution under the clinical sampling situation and tests the model under this condition, which is the first study that adopts the assessment strategy. Experimental results on both intracranial and scalp EEG databases demonstrate that this method can minimize the domain gap effectively compared with previous approaches.
Collapse
Affiliation(s)
- Peizhen Peng
- Key Laboratory of Measurement and Control of Control Science and Engineering (CSE), Ministry of Education, School of Automation, Southeast University, Nanjing, China
| | - Yang Song
- State Grid Nanjing Power Supply Company, Nanjing, China
| | - Lu Yang
- Epilepsy Center, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Haikun Wei
- Key Laboratory of Measurement and Control of Control Science and Engineering (CSE), Ministry of Education, School of Automation, Southeast University, Nanjing, China
- *Correspondence: Haikun Wei
| |
Collapse
|
13
|
Detection of preictal state in epileptic seizures using ensemble classifier. Epilepsy Res 2021; 178:106818. [PMID: 34847427 DOI: 10.1016/j.eplepsyres.2021.106818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/10/2021] [Accepted: 11/12/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Epilepsy affected patient experiences more than one frequency seizures which can not be treated with medication or surgical procedures in 30% of the cases. Therefore, an early prediction of these seizures is inevitable for these cases to control them with therapeutic interventions. METHODS In recent years, researchers have proposed multiple deep learning based methods for detection of preictal state in electroencephalogram (EEG) signals, however, accurate detection of start of preictal state remains a challenge. We propose a novel ensemble classifier based method that gets the comprehensive feature set as input and combines three different classifiers to detect the preictal state. RESULTS We have applied the proposed method on the publicly available scalp EEG dataset CHBMIT of 22 subjects. An average accuracy of 94.31% with sensitivity and specificity of 94.73% and 93.72% respectively has been achieved with the method proposed in this study. CONCLUSIONS Proposed study utilizes the preprocessing techniques for noise removal, combines deep learning based and handcrafted features and an ensemble classifier for detection of start of preictal state. Proposed method gives better results in terms of accuracy, sensitivity, and specificity.
Collapse
|
14
|
Muhammad Usman S, Khalid S, Bashir S. A deep learning based ensemble learning method for epileptic seizure prediction. Comput Biol Med 2021; 136:104710. [PMID: 34364257 DOI: 10.1016/j.compbiomed.2021.104710] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
In epilepsy, patients suffer from seizures which cannot be controlled with medicines or surgical treatments in more than 30% of the cases. Prediction of epileptic seizures is extremely important so that they can be controlled with medication before they actually occur. Researchers have proposed multiple machine/deep learning based methods to predict epileptic seizures; however, accurate prediction of epileptic seizures with low false positive rate is still a challenge. In this research, we propose a deep learning based ensemble learning method to predict epileptic seizures. In the proposed method, EEG signals are preprocessed using empirical mode decomposition followed by bandpass filtering for noise removal. The class imbalance problem has been mitigated with synthetic preictal segments generated using generative adversarial networks. A three-layer customized convolutional neural network has been proposed to extract automated features from preprocessed EEG signals and combined them with handcrafted features to get a comprehensive feature set. The feature set is then used to train an ensemble classifier that combines the output of SVM, CNN and LSTM using Model agnostic meta learning. An average sensitivity of 96.28% and specificity of 95.65% with an average anticipation time of 33 min on all subjects of CHBMIT has been achieved by the proposed method, whereas, on American epilepsy society-Kaggle seizure prediction dataset, an average sensitivity of 94.2% and specificity of 95.8% has been achieved on all subjects.
Collapse
Affiliation(s)
| | - Shehzad Khalid
- Department of Computer Engineering, Bahria University, Islamabad, Pakistan.
| | - Sadaf Bashir
- Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.
| |
Collapse
|
15
|
Assali I, Jlassi I, Aissi M, Blaiech AG, Carrère M, Bedoui MH. Comparison by multivariate auto-regressive method of seizure prediction for real patients and virtual patients. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Peng P, Xie L, Wei H. A Deep Fourier Neural Network for Seizure Prediction Using Convolutional Neural Network and Ratios of Spectral Power. Int J Neural Syst 2021; 31:2150022. [PMID: 33970057 DOI: 10.1142/s0129065721500222] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Epileptic seizure prediction is one of the most used therapeutic adjuvant strategies for drug-resistant epilepsy. Conventional methods usually adopt handcrafted features and manual parameter setting. The over-reliance on the expertise of specialists may lead to weak exploitation of features and low popularization of clinical application. This paper proposes a novel parameterless patient-specific method based on Fourier Neural Network (FNN), where the Fourier transform and backpropagation learning are synthesized to make the predictor more efficient and practical. The employment of FNN is the first attempt in the field of seizure prediction due to its automatic extraction of immanent spectra in epileptic signals. Despite the self-adaptive superiority of FNN, we introduce Convolutional Neural Network (CNN) to further improve its search capability in high-dimensional feature spaces. The study also develops a multi-layer module to estimate spectral power ratios of raw recordings, which optimizes the prediction by enhancing feature diversity. Based on these modules, this paper proposes a two-channel deep neural network: Fourier Ratio Convolutional Neural Network (FRCNN). To demonstrate the reliability of the model, we explain the mathematical meaning of hidden-layer neurons in FRCNN theoretically. This approach is evaluated on both intracranial and scalp EEG datasets. It shows that the predictor achieved a sensitivity of 91.2% and a false prediction rate (FPR) of 0.06[Formula: see text]h[Formula: see text] across intracranial subjects and a sensitivity of 85.4% and an FPR of 0.14[Formula: see text]h[Formula: see text] over scalp subjects. The results indicate that FRCNN enables the convenience of epilepsy treatments while preserving a high degree of precision. In the end, a detailed comparison with the previous methods demonstrates that FRCNN has achieved higher performance and generalization ability.
Collapse
Affiliation(s)
- Peizhen Peng
- Key Laboratory of Measurement and Control of CSE, Ministry of Education, School of Automation, Southeast University, Nanjing 210096, P. R. China
| | - Liping Xie
- Key Laboratory of Measurement and Control of CSE, Ministry of Education, School of Automation, Southeast University, Nanjing 210096, P. R. China
| | - Haikun Wei
- Key Laboratory of Measurement and Control of CSE, Ministry of Education, School of Automation, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
17
|
Usman SM, Khalid S, Bashir Z. Epileptic seizure prediction using scalp electroencephalogram signals. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
The fractional Fourier transform as a biomedical signal and image processing tool: A review. Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2020.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Comparison of empirical mode decomposition and coarse-grained procedure for detecting pre-ictal and ictal condition in electroencephalography signal. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100325] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
Ozcan AR, Erturk S. Seizure Prediction in Scalp EEG Using 3D Convolutional Neural Networks With an Image-Based Approach. IEEE Trans Neural Syst Rehabil Eng 2019; 27:2284-2293. [DOI: 10.1109/tnsre.2019.2943707] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Usman SM, Khalid S, Akhtar R, Bortolotto Z, Bashir Z, Qiu H. Using scalp EEG and intracranial EEG signals for predicting epileptic seizures: Review of available methodologies. Seizure 2019; 71:258-269. [DOI: 10.1016/j.seizure.2019.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022] Open
|
22
|
A self-organized recurrent neural network for estimating the effective connectivity and its application to EEG data. Comput Biol Med 2019; 110:93-107. [DOI: 10.1016/j.compbiomed.2019.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 05/12/2019] [Accepted: 05/12/2019] [Indexed: 11/21/2022]
|
23
|
Acharya UR, Hagiwara Y, Adeli H. Automated seizure prediction. Epilepsy Behav 2018; 88:251-261. [PMID: 30317059 DOI: 10.1016/j.yebeh.2018.09.030] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/16/2018] [Accepted: 09/22/2018] [Indexed: 11/16/2022]
Abstract
In the past two decades, significant advances have been made on automated electroencephalogram (EEG)-based diagnosis of epilepsy and seizure detection. A number of innovative algorithms have been introduced that can aid in epilepsy diagnosis with a high degree of accuracy. In recent years, the frontiers of computational epilepsy research have moved to seizure prediction, a more challenging problem. While antiepileptic medication can result in complete seizure freedom in many patients with epilepsy, up to one-third of patients living with epilepsy will have medically intractable epilepsy, where medications reduce seizure frequency but do not completely control seizures. If a seizure can be predicted prior to its clinical manifestation, then there is potential for abortive treatment to be given, either self-administered or via an implanted device administering medication or electrical stimulation. This will have a far-reaching impact on the treatment of epilepsy and patient's quality of life. This paper presents a state-of-the-art review of recent efforts and journal articles on seizure prediction. The technologies developed for epilepsy diagnosis and seizure detection are being adapted and extended for seizure prediction. The paper ends with some novel ideas for seizure prediction using the increasingly ubiquitous machine learning technology, particularly deep neural network machine learning.
Collapse
Affiliation(s)
- U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore; Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore; Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Malaysia
| | - Yuki Hagiwara
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
| | - Hojjat Adeli
- Department of Neuroscience, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH, United States; Department of Neurology, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH, United States; Department of Biomedical Informatics, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH, United States.
| |
Collapse
|