1
|
Muñoz-Mata BG, Dorantes-Méndez G, Piña-Ramírez O. Classification of Parkinson's disease severity using gait stance signals in a spatiotemporal deep learning classifier. Med Biol Eng Comput 2024; 62:3493-3506. [PMID: 38884852 DOI: 10.1007/s11517-024-03148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/03/2024] [Indexed: 06/18/2024]
Abstract
Parkinson's disease (PD) is a degenerative nervous system disorder involving motor disturbances. Motor alterations affect the gait according to the progression of PD and can be used by experts in movement disorders to rate the severity of the disease. However, this rating depends on the expertise of the clinical specialist. Therefore, the diagnosis may be inaccurate, particularly in the early stages of PD where abnormal gait patterns can result from normal aging or other medical conditions. Consequently, several classification systems have been developed to enhance PD diagnosis. In this paper, a PD gait severity classification algorithm was developed using vertical ground reaction force (VGRF) signals. The VGRF records used are from a public database that includes 93 PD patients and 72 healthy controls adults. The work presented here focuses on modeling each foot's gait stance phase signals using a modified convolutional long deep neural network (CLDNN) architecture. Subsequently, the results of each model are combined to predict PD severity. The classifier performance was evaluated using ten-fold cross-validation. The best-weighted accuracies obtained were 99.296(0.128)% and 99.343(0.182)%, with the Hoehn-Yahr and UPDRS scales, respectively, outperforming previous results presented in the literature. The classifier proposed here can effectively differentiate gait patterns of different PD severity levels based on gait signals of the stance phase.
Collapse
Affiliation(s)
- Brenda G Muñoz-Mata
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, San Luis Potosí, 78295, San Luis Potosí, México
| | - Guadalupe Dorantes-Méndez
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, San Luis Potosí, 78295, San Luis Potosí, México.
| | - Omar Piña-Ramírez
- Departamento de Bioinformática y Análisis Estadísticos, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Montes Urales 800, Ciudad de México, 11000, Ciudad de México, México
| |
Collapse
|
2
|
Wang Q, Zeng W, Dai X. Gait classification for early detection and severity rating of Parkinson's disease based on hybrid signal processing and machine learning methods. Cogn Neurodyn 2024; 18:109-132. [PMID: 38406205 PMCID: PMC10881932 DOI: 10.1007/s11571-022-09925-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 12/03/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022] Open
Abstract
Parkinson's disease (PD) is one of the cognitive degenerative disorders of the central nervous system that affects the motor system. Gait dysfunction represents the pathology of motor symptom while gait analysis provides clinicians with subclinical information reflecting subtle differences between PD patients and healthy controls (HCs). Currently neurologists usually assess several clinical manifestations of the PD patients and rate the severity level according to some established criteria. This is highly dependent on clinician's expertise which is subjective and ineffective. In the present study we address these issues by proposing a hybrid signal processing and machine learning based gait classification system for gait anomaly detection and severity rating of PD patients. Time series of vertical ground reaction force (VGRF) data are utilized to represent discriminant gait information. First, phase space of the VGRF is reconstructed, in which the properties associated with the nonlinear gait system dynamics are preserved. Then Shannon energy is used to extract the characteristic envelope of the phase space signal. Third, Shannon energy envelope is decomposed into high and low resonance components using dual Q-factor signal decomposition derived from tunable Q-factor wavelet transform. Note that the high Q-factor component consists largely of sustained oscillatory behavior, while the low Q-factor component consists largely of transients and oscillations that are not sustained. Fourth, variational mode decomposition is employed to decompose high and low resonance components into different intrinsic modes and provide representative features. Finally features are fed to five different types of machine learning based classifiers for the anomaly detection and severity rating of PD patients based on Hohen and Yahr (HY) scale. The effectiveness of this strategy is verified using a Physionet gait database consisting of 93 idiopathic PD patients and 73 age-matched asymptomatic HCs. When evaluated with 10-fold cross-validation method for early PD detection and severity rating, the highest classification accuracy is reported to be 98.20 % and 96.69 % , respectively, by using the support vector machine classifier. Compared with other state-of-the-art methods, the results demonstrate superior performance and support the validity of the proposed method.
Collapse
Affiliation(s)
- Qinghui Wang
- School of Physics and Mechanical and Electrical Engineering, Longyan University, Longyan, 364012 People's Republic of China
| | - Wei Zeng
- School of Physics and Mechanical and Electrical Engineering, Longyan University, Longyan, 364012 People's Republic of China
| | - Xiangkun Dai
- School of Physics and Mechanical and Electrical Engineering, Longyan University, Longyan, 364012 People's Republic of China
| |
Collapse
|
3
|
Li J, Liang W, Yin X, Li J, Guan W. Multimodal Gait Abnormality Recognition Using a Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-BiLSTM) Network Based on Multi-Sensor Data Fusion. SENSORS (BASEL, SWITZERLAND) 2023; 23:9101. [PMID: 38005489 PMCID: PMC10675737 DOI: 10.3390/s23229101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
Global aging leads to a surge in neurological diseases. Quantitative gait analysis for the early detection of neurological diseases can effectively reduce the impact of the diseases. Recently, extensive research has focused on gait-abnormality-recognition algorithms using a single type of portable sensor. However, these studies are limited by the sensor's type and the task specificity, constraining the widespread application of quantitative gait recognition. In this study, we propose a multimodal gait-abnormality-recognition framework based on a Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-BiLSTM) network. The as-established framework effectively addresses the challenges arising from smooth data interference and lengthy time series by employing an adaptive sliding window technique. Then, we convert the time series into time-frequency plots to capture the characteristic variations in different abnormality gaits and achieve a unified representation of the multiple data types. This makes our signal processing method adaptable to several types of sensors. Additionally, we use a pre-trained Deep Convolutional Neural Network (DCNN) for feature extraction, and the consequently established CNN-BiLSTM network can achieve high-accuracy recognition by fusing and classifying the multi-sensor input data. To validate the proposed method, we conducted diversified experiments to recognize the gait abnormalities caused by different neuropathic diseases, such as amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Huntington's disease (HD). In the PDgait dataset, the framework achieved an accuracy of 98.89% in the classification of Parkinson's disease severity, surpassing DCLSTM's 96.71%. Moreover, the recognition accuracy of ALS, PD, and HD on the PDgait dataset was 100%, 96.97%, and 95.43% respectively, surpassing the majority of previously reported methods. These experimental results strongly demonstrate the potential of the proposed multimodal framework for gait abnormality identification. Due to the advantages of the framework, such as its suitability for different types of sensors and fewer training parameters, it is more suitable for gait monitoring in daily life and the customization of medical rehabilitation schedules, which will help more patients alleviate the harm caused by their diseases.
Collapse
Affiliation(s)
- Jing Li
- School of Mechanical Engineering and Hubei Modern Manufacturing Quality Engineering Key Laboratory, Hubei University of Technology, Wuhan 430068, China
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Weisheng Liang
- School of Mechanical Engineering and Hubei Modern Manufacturing Quality Engineering Key Laboratory, Hubei University of Technology, Wuhan 430068, China
| | - Xiyan Yin
- School of Mechanical Engineering and Hubei Modern Manufacturing Quality Engineering Key Laboratory, Hubei University of Technology, Wuhan 430068, China
| | - Jun Li
- Detroit Green Technology Institute, Hubei University of Technology, Wuhan 430068, China; (J.L.); (W.G.)
| | - Weizheng Guan
- Detroit Green Technology Institute, Hubei University of Technology, Wuhan 430068, China; (J.L.); (W.G.)
| |
Collapse
|
4
|
Pedrero-Sánchez JF, Belda-Lois JM, Serra-Añó P, Mollà-Casanova S, López-Pascual J. Classification of Parkinson's disease stages with a two-stage deep neural network. Front Aging Neurosci 2023; 15:1152917. [PMID: 37333459 PMCID: PMC10272759 DOI: 10.3389/fnagi.2023.1152917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Parkinson's disease is one of the most prevalent neurodegenerative diseases. In the most advanced stages, PD produces motor dysfunction that impairs basic activities of daily living such as balance, gait, sitting, or standing. Early identification allows healthcare personnel to intervene more effectively in rehabilitation. Understanding the altered aspects and impact on the progression of the disease is important for improving the quality of life. This study proposes a two-stage neural network model for the classifying the initial stages of PD using data recorded with smartphone sensors during a modified Timed Up & Go test. Methods The proposed model consists on two stages: in the first stage, a semantic segmentation of the raw sensor signals classifies the activities included in the test and obtains biomechanical variables that are considered clinically relevant parameters for functional assessment. The second stage is a neural network with three input branches: one with the biomechanical variables, one with the spectrogram image of the sensor signals, and the third with the raw sensor signals. Results This stage employs convolutional layers and long short-term memory. The results show a mean accuracy of 99.64% for the stratified k-fold training/validation process and 100% success rate of participants in the test phase. Discussion The proposed model is capable of identifying the three initial stages of Parkinson's disease using a 2-min functional test. The test easy instrumentation requirements and short duration make it feasible for use feasible in the clinical context.
Collapse
Affiliation(s)
| | - Juan Manuel Belda-Lois
- Instituto de Biomecánica (IBV), Universitat Politècnica de València, Valencia, Spain
- Department of Mechanical and Materials Engineering (DIMM), Universitat Politècnica de València, Valencia, Spain
| | - Pilar Serra-Añó
- UBIC, Department of Physiotherapy, Faculty of Physiotherapy, Universitat de València, Valencia, Spain
| | - Sara Mollà-Casanova
- UBIC, Department of Physiotherapy, Faculty of Physiotherapy, Universitat de València, Valencia, Spain
| | - Juan López-Pascual
- Instituto de Biomecánica (IBV), Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
5
|
Bhakar S, Sinwar D, Pradhan N, Dhaka VS, Cherrez-Ojeda I, Parveen A, Hassan MU. Computational Intelligence-Based Disease Severity Identification: A Review of Multidisciplinary Domains. Diagnostics (Basel) 2023; 13:diagnostics13071212. [PMID: 37046431 PMCID: PMC10093052 DOI: 10.3390/diagnostics13071212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 04/14/2023] Open
Abstract
Disease severity identification using computational intelligence-based approaches is gaining popularity nowadays. Artificial intelligence and deep-learning-assisted approaches are proving to be significant in the rapid and accurate diagnosis of several diseases. In addition to disease identification, these approaches have the potential to identify the severity of a disease. The problem of disease severity identification can be considered multi-class classification, where the class labels are the severity levels of the disease. Plenty of computational intelligence-based solutions have been presented by researchers for severity identification. This paper presents a comprehensive review of recent approaches for identifying disease severity levels using computational intelligence-based approaches. We followed the PRISMA guidelines and compiled several works related to the severity identification of multidisciplinary diseases of the last decade from well-known publishers, such as MDPI, Springer, IEEE, Elsevier, etc. This article is devoted toward the severity identification of two main diseases, viz. Parkinson's Disease and Diabetic Retinopathy. However, severity identification of a few other diseases, such as COVID-19, autonomic nervous system dysfunction, tuberculosis, sepsis, sleep apnea, psychosis, traumatic brain injury, breast cancer, knee osteoarthritis, and Alzheimer's disease, was also briefly covered. Each work has been carefully examined against its methodology, dataset used, and the type of disease on several performance metrics, accuracy, specificity, etc. In addition to this, we also presented a few public repositories that can be utilized to conduct research on disease severity identification. We hope that this review not only acts as a compendium but also provides insights to the researchers working on disease severity identification using computational intelligence-based approaches.
Collapse
Affiliation(s)
- Suman Bhakar
- Department of Computer and Communication Engineering, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, Rajasthan, India
| | - Deepak Sinwar
- Department of Computer and Communication Engineering, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, Rajasthan, India
| | - Nitesh Pradhan
- Department of Computer Science and Engineering, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, Rajasthan, India
| | - Vijaypal Singh Dhaka
- Department of Computer and Communication Engineering, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, Rajasthan, India
| | - Ivan Cherrez-Ojeda
- Allergy and Pulmonology, Espíritu Santo University, Samborondón 0901-952, Ecuador
| | - Amna Parveen
- College of Pharmacy, Gachon University, Medical Campus, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Muhammad Umair Hassan
- Department of ICT and Natural Sciences, Norwegian University of Science and Technology (NTNU), 6009 Ålesund, Norway
| |
Collapse
|
6
|
A type-2 neuro-fuzzy system with a novel learning method for Parkinson’s disease diagnosis. APPL INTELL 2022. [DOI: 10.1007/s10489-022-04276-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Hao Z, Li Z, Dang X, Ma Z, Wang Y. mm-DSF: A Method for Identifying Dangerous Driving Behaviors Based on the Lateral Fusion of Micro-Doppler Features Combined. SENSORS (BASEL, SWITZERLAND) 2022; 22:8929. [PMID: 36433527 PMCID: PMC9697897 DOI: 10.3390/s22228929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
To address the dangerous driving behaviors prevalent among current car drivers, it is necessary to provide real-time, accurate warning and correction of driver's driving behaviors in a small, movable, and enclosed space. In this paper, we propose a method for detecting dangerous behaviors based on frequency-modulated continuous-wave radar (mm-DSF). The highly packaged millimeter-wave radar chip has good in-vehicle emotion recognition capability. The acquired millimeter-wave differential frequency signal is Fourier-transformed to obtain the intermediate frequency signal. The physiological decomposition of the local micro-Doppler feature spectrum of the target action is then used as the eigenvalue. Matrix signal intensity and clutter filtering are performed by analyzing the signal echo model of the input channel. The signal classification is based on the estimation and variety of the feature vectors of the target key actions using a modified and optimized level fusion method of the SlowFast dual-channel network. Nine typical risky driving behaviors were set up by the Dula Hazard Questionnaire and TEIQue-SF, and the accuracy of the classification results of the self-built dataset was analyzed to verify the high robustness of the method. The recognition accuracy of this method increased by 1.97% compared with the traditional method.
Collapse
Affiliation(s)
- Zhanjun Hao
- College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China
- Gansu Province Internet of Things Engineering Research Center, Lanzhou 730070, China
| | - Zepei Li
- College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xiaochao Dang
- College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China
- Gansu Province Internet of Things Engineering Research Center, Lanzhou 730070, China
| | - Zhongyu Ma
- College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yue Wang
- College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
8
|
Detecting Parkinson's Disease through Gait Measures Using Machine Learning. Diagnostics (Basel) 2022; 12:diagnostics12102404. [PMID: 36292093 PMCID: PMC9600300 DOI: 10.3390/diagnostics12102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/25/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common long-term degenerative movement disorders that affects the motor system. This progressive nervous system disorder affects nearly one million Americans, and more than 20,000 new cases are diagnosed each year. PD is a chronic and progressive painful neurological disorder and usually people with PD live 10 to 20 years after being diagnosed. PD is diagnosed based on the identification of motor signs of bradykinesia, rigidity, tremor, and postural instability. Though several attempts have been made to develop explicit diagnostic criteria, this is still largely unrevealed. In this manuscript, we aim to build a classifier with gait data from Parkinson patients and healthy controls using machine learning methods. The classifier could help facilitate a more accurate and cost-effective diagnostic method. The input to our algorithm is the Gait in Parkinson’s Disease dataset published on PhysioNet containing force sensor data as the measurement of gait from 92 healthy subjects and 214 patients with idiopathic Parkinson’s Disease. Different machine learning methods, including logistic regression, SVM, decision tree, KNN were tested to output a predicted classification of Parkinson patients and healthy controls. Baseline models including frequency domain method can reach similar performance and may be another good approach for the PD diagnostics.
Collapse
|
9
|
Hu W, Combden O, Jiang X, Buragadda S, Newell CJ, Williams MC, Critch AL, Ploughman M. Machine learning corroborates subjective ratings of walking and balance difficulty in multiple sclerosis. Front Artif Intell 2022; 5:952312. [PMID: 36248625 PMCID: PMC9556653 DOI: 10.3389/frai.2022.952312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Machine learning can discern meaningful information from large datasets. Applying machine learning techniques to raw sensor data from instrumented walkways could automatically detect subtle changes in walking and balance. Multiple sclerosis (MS) is a neurological disorder in which patients report varying degrees of walking and balance disruption. This study aimed to determine whether machine learning applied to walkway sensor data could classify severity of self-reported symptoms in MS patients. Ambulatory people with MS (n = 107) were asked to rate the severity of their walking and balance difficulties, from 1-No problems to 5-Extreme problems, using the MS-Impact Scale-29. Those who scored less than 3 (moderately) were assigned to the “mild” group (n = 35), and those scoring higher were in the “moderate” group (n = 72). Three machine learning algorithms were applied to classify the “mild” group from the “moderate” group. The classification achieved 78% accuracy, a precision of 85%, a recall of 90%, and an F1 score of 87% for distinguishing those people reporting mild from moderate walking and balance difficulty. This study demonstrates that machine learning models can reliably be applied to instrumented walkway data and distinguish severity of self-reported impairment in people with MS.
Collapse
Affiliation(s)
- Wenting Hu
- Ubiquitous Computing and Machine Learning Research Lab, Department of Computer Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Owen Combden
- Ubiquitous Computing and Machine Learning Research Lab, Department of Computer Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Xianta Jiang
- Ubiquitous Computing and Machine Learning Research Lab, Department of Computer Science, Memorial University of Newfoundland, St. John's, NL, Canada
- *Correspondence: Xianta Jiang
| | - Syamala Buragadda
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Caitlin J. Newell
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Maria C. Williams
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Amber L. Critch
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michelle Ploughman
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
10
|
Zhao H, Sun X, Dong J, Yu H, Wang G. Multi-instance semantic similarity transferring for knowledge distillation. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.109832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Zhao A, Li J, Dong J, Qi L, Zhang Q, Li N, Wang X, Zhou H. Multimodal Gait Recognition for Neurodegenerative Diseases. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:9439-9453. [PMID: 33705337 DOI: 10.1109/tcyb.2021.3056104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In recent years, single modality-based gait recognition has been extensively explored in the analysis of medical images or other sensory data, and it is recognized that each of the established approaches has different strengths and weaknesses. As an important motor symptom, gait disturbance is usually used for diagnosis and evaluation of diseases; moreover, the use of multimodality analysis of the patient's walking pattern compensates for the one-sidedness of single modality gait recognition methods that only learn gait changes in a single measurement dimension. The fusion of multiple measurement resources has demonstrated promising performance in the identification of gait patterns associated with individual diseases. In this article, as a useful tool, we propose a novel hybrid model to learn the gait differences between three neurodegenerative diseases, between patients with different severity levels of Parkinson's disease, and between healthy individuals and patients, by fusing and aggregating data from multiple sensors. A spatial feature extractor (SFE) is applied to generating representative features of images or signals. In order to capture temporal information from the two modality data, a new correlative memory neural network (CorrMNN) architecture is designed for extracting temporal features. Afterward, we embed a multiswitch discriminator to associate the observations with individual state estimations. Compared with several state-of-the-art techniques, our proposed framework shows more accurate classification results.
Collapse
|
12
|
A deep learning approach for parkinson’s disease severity assessment. HEALTH AND TECHNOLOGY 2022. [DOI: 10.1007/s12553-022-00698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Abstract
Purpose
Parkinson’s Disease comes on top among neurodegenerative diseases affecting 10 million worldwide. To detect Parkinson’s Disease in a prior state, gait analysis is an effective choice. However, monitoring of Parkinson’s Disease using gait analysis is time consuming and exhaustive for patients and physicians. To assess severity of symptoms, a rating scale called Unified Parkinson's Disease Rating Scale is used. It determines mild and severe cases. Today, Parkinson’s Disease severity assessment is made in gait laboratories and by manual examination. These are time consuming and it is costly for health institutions to build and maintain laboratories. By using low-cost wearables and an effective model, aforementioned problems can be solved.
Methods
We provide a computerized solution for quantifiable assessment of Parkinson’s Disease symptoms severity. By using wearable sensors, our framework can predict exact symptom values to assess Parkinson’s Disease severity. We propose a deep learning approach that utilizes Ground Reaction Force sensors. From sensor signals, features are extracted and fed to a hybrid deep learning model. This model is the combination of Convolutional Neural Networks and Locally Weighted Random Forest.
Results
Proposed framework achieved 0.897, 3.009, 4.556 in terms of Correlation Coefficient, Mean Absolute Error and Root Mean Square Error, respectively. Proposed framework outperformed other machine and deep learning models. We also evaluated classification performance for disease detection. We outperformed most of the previous studies, achieving 99.5% accuracy, 98.7% sensitivity and 99.1% specificity.
Conclusion
This is the first study to use a deep learning regression approach to predict exact symptom value of Parkinson’s Disease patients. Results show that this approach can be effectively employed as a disease severity assessment tool using wearable sensors.
Collapse
|
13
|
Guo Y, Yang J, Liu Y, Chen X, Yang GZ. Detection and assessment of Parkinson's disease based on gait analysis: A survey. Front Aging Neurosci 2022; 14:916971. [PMID: 35992585 PMCID: PMC9382193 DOI: 10.3389/fnagi.2022.916971] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Neurological disorders represent one of the leading causes of disability and mortality in the world. Parkinson's Disease (PD), for example, affecting millions of people worldwide is often manifested as impaired posture and gait. These impairments have been used as a clinical sign for the early detection of PD, as well as an objective index for pervasive monitoring of the PD patients in daily life. This review presents the evidence that demonstrates the relationship between human gait and PD, and illustrates the role of different gait analysis systems based on vision or wearable sensors. It also provides a comprehensive overview of the available automatic recognition systems for the detection and management of PD. The intervening measures for improving gait performance are summarized, in which the smart devices for gait intervention are emphasized. Finally, this review highlights some of the new opportunities in detecting, monitoring, and treating of PD based on gait, which could facilitate the development of objective gait-based biomarkers for personalized support and treatment of PD.
Collapse
Affiliation(s)
- Yao Guo
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxin Yang
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| | - Yuxuan Liu
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| | - Xun Chen
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
| | - Guang-Zhong Yang
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
An Unsupervised Neural Network Feature Selection and 1D Convolution Neural Network Classification for Screening of Parkinsonism. Diagnostics (Basel) 2022; 12:diagnostics12081796. [PMID: 35892507 PMCID: PMC9330613 DOI: 10.3390/diagnostics12081796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease. It has a slow progressing neurodegenerative disorder rate. PD patients have multiple motor and non-motor symptoms, including vocal impairment, which is one of the main symptoms. The identification of PD based on vocal disorders is at the forefront of research. In this paper, an experimental study is performed on an open source Kaggle PD speech dataset and novel comparative techniques were employed to identify PD. We proposed an unsupervised autoencoder feature selection technique, and passed the compressed features to supervised machine-learning (ML) algorithms. We also investigated the state-of-the-art deep learning 1D convolutional neural network (CNN-1D) for PD classification. In this study, the proposed algorithms are support vector machine, logistic regression, random forest, naïve Bayes, and CNN-1D. The classifier performance is evaluated in terms of accuracy score, precision, recall, and F1 score measure. The proposed 1D-CNN model shows the highest result of 0.927%, and logistic regression shows 0.922% on the benchmark dataset in terms of F1 measure. The major contribution of the proposed approach is that unsupervised neural network feature selection has not previously been investigated in Parkinson’s detection. Clinicians can use these techniques to analyze the symptoms presented by patients and, based on the results of the above algorithms, can diagnose the disease at an early stage, which will allow for improved future treatment and care.
Collapse
|
15
|
Deb R, An S, Bhat G, Shill H, Ogras UY. A Systematic Survey of Research Trends in Technology Usage for Parkinson's Disease. SENSORS (BASEL, SWITZERLAND) 2022; 22:5491. [PMID: 35897995 PMCID: PMC9371095 DOI: 10.3390/s22155491] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Parkinson's disease (PD) is a neurological disorder with complicated and disabling motor and non-motor symptoms. The complexity of PD pathology is amplified due to its dependency on patient diaries and the neurologist's subjective assessment of clinical scales. A significant amount of recent research has explored new cost-effective and subjective assessment methods pertaining to PD symptoms to address this challenge. This article analyzes the application areas and use of mobile and wearable technology in PD research using the PRISMA methodology. Based on the published papers, we identify four significant fields of research: diagnosis, prognosis and monitoring, predicting response to treatment, and rehabilitation. Between January 2008 and December 2021, 31,718 articles were published in four databases: PubMed Central, Science Direct, IEEE Xplore, and MDPI. After removing unrelated articles, duplicate entries, non-English publications, and other articles that did not fulfill the selection criteria, we manually investigated 1559 articles in this review. Most of the articles (45%) were published during a recent four-year stretch (2018-2021), and 19% of the articles were published in 2021 alone. This trend reflects the research community's growing interest in assessing PD with wearable devices, particularly in the last four years of the period under study. We conclude that there is a substantial and steady growth in the use of mobile technology in the PD contexts. We share our automated script and the detailed results with the public, making the review reproducible for future publications.
Collapse
Affiliation(s)
| | - Sizhe An
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Ganapati Bhat
- School of Electrical Engineering & Computer Science, Washington State University, Pullman, WA 99164, USA;
| | - Holly Shill
- Lonnie and Muhammad Ali Movement Disorder Center, Phoenix, AZ 85013, USA;
| | - Umit Y. Ogras
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA;
| |
Collapse
|
16
|
An Efficient Rotation Forest-Based Ensemble Approach for Predicting Severity of Parkinson’s Disease. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:5524852. [PMID: 35783585 PMCID: PMC9246609 DOI: 10.1155/2022/5524852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 10/07/2021] [Accepted: 05/10/2022] [Indexed: 12/03/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative nervous system disorder that mainly affects body movement, and it is one of the most common diseases, particularly in elderly individuals. This paper proposes a new machine learning approach to predict Parkinson's disease severity using UCI's Parkinson's telemonitoring voice dataset. The proposed method analyses the patient's voice data and classifies them into “severe” and “nonsevere” classes. At first, a subset of features was selected, then a novel approach with a combination of Rotation Forest and Random Forest was applied on selected features to determine each patient's disease severity. Analysis of the experimental results shows that the proposed approach can detect the severity of PD patients in the early stages. Moreover, the proposed model is compared with several algorithms, and the results indicate that the model is highly successful in classifying records and outperformed the other methods concerning classification accuracy and F1-measure rate.
Collapse
|
17
|
Chavez JM, Tang W. A Vision-Based System for Stage Classification of Parkinsonian Gait Using Machine Learning and Synthetic Data. SENSORS (BASEL, SWITZERLAND) 2022; 22:4463. [PMID: 35746246 PMCID: PMC9229496 DOI: 10.3390/s22124463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Parkinson's disease is characterized by abnormal gait, which worsens as the condition progresses. Although several methods have been able to classify this feature through pose-estimation algorithms and machine-learning classifiers, few studies have been able to analyze its progression to perform stage classification of the disease. Moreover, despite the increasing popularity of these systems for gait analysis, the amount of available gait-related data can often be limited, thereby, hindering the progress of the implementation of this technology in the medical field. As such, creating a quantitative prognosis method that can identify the severity levels of a Parkinsonian gait with little data could help facilitate the study of the Parkinsonian gait for rehabilitation. In this contribution, we propose a vision-based system to analyze the Parkinsonian gait at various stages using linear interpolation of Parkinsonian gait models. We present a comparison between the performance of a k-nearest neighbors algorithm (KNN), support-vector machine (SVM) and gradient boosting (GB) algorithms in classifying well-established gait features. Our results show that the proposed system achieved 96-99% accuracy in evaluating the prognosis of Parkinsonian gaits.
Collapse
Affiliation(s)
| | - Wei Tang
- Klipsch School of Electrical Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
18
|
Yang X, Ye Q, Cai G, Wang Y, Cai G. PD-ResNet for Classification of Parkinson's Disease From Gait. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2022; 10:2200111. [PMID: 35795875 PMCID: PMC9252336 DOI: 10.1109/jtehm.2022.3180933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To develop an objective and efficient method to automatically identify Parkinson's disease (PD) and healthy control (HC). METHODS We design a novel model based on residual network (ResNet) architecture, named PD-ResNet, to learn the gait differences between PD and HC and between PD with different severity levels. Specifically, a polynomial elevated dimensions technique is applied to increase the dimensions of the input gait features; then, the processed data is transformed into a 3-dimensional picture as the input of PD-ResNet. The synthetic minority over-sampling technique (SMOTE), data augmentation, and early stopping technologies are adopted to improve the generalization ability. To further enhance the classification performance, a new loss function, named improved focal loss function, is developed to focus on the train of PD-ResNet on the hard samples and to discard the abnormal samples. RESULTS The experiments on the clinical gait dataset show that our proposed model achieves excellent performance with an accuracy of 95.51%, a precision of 94.44%, a recall of 96.59%, a specificity of 94.44%, and an F1-score of 95.50%. Moreover, the accuracy, precision, recall, specificity, and F1-score for the classification of early PD and HC are 92.03%, 94.20%, 90.28%, 93.94%, and 92.20%, respectively. Furthermore, the accuracy, precision, recall, specificity, and F1-score for the classification of PD with different severity levels are 92.03%, 94.29%, 90.41%, 93.85%, and 92.31%, respectively. CONCLUSION Our proposed method shows better performance than the traditional machine learning and deep learning methods. CLINICAL IMPACT The experimental results show that the proposed method is clinically meaningful for the objective assessment of gait motor impairment for PD patients.
Collapse
Affiliation(s)
- Xiaoli Yang
- School of Information EngineeringGuangdong University of TechnologyGuangzhou510000China
| | - Qinyong Ye
- Department of NeurologyFujian Medical University Union HospitalFuzhou350001China
| | - Guofa Cai
- School of Information EngineeringGuangdong University of TechnologyGuangzhou510000China
| | - Yingqing Wang
- Department of NeurologyFujian Medical University Union HospitalFuzhou350001China
| | - Guoen Cai
- Department of NeurologyFujian Medical University Union HospitalFuzhou350001China
| |
Collapse
|
19
|
Ma C, Zhang P, Wang J, Zhang J, Pan L, Li X, Yin C, Li A, Zong R, Zhang Z. Objective quantification of the severity of postural tremor based on kinematic parameters: A multi-sensory fusion study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 219:106741. [PMID: 35338882 DOI: 10.1016/j.cmpb.2022.106741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/27/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Current clinical assessments of essential tremor (ET) are primarily based on expert consultation combined with reviewing patient complaints, physician expertise, and diagnostic experience. Thus, traditional evaluation methods often lead to biased diagnostic results. There is a clinical demand for a method that can objectively quantify the severity of the patient's disease. METHODS This study aims to develop an artificial intelligence-aided diagnosis method based on multi-sensory fusion wearables. The experiment relies on a rigorous clinical trial paradigm to collect multi-modal fusion of signals from 98 ET patients. At the same time, three clinicians scored independently, and the consensus score obtained was used as the ground truth for the machine learning models. RESULTS Sixty kinematic parameters were extracted from the signals recorded by the nine-axis inertial measurement unit (IMU). The results showed that most of the features obtained by IMU could effectively characterize the severity of the tremors. The accuracy of the optimal model for three tasks classifying five severity levels was 97.71%, 97.54%, and 97.72%, respectively. CONCLUSIONS This paper reports the first attempt to combine multiple feature selection and machine learning algorithms for fine-grained automatic quantification of postural tremor in ET patients. The promising results showed the potential of the proposed approach to quantify the severity of ET objectively.
Collapse
Affiliation(s)
- Chenbin Ma
- Center for Artificial Intelligence in Medicine, Medical Innovation Research Department, PLA General Hospital, 100853, Beijing, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, 100191, Beijing, China; School of Biological Science and Medical Engineering, Beihang University, 100191, Beijing, China; Shenyuan Honors College, Beihang University, 100191, Beijing, China
| | - Peng Zhang
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, 100191, Beijing, China; School of Biological Science and Medical Engineering, Beihang University, 100191, Beijing, China
| | - Jiachen Wang
- Medical School of Chinese PLA, 100853, Beijing, China
| | - Jian Zhang
- Medical School of Chinese PLA, 100853, Beijing, China
| | - Longsheng Pan
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, 100853, Beijing, China
| | - Xuemei Li
- Clinics of Cadre, Department of Outpatient, First Medical Center of Chinese PLA General Hospital, 100853, Beijing, China
| | - Chunyu Yin
- Clinics of Cadre, Department of Outpatient, First Medical Center of Chinese PLA General Hospital, 100853, Beijing, China
| | - Ailing Li
- Pusheng Yixin (Beijing) Hospital Management Co., Ltd, 100020, Beijing, China
| | - Rui Zong
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, 100853, Beijing, China.
| | - Zhengbo Zhang
- Center for Artificial Intelligence in Medicine, Medical Innovation Research Department, PLA General Hospital, 100853, Beijing, China.
| |
Collapse
|
20
|
Parkinson’s disease diagnosis using neural networks: Survey and comprehensive evaluation. Inf Process Manag 2022. [DOI: 10.1016/j.ipm.2022.102909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Automated methods for diagnosis of Parkinson’s disease and predicting severity level. Neural Comput Appl 2022. [DOI: 10.1007/s00521-021-06626-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Novel machine learning-based hybrid strategy for severity assessment of Parkinson’s disorders. Med Biol Eng Comput 2022; 60:811-828. [DOI: 10.1007/s11517-022-02518-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
|
23
|
Ma C, Li D, Pan L, Li X, Yin C, Li A, Zhang Z, Zong R. Quantitative assessment of essential tremor based on machine learning methods using wearable device. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103244] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Gait based Parkinson’s disease diagnosis and severity rating using multi-class support vector machine. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2021.107939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Loh HW, Hong W, Ooi CP, Chakraborty S, Barua PD, Deo RC, Soar J, Palmer EE, Acharya UR. Application of Deep Learning Models for Automated Identification of Parkinson's Disease: A Review (2011-2021). SENSORS 2021; 21:s21217034. [PMID: 34770340 PMCID: PMC8587636 DOI: 10.3390/s21217034] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 12/18/2022]
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder affecting over 6 million people globally. Although there are symptomatic treatments that can increase the survivability of the disease, there are no curative treatments. The prevalence of PD and disability-adjusted life years continue to increase steadily, leading to a growing burden on patients, their families, society and the economy. Dopaminergic medications can significantly slow down the progression of PD when applied during the early stages. However, these treatments often become less effective with the disease progression. Early diagnosis of PD is crucial for immediate interventions so that the patients can remain self-sufficient for the longest period of time possible. Unfortunately, diagnoses are often late, due to factors such as a global shortage of neurologists skilled in early PD diagnosis. Computer-aided diagnostic (CAD) tools, based on artificial intelligence methods, that can perform automated diagnosis of PD, are gaining attention from healthcare services. In this review, we have identified 63 studies published between January 2011 and July 2021, that proposed deep learning models for an automated diagnosis of PD, using various types of modalities like brain analysis (SPECT, PET, MRI and EEG), and motion symptoms (gait, handwriting, speech and EMG). From these studies, we identify the best performing deep learning model reported for each modality and highlight the current limitations that are hindering the adoption of such CAD tools in healthcare. Finally, we propose new directions to further the studies on deep learning in the automated detection of PD, in the hopes of improving the utility, applicability and impact of such tools to improve early detection of PD globally.
Collapse
Affiliation(s)
- Hui Wen Loh
- School of Science and Technology, Singapore University of Social Sciences, Singapore 599494, Singapore
| | - Wanrong Hong
- Cogninet Brain Team, Cogninet Australia, Sydney, NSW 2010, Australia
| | - Chui Ping Ooi
- School of Science and Technology, Singapore University of Social Sciences, Singapore 599494, Singapore
| | - Subrata Chakraborty
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Prabal Datta Barua
- Cogninet Brain Team, Cogninet Australia, Sydney, NSW 2010, Australia
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
- School of Business (Information Systems), Faculty of Business, Education, Law & Arts, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Ravinesh C Deo
- School of Sciences, University of Southern Queensland, Springfield, QLD 4300, Australia
| | - Jeffrey Soar
- School of Business (Information Systems), Faculty of Business, Education, Law & Arts, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Elizabeth E Palmer
- Centre of Clinical Genetics, Sydney Children's Hospitals Network, Randwick, NSW 2031, Australia
- School of Women's and Children's Health, University of New South Wales, Randwick, NSW 2031, Australia
| | - U Rajendra Acharya
- School of Science and Technology, Singapore University of Social Sciences, Singapore 599494, Singapore
- School of Business (Information Systems), Faculty of Business, Education, Law & Arts, University of Southern Queensland, Toowoomba, QLD 4350, Australia
- School of Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413, Taiwan
- Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
26
|
A dual-branch model for diagnosis of Parkinson’s disease based on the independent and joint features of the left and right gait. APPL INTELL 2021. [DOI: 10.1007/s10489-020-02182-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
|
28
|
A Clinically Interpretable Computer-Vision Based Method for Quantifying Gait in Parkinson's Disease. SENSORS 2021; 21:s21165437. [PMID: 34450879 PMCID: PMC8399017 DOI: 10.3390/s21165437] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 12/20/2022]
Abstract
Gait is a core motor function and is impaired in numerous neurological diseases, including Parkinson's disease (PD). Treatment changes in PD are frequently driven by gait assessments in the clinic, commonly rated as part of the Movement Disorder Society (MDS) Unified PD Rating Scale (UPDRS) assessment (item 3.10). We proposed and evaluated a novel approach for estimating severity of gait impairment in Parkinson's disease using a computer vision-based methodology. The system we developed can be used to obtain an estimate for a rating to catch potential errors, or to gain an initial rating in the absence of a trained clinician-for example, during remote home assessments. Videos (n=729) were collected as part of routine MDS-UPDRS gait assessments of Parkinson's patients, and a deep learning library was used to extract body key-point coordinates for each frame. Data were recorded at five clinical sites using commercially available mobile phones or tablets, and had an associated severity rating from a trained clinician. Six features were calculated from time-series signals of the extracted key-points. These features characterized key aspects of the movement including speed (step frequency, estimated using a novel Gamma-Poisson Bayesian model), arm swing, postural control and smoothness (or roughness) of movement. An ordinal random forest classification model (with one class for each of the possible ratings) was trained and evaluated using 10-fold cross validation. Step frequency point estimates from the Bayesian model were highly correlated with manually labelled step frequencies of 606 video clips showing patients walking towards or away from the camera (Pearson's r=0.80, p<0.001). Our classifier achieved a balanced accuracy of 50% (chance = 25%). Estimated UPDRS ratings were within one of the clinicians' ratings in 95% of cases. There was a significant correlation between clinician labels and model estimates (Spearman's ρ=0.52, p<0.001). We show how the interpretability of the feature values could be used by clinicians to support their decision-making and provide insight into the model's objective UPDRS rating estimation. The severity of gait impairment in Parkinson's disease can be estimated using a single patient video, recorded using a consumer mobile device and within standard clinical settings; i.e., videos were recorded in various hospital hallways and offices rather than gait laboratories. This approach can support clinicians during routine assessments by providing an objective rating (or second opinion), and has the potential to be used for remote home assessments, which would allow for more frequent monitoring.
Collapse
|
29
|
Implementation of a Deep Learning Algorithm Based on Vertical Ground Reaction Force Time-Frequency Features for the Detection and Severity Classification of Parkinson's Disease. SENSORS 2021; 21:s21155207. [PMID: 34372444 PMCID: PMC8347971 DOI: 10.3390/s21155207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022]
Abstract
Conventional approaches to diagnosing Parkinson’s disease (PD) and rating its severity level are based on medical specialists’ clinical assessment of symptoms, which are subjective and can be inaccurate. These techniques are not very reliable, particularly in the early stages of the disease. A novel detection and severity classification algorithm using deep learning approaches was developed in this research to classify the PD severity level based on vertical ground reaction force (vGRF) signals. Different variations in force patterns generated by the irregularity in vGRF signals due to the gait abnormalities of PD patients can indicate their severity. The main purpose of this research is to aid physicians in detecting early stages of PD, planning efficient treatment, and monitoring disease progression. The detection algorithm comprises preprocessing, feature transformation, and classification processes. In preprocessing, the vGRF signal is divided into 10, 15, and 30 s successive time windows. In the feature transformation process, the time domain vGRF signal in windows with varying time lengths is modified into a time–frequency spectrogram using a continuous wavelet transform (CWT). Then, principal component analysis (PCA) is used for feature enhancement. Finally, different types of convolutional neural networks (CNNs) are employed as deep learning classifiers for classification. The algorithm performance was evaluated using k-fold cross-validation (kfoldCV). The best average accuracy of the proposed detection algorithm in classifying the PD severity stage classification was 96.52% using ResNet-50 with vGRF data from the PhysioNet database. The proposed detection algorithm can effectively differentiate gait patterns based on time–frequency spectrograms of vGRF signals associated with different PD severity levels.
Collapse
|
30
|
Tăuţan AM, Ionescu B, Santarnecchi E. Artificial intelligence in neurodegenerative diseases: A review of available tools with a focus on machine learning techniques. Artif Intell Med 2021; 117:102081. [PMID: 34127244 DOI: 10.1016/j.artmed.2021.102081] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/21/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Neurodegenerative diseases have shown an increasing incidence in the older population in recent years. A significant amount of research has been conducted to characterize these diseases. Computational methods, and particularly machine learning techniques, are now very useful tools in helping and improving the diagnosis as well as the disease monitoring process. In this paper, we provide an in-depth review on existing computational approaches used in the whole neurodegenerative spectrum, namely for Alzheimer's, Parkinson's, and Huntington's Diseases, Amyotrophic Lateral Sclerosis, and Multiple System Atrophy. We propose a taxonomy of the specific clinical features, and of the existing computational methods. We provide a detailed analysis of the various modalities and decision systems employed for each disease. We identify and present the sleep disorders which are present in various diseases and which represent an important asset for onset detection. We overview the existing data set resources and evaluation metrics. Finally, we identify current remaining open challenges and discuss future perspectives.
Collapse
Affiliation(s)
- Alexandra-Maria Tăuţan
- University "Politehnica" of Bucharest, Splaiul Independenţei 313, 060042 Bucharest, Romania.
| | - Bogdan Ionescu
- University "Politehnica" of Bucharest, Splaiul Independenţei 313, 060042 Bucharest, Romania.
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Harvard Medical School, 330 Brookline Avenue, Boston, United States.
| |
Collapse
|
31
|
A computerized method to assess Parkinson’s disease severity from gait variability based on gender. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Hssayeni MD, Jimenez-Shahed J, Burack MA, Ghoraani B. Ensemble deep model for continuous estimation of Unified Parkinson's Disease Rating Scale III. Biomed Eng Online 2021; 20:32. [PMID: 33789666 PMCID: PMC8010504 DOI: 10.1186/s12938-021-00872-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/18/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Unified Parkinson Disease Rating Scale-part III (UPDRS III) is part of the standard clinical examination performed to track the severity of Parkinson's disease (PD) motor complications. Wearable technologies could be used to reduce the need for on-site clinical examinations of people with Parkinson's disease (PwP) and provide a reliable and continuous estimation of the severity of PD at home. The reported estimation can be used to successfully adjust the dose and interval of PD medications. METHODS We developed a novel algorithm for unobtrusive and continuous UPDRS-III estimation at home using two wearable inertial sensors mounted on the wrist and ankle. We used the ensemble of three deep-learning models to detect UPDRS-III-related patterns from a combination of hand-crafted features, raw temporal signals, and their time-frequency representation. Specifically, we used a dual-channel, Long Short-Term Memory (LSTM) for hand-crafted features, 1D Convolutional Neural Network (CNN)-LSTM for raw signals, and 2D CNN-LSTM for time-frequency data. We utilized transfer learning from activity recognition data and proposed a two-stage training for the CNN-LSTM networks to cope with the limited amount of data. RESULTS The algorithm was evaluated on gyroscope data from 24 PwP as they performed different daily living activities. The estimated UPDRS-III scores had a correlation of [Formula: see text] and a mean absolute error of 5.95 with the clinical examination scores without requiring the patients to perform any specific tasks. CONCLUSION Our analysis demonstrates the potential of our algorithm for estimating PD severity scores unobtrusively at home. Such an algorithm could provide the required motor-complication measurements without unnecessary clinical visits and help the treating physician provide effective management of the disease.
Collapse
Affiliation(s)
- Murtadha D Hssayeni
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | | | - Michelle A Burack
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Behnaz Ghoraani
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, 33431, USA.
| |
Collapse
|
33
|
|
34
|
E B, D B, Elumalai VK, K U. Data-driven gait analysis for diagnosis and severity rating of Parkinson's disease. Med Eng Phys 2021; 91:54-64. [PMID: 34074466 DOI: 10.1016/j.medengphy.2021.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Parkinsons disease (PD) is the second most neurodegenerative disease, which results in gradual loss of movements. To diagnose PD in a clinical setting, clinicians generally use clinical manifestations like motor and non-motor symptoms and rate the severity based on unified Parkinsons disease rating scale (UPDRS). Such clinical assessment largely depends on the expertise and experience of the clinicians and it is subjective leading to variation in assessment between clinicians. As the gait of people with Parkinson's generally differs from gait of healthy age-matched adults, the assessment of gait abnormalities can lead to not only the diagnosis of PD but also the rating of severity level based on motor symptoms. Hence, in this paper, a data-driven gait classification framework using the supervised machine learning algorithms is presented. Using the publicly available gait datasets acquired using vertical ground reaction force (VGRF) sensors, we present a correlation based feature extraction technique for improved stage classification of PD. Significant biomarkers from spatiotemporal gait features are obtained based on the correlation, and the normal distribution of the gait dataset is assessed using the Shapiro-Wilk test. Subsequently, four supervised machine learning algorithms, namely, K-nearest neighbours (KNN), Naive Bayes (NB), Ensemble classifier (EC) and Support vector machine (SVM) are used to rate the severity level of PD according to the Hoehn and Yahr (H&Y) scale. The performance of the classifiers, assessed using the confusion matrix and parallel coordinate plots, highlights that SVM can result in a classification accuracy of 98.4%. Moreover, with minimal gait feature set acquired based on the rank correlation, the proposed approach outperforms several other state-of-the-art methods that have used the same dataset for PD stage classification.
Collapse
Affiliation(s)
- Balaji E
- Department of Biomedical Engineering, PSG College of Technology, Coimbatore 641004, India.
| | - Brindha D
- Department of Biomedical Engineering, PSG College of Technology, Coimbatore 641004, India
| | - Vinodh Kumar Elumalai
- School of Electrical Engineering, Vellore Institute of Technology, Vellore, Tamilnadu 632014, India
| | - Umesh K
- Department of Biomedical Engineering, PSG College of Technology, Coimbatore 641004, India
| |
Collapse
|
35
|
Severity Classification of Parkinson’s Disease Based on Permutation-Variable Importance and Persistent Entropy. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease that causes chronic and progressive motor dysfunction. As PD progresses, patients show different symptoms at different stages of the disease. The severity assessment is inefficient and subjective when it comes to artificial diagnosis. However, abnormal gait was contingent and the subject selection was limited. Therefore, few-shot learning based on small sample sets is critical to solving the problem of insufficient sample data in PD patients. Using datasets from PhysioNet, this paper presents a method based on permutation-variable importance (PVI) and persistent entropy of topological imprints, and uses support vector machine (SVM) as a classifier to achieve the severity classification of PD patients. The method includes the following steps: (1) Take the data as gait cycles, and calculate the gait characteristics of each cycle. (2) Use the random forest (RF) method to obtain the leading factors differentiating the gait of patients at different severity levels. (3) Use time-delay embedding to map the data into a topological space, and use the topological data analysis based on permutation homology to obtain the persistent entropy. (4) Use the Borderline-SMOTE (BSM) method to balance the sample data. (5) Use the SVM to classify the samples for the severity levels of PD. An accuracy of 98.08% was achieved by 10-fold cross-validation, so our method can be used as an effective means of computer-aided diagnosis of PD, and has important practical value.
Collapse
|
36
|
Big Data and Personalisation for Non-Intrusive Smart Home Automation. BIG DATA AND COGNITIVE COMPUTING 2021. [DOI: 10.3390/bdcc5010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
With the advent of the Internet of Things (IoT), many different smart home technologies are commercially available. However, the adoption of such technologies is slow as many of them are not cost-effective and focus on specific functions such as energy efficiency. Recently, IoT devices and sensors have been designed to enhance the quality of personal life by having the capability to generate continuous data streams that can be used to monitor and make inferences by the user. While smart home devices connect to the home Wi-Fi network, there are still compatibility issues between devices from different manufacturers. Smart devices get even smarter when they can communicate with and control each other. The information collected by one device can be shared with others for achieving an enhanced automation of their operations. This paper proposes a non-intrusive approach of integrating and collecting data from open standard IoT devices for personalised smart home automation using big data analytics and machine learning. We demonstrate the implementation of our proposed novel technology instantiation approach for achieving non-intrusive IoT based big data analytics with a use case of a smart home environment. We employ open-source frameworks such as Apache Spark, Apache NiFi and FB-Prophet along with popular vendor tech-stacks such as Azure and DataBricks.
Collapse
|
37
|
Butt AH, Cavallo F, Maremmani C, Rovini E. Biomechanical parameters assessment for the classification of Parkinson Disease using Bidirectional Long Short-Term Memory .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:5761-5764. [PMID: 33019283 DOI: 10.1109/embc44109.2020.9176051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nowadays objective and efficient assessment of Parkinson Disease (PD) with machine learning techniques is a major focus for clinical management. This work presents a novel approach for classification of patients with PD (PwPD) and healthy controls (HC) using Bidirectional Long Short-Term Neural Network (BLSTM). In this paper, the SensHand and the SensFoot inertial wearable sensors for upper and lower limbs motion analysis were used to acquire motion data in thirteen tasks derived from the MDS-UPDRS III. Sixty-four PwPD and fifty HC were involved in this study. One hundred ninety extracted spatiotemporal and frequency parameters were applied as a single input against each subject to develop a recurrent BLSTM to discriminate the two groups. The maximum achieved accuracy was 82.4%, with the sensitivity of 92.3% and specificity of 76.2%. The obtained results suggest that the use of the extracted parameters for the development of the BLSTM contributed significantly to the classification of PwPD and HC.
Collapse
|
38
|
Xu S, Pan Z. A novel ensemble of random forest for assisting diagnosis of Parkinson's disease on small handwritten dynamics dataset. Int J Med Inform 2020; 144:104283. [PMID: 33010729 DOI: 10.1016/j.ijmedinf.2020.104283] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease of the elderly, which leads to patients' motor and non-motor disabilities and affects patients' quality of daily life. Timely and effective detection of PD is a key step to medical intervention. Recently, computer aided methods for PD detection have gained lots of attention in artificial intelligence domain. METHODS This paper proposed a novel ensemble learning model fusing Random Forest (RF) classifiers and Principal Component Analysis (PCA) technique to differentiate PD patients from healthy controls (HC). Six different RF models were separately constructed to generate the corresponding class probability vectors which represent an individual's category predictions on 6 different handwritten exams, and the final prediction result for an individual was obtained through voting strategy of all RF models. Stratified k-fold cross validation was performed to split the exam datasets and evaluate the classification performances. RESULTS Experimental results prove that our proposed ensemble model on six handwritten exams has achieved better classification performances than a single RF based method on a single handwritten exam. Our ensemble of RF model based on multiple handwritten exams has promising accuracy (89.4 %), specificity (93.7 %), sensitivity (84.5 %) and F1-score (87.7 %). Compared with Logistic Regression (LR) and Support Vector Machines (SVM), the ensemble model based on RF can achieve better classification results. CONCLUSION A computer-assisted PD diagnosis model on small handwritten dynamics dataset is proposed, and it provides a potential way for assisting diagnosis of PD in clinical setting.
Collapse
Affiliation(s)
- Shoujiang Xu
- School of Health Management, Hangzhou Normal University, Hangzhou, Zhejiang, China; School of Information Engineering, Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu, China; Virtual Reality and Intelligent Systems Research Institute, Hangzhou Normal University, Hangzhou, Zhejiang, China.
| | - Zhigeng Pan
- Virtual Reality and Intelligent Systems Research Institute, Hangzhou Normal University, Hangzhou, Zhejiang, China.
| |
Collapse
|
39
|
Liu X, Xia Y, Yu H, Dong J, Jian M, Pham TD. Region Based Parallel Hierarchy Convolutional Neural Network for Automatic Facial Nerve Paralysis Evaluation. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2325-2332. [PMID: 32881689 DOI: 10.1109/tnsre.2020.3021410] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this article, we propose a parallel hierarchy convolutional neural network (PHCNN) combining a Long Short-Term Memory (LSTM) network structure to quantitatively assess the grading of facial nerve paralysis (FNP) by considering the region-based asymmetric facial features and temporal variation of the image sequences. FNP, such as Bell's palsy, is the most common facial symptom of neuromotor dysfunctions. It causes the weakness of facial muscles for the normal emotional expression and movements. The subjective judgement by clinicians completely depends on individual experience, which may not lead to a uniform evaluation. Existing computer-aided methods mainly rely on some complicated imaging equipment, which is complicated and expensive for facial functional rehabilitation. Compared with the subjective judgment and complex imaging processing, the objective and intelligent measurement can potentially avoid this issue. Considering dynamic variation in both global and regional facial areas, the proposed hierarchical network with LSTM structure can effectively improve the diagnostic accuracy and extract paralysis detail from the low-level shape, contour to sematic level features. By segmenting the facial area into two palsy regions, the proposed method can discriminate FNP from normal face accurately and significantly reduce the effect caused by age wrinkles and unrepresentative organs with shape and position variations on feature learning. Experiment on the YouTube Facial Palsy Database and Extended CohnKanade Database shows that the proposed method is superior to the state of the art deep learning methods.
Collapse
|
40
|
Supervised machine learning based gait classification system for early detection and stage classification of Parkinson’s disease. Appl Soft Comput 2020. [DOI: 10.1016/j.asoc.2020.106494] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Farashi S. Distinguishing between Parkinson’s disease patients and healthy individuals using a comprehensive set of time, frequency and time-frequency features extracted from vertical ground reaction force data. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.102132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Xia Y, Yao Z, Ye Q, Cheng N. A Dual-Modal Attention-Enhanced Deep Learning Network for Quantification of Parkinson's Disease Characteristics. IEEE Trans Neural Syst Rehabil Eng 2019; 28:42-51. [PMID: 31603824 DOI: 10.1109/tnsre.2019.2946194] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
It is well known that most patients with Parkinson's disease (PD) have different degree of movement disorders, such as shuffling, festination and akinetic episodes, which could degenerate the life quality of PD patients. Therefore, it is very useful to develop a computerized tool to provide an objective evaluation of PD patients' gait. In this study, we implemented a novel gait evaluating approach to provide not only a binary classification of PD gaits and normal walking, but also a quantification of the PD gaits to relate them to the PD severity level. The proposed system is a dual-modal deep-learning-based model, where left and right gait is modeled separately by a convolutional neural network (CNN) followed by an attention-enhanced long short-term memory (LSTM) network. The left and right samples for model training and testing were segmented sequentially from multiple 1D vertical ground reaction force (VGRF) signals according to the detected gait cycle. Experimental results indicate that our model can provide state-of-the-art performance in terms of classification accuracy. It is expected that the proposed model can be a useful gait assistance to provide a quantitative evaluation of PD gaits with high confidence and accuracy if trained suitably.
Collapse
|
43
|
Hssayeni MD, Jimenez-Shahed J, Burack MA, Ghoraani B. Wearable Sensors for Estimation of Parkinsonian Tremor Severity during Free Body Movements. SENSORS 2019; 19:s19194215. [PMID: 31569335 PMCID: PMC6806340 DOI: 10.3390/s19194215] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022]
Abstract
Tremor is one of the main symptoms of Parkinson's Disease (PD) that reduces the quality of life. Tremor is measured as part of the Unified Parkinson Disease Rating Scale (UPDRS) part III. However, the assessment is based on onsite physical examinations and does not fully represent the patients' tremor experience in their day-to-day life. Our objective in this paper was to develop algorithms that, combined with wearable sensors, can estimate total Parkinsonian tremor as the patients performed a variety of free body movements. We developed two methods: an ensemble model based on gradient tree boosting and a deep learning model based on long short-term memory (LSTM) networks. The developed methods were assessed on gyroscope sensor data from 24 PD subjects. Our analysis demonstrated that the method based on gradient tree boosting provided a high correlation (r = 0.96 using held-out testing and r = 0.93 using subject-based, leave-one-out cross-validation) between the estimated and clinically assessed tremor subscores in comparison to the LSTM-based method with a moderate correlation (r = 0.84 using held-out testing and r = 0.77 using subject-based, leave-one-out cross-validation). These results indicate that our approach holds great promise in providing a full spectrum of the patients' tremor from continuous monitoring of the subjects' movement in their natural environment.
Collapse
Affiliation(s)
- Murtadha D Hssayeni
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | | | - Michelle A Burack
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Behnaz Ghoraani
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA.
| |
Collapse
|
44
|
Ghoraani B, Hssayeni MD, Bruack MM, Jimenez-Shahed J. Multilevel Features for Sensor-Based Assessment of Motor Fluctuation in Parkinson's Disease Subjects. IEEE J Biomed Health Inform 2019; 24:1284-1295. [PMID: 31562114 DOI: 10.1109/jbhi.2019.2943866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Motor fluctuations are a frequent complication in patients with Parkinson's disease (PD) where the response to medication fluctuates between ON states (medication working) and OFF states (medication has worn off). This paper describes a new data analysis approach that can be used along with two wearable IMU (inertial measurement units) sensors to continuously assess motor fluctuations in PD patients while moving in their natural environment. We hypothesized that joint analysis of the sensor data in its spectral, temporal and sensor domain could generate multilevel features that can be used to detect PD-related patterns successfully as the subject's motor state fluctuates between medication ON and OFF states. For this purpose, we utilized time-frequency (TF) representation and multiway data analysis tools (i.e., tensor decomposition) to decompose the TF representation of the two sensors' data into its multilevel structures, which were next used to extract multilevel features representing the PD symptoms in different medication states. The extracted multilevel features were used in a classification model based on support vector machine to detect medication ON and OFF states. For comparison purposes, we implemented a traditional feature extraction method. We also developed a hierarchical feature extraction method based on the combination of those two methods. The performances of the three methods were evaluated using a dataset of 19 PD subjects with a total duration of 17.54 hours. The multilevel features achieved 8.25% improvement in the accuracy over the traditional features, and the hierarchical features resulted in 10.73% improvement indicating that our approach holds great promise to continuously detect medication states from continuous monitoring of the subjects' movement. Such information can be used by the treating physician to tailor the adjustments to each subject's unique impairment(s), thereby improving therapeutic decision-making and patient outcomes.
Collapse
|
45
|
Hssayeni MD, Jimenez-Shahed J, Ghoraani B. Hybrid Feature Extraction for Detection of Degree of Motor Fluctuation Severity in Parkinson's Disease Patients. ENTROPY (BASEL, SWITZERLAND) 2019; 21:E137. [PMID: 33266853 PMCID: PMC7514623 DOI: 10.3390/e21020137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 11/16/2022]
Abstract
The success of medication adjustment in Parkinson's disease (PD) patients with motor fluctuation relies on the knowledge about their fluctuation severity. However, because of the temporal and spatial variability in motor fluctuations, a single clinical examination often fails to capture the spectrum of motor impairment experienced in routine daily life. In this study, we developed an algorithm to estimate the degree of motor fluctuation severity from two wearable sensors' data during subjects' free body movements. Specifically, we developed a new hybrid feature extraction method to represent the longitudinal changes of motor function from the sensor data. Next, we developed a classification model based on random forest to learn the changes in the patterns of the sensor data as the severity of the motor function changes. We evaluated our algorithm using data from 24 subjects with idiopathic PD as they performed a variety of daily routine activities. A leave-one-subject-out assessment of the algorithm resulted in 83.33% accuracy, indicating that our approach holds a great promise to passively detect degree of motor fluctuation severity from continuous monitoring of an individual's free body movements. Such a sensor-based assessment system and algorithm combination could provide the objective and comprehensive information about the fluctuation severity that can be used by the treating physician to effectively adjust therapy for PD patients with troublesome motor fluctuation.
Collapse
Affiliation(s)
- Murtadha D. Hssayeni
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | | - Behnaz Ghoraani
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|