Wang F, Gao Z, Xie X, Zhou C, Hua C. Adaptive Prescribed-Time Filtered Control Design for a Full-State Constrained Nonlinear System.
IEEE TRANSACTIONS ON CYBERNETICS 2025;
55:321-331. [PMID:
39514349 DOI:
10.1109/tcyb.2024.3486721]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In this article, an adaptive prescribed-time neural controller is developed for the tracking problem of a class of high-order nonlinear systems with full-state constraints. First, a prescribed-time bounded stability criterion is designed. Then, to handle the "explosion of complexity" problem of the backstepping method, an adaptive prescribed-time filter is constructed, in which the filter error is prescribed-time stable. Compared with existing methods, the newly designed transformation approach can accommodate a broader range of state constraint types. Then, the unknown nonlinear function is handled by radial basis function neural networks (RBFNNs). The adaptive prescribed-time neural control scheme is developed based on above. It can guarantee that the closed-loop system achieves the prescribed-time stability, and all states do not transgress the constraints. To demonstrate the effectiveness of the control strategy, comparative simulations are provided at the end.
Collapse