• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4619887)   Today's Articles (1520)   Subscriber (49404)
For: Zhou Y, Chen Z, Shen H, Zheng X, Zhao R, Duan X. A refined equilibrium generative adversarial network for retinal vessel segmentation. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.06.143] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Number Cited by Other Article(s)
1
Alksas A, Sharafeldeen A, Balaha HM, Haq MZ, Mahmoud A, Ghazal M, Alghamdi NS, Alhalabi M, Yousaf J, Sandhu H, El-Baz A. Advanced OCTA imaging segmentation: Unsupervised, non-linear retinal vessel detection using modified self-organizing maps and joint MGRF modeling. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024;254:108309. [PMID: 39002431 DOI: 10.1016/j.cmpb.2024.108309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024]
2
Brown EE, Guy AA, Holroyd NA, Sweeney PW, Gourmet L, Coleman H, Walsh C, Markaki AE, Shipley R, Rajendram R, Walker-Samuel S. Physics-informed deep generative learning for quantitative assessment of the retina. Nat Commun 2024;15:6859. [PMID: 39127778 PMCID: PMC11316734 DOI: 10.1038/s41467-024-50911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 07/25/2024] [Indexed: 08/12/2024]  Open
3
Messica S, Presil D, Hoch Y, Lev T, Hadad A, Katz O, Owens DR. Enhancing stroke risk and prognostic timeframe assessment with deep learning and a broad range of retinal biomarkers. Artif Intell Med 2024;154:102927. [PMID: 38991398 DOI: 10.1016/j.artmed.2024.102927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
4
Huang Y, Deng T. Multi-level spatial-temporal and attentional information deep fusion network for retinal vessel segmentation. Phys Med Biol 2023;68:195026. [PMID: 37567227 DOI: 10.1088/1361-6560/acefa0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/11/2023] [Indexed: 08/13/2023]
5
Zhang H, Ni W, Luo Y, Feng Y, Song R, Wang X. TUnet-LBF: Retinal fundus image fine segmentation model based on transformer Unet network and LBF. Comput Biol Med 2023;159:106937. [PMID: 37084640 DOI: 10.1016/j.compbiomed.2023.106937] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/01/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
6
Liu M, Wang Z, Li H, Wu P, Alsaadi FE, Zeng N. AA-WGAN: Attention augmented Wasserstein generative adversarial network with application to fundus retinal vessel segmentation. Comput Biol Med 2023;158:106874. [PMID: 37019013 DOI: 10.1016/j.compbiomed.2023.106874] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
7
Qureshi I, Yan J, Abbas Q, Shaheed K, Riaz AB, Wahid A, Khan MWJ, Szczuko P. Medical image segmentation using deep semantic-based methods: A review of techniques, applications and emerging trends. INFORMATION FUSION 2023. [DOI: 10.1016/j.inffus.2022.09.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
8
Xu GX, Ren CX. SPNet: A novel deep neural network for retinal vessel segmentation based on shared decoder and pyramid-like loss. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
9
Li H, Tang Z, Nan Y, Yang G. Human treelike tubular structure segmentation: A comprehensive review and future perspectives. Comput Biol Med 2022;151:106241. [PMID: 36379190 DOI: 10.1016/j.compbiomed.2022.106241] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/16/2022] [Accepted: 10/22/2022] [Indexed: 12/27/2022]
10
A Hybrid Fusion Method Combining Spatial Image Filtering with Parallel Channel Network for Retinal Vessel Segmentation. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07311-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
11
Guo S. CSGNet: Cascade semantic guided net for retinal vessel segmentation. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
12
Zhao J, Hou X, Pan M, Zhang H. Attention-based generative adversarial network in medical imaging: A narrative review. Comput Biol Med 2022;149:105948. [PMID: 35994931 DOI: 10.1016/j.compbiomed.2022.105948] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/24/2022] [Accepted: 08/06/2022] [Indexed: 11/18/2022]
13
Zhou Y, Wagner SK, Chia MA, Zhao A, Woodward-Court P, Xu M, Struyven R, Alexander DC, Keane PA. AutoMorph: Automated Retinal Vascular Morphology Quantification Via a Deep Learning Pipeline. Transl Vis Sci Technol 2022;11:12. [PMID: 35833885 PMCID: PMC9290317 DOI: 10.1167/tvst.11.7.12] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]  Open
14
Iqbal A, Sharif M, Yasmin M, Raza M, Aftab S. Generative adversarial networks and its applications in the biomedical image segmentation: a comprehensive survey. INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL 2022;11:333-368. [PMID: 35821891 PMCID: PMC9264294 DOI: 10.1007/s13735-022-00240-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/16/2022] [Accepted: 05/24/2022] [Indexed: 05/13/2023]
15
Generative adversarial network based cerebrovascular segmentation for time-of-flight magnetic resonance angiography image. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2021.11.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
16
An innovative medical image synthesis based on dual GAN deep neural networks for improved segmentation quality. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03682-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
17
You A, Kim JK, Ryu IH, Yoo TK. Application of generative adversarial networks (GAN) for ophthalmology image domains: a survey. EYE AND VISION (LONDON, ENGLAND) 2022;9:6. [PMID: 35109930 PMCID: PMC8808986 DOI: 10.1186/s40662-022-00277-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
18
Li Z, Jia M, Yang X, Xu M. Blood Vessel Segmentation of Retinal Image Based on Dense-U-Net Network. MICROMACHINES 2021;12:mi12121478. [PMID: 34945328 PMCID: PMC8705734 DOI: 10.3390/mi12121478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/02/2022]
19
Guo S. Fundus image segmentation via hierarchical feature learning. Comput Biol Med 2021;138:104928. [PMID: 34662814 DOI: 10.1016/j.compbiomed.2021.104928] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 01/28/2023]
20
Guest editorial: Deep learning for medical image analysis. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.01.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA