1
|
Tsujita M, Melchior JT, Yokoyama S. Lipoprotein Particles in Cerebrospinal Fluid. Arterioscler Thromb Vasc Biol 2024; 44:1042-1052. [PMID: 38545782 PMCID: PMC11342562 DOI: 10.1161/atvbaha.123.318284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The brain is the most lipid-rich organ in the body, and the intricate interplay between lipid metabolism and pathologies associated with neurodegenerative disorders is being increasingly recognized. The brain is bathed in cerebrospinal fluid (CSF), which, like plasma, contains lipid-protein complexes called lipoproteins that are responsible for extracellular lipid transport. Multiple CSF lipoprotein populations exist, some of which are produced de novo in the central nervous system and others that appear to be generated from protein constituents that are produced in the periphery. These CSF lipoproteins are thought to play key roles in maintaining lipid homeostasis in the central nervous system, while little else is known due to their limited accessibility and their low abundance in CSF. Recent work has provided new insights into the compositional complexity of CSF lipoprotein families and their metabolism in cerebral circulation. The purpose of this review is to summarize our current state of knowledge on the composition, origin, and metabolism of CSF lipoproteins.
Collapse
|
2
|
Huebbe P, Bilke S, Rueter J, Schloesser A, Campbel G, Glüer CC, Lucius R, Röcken C, Tholey A, Rimbach G. Human APOE4 Protects High-Fat and High-Sucrose Diet Fed Targeted Replacement Mice against Fatty Liver Disease Compared to APOE3. Aging Dis 2024; 15:259-281. [PMID: 37450924 PMCID: PMC10796091 DOI: 10.14336/ad.2023.0530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Recent genome- and exome-wide association studies suggest that the human APOE ε4 allele protects against non-alcoholic fatty liver disease (NAFLD), while ε3 promotes hepatic steatosis and steatohepatitis. The present study aimed at examining the APOE genotype-dependent development of fatty liver disease and its underlying mechanisms in a targeted replacement mouse model. Male mice expressing the human APOE3 or APOE4 protein isoforms on a C57BL/6J background and unmodified C57BL/6J mice were chronically fed a high-fat and high-sucrose diet to induce obesity. After 7 months, body weight gain was more pronounced in human APOE than endogenous APOE expressing mice with elevated plasma biomarkers suggesting aggravated metabolic dysfunction. APOE3 mice exhibited the highest liver weights and, compared to APOE4, massive hepatic steatosis. An untargeted quantitative proteome analysis of the liver identified a high number of proteins differentially abundant in APOE3 versus APOE4 mice. The majority of the higher abundant proteins in APOE3 mice could be grouped to inflammation and damage-associated response, and lipid storage, amongst others. Results of the targeted qRT-PCR and Western blot analyses contribute to the overall finding that APOE3 as opposed to APOE4 promotes hepatic steatosis, inflammatory- and damage-associated response signaling and fibrosis in the liver of obese mice. Our experimental data substantiate the observation of an increased NAFLD-risk associated with the human APOEε3 allele, while APOEε4 appears protective. The underlying mechanisms of the protection possibly involve a higher capacity of nonectopic lipid deposition in subcutaneous adipose tissue and lower hepatic pathogen recognition in the APOE4 mice.
Collapse
Affiliation(s)
- Patricia Huebbe
- Institute of Human Nutrition and Food Science, Kiel University, D-24118 Kiel, Germany.
| | - Stephanie Bilke
- Institute of Experimental Medicine, Proteomics & Bioanalytics, Kiel University, D-24105 Kiel, Germany.
| | - Johanna Rueter
- Institute of Human Nutrition and Food Science, Kiel University, D-24118 Kiel, Germany.
| | - Anke Schloesser
- Institute of Human Nutrition and Food Science, Kiel University, D-24118 Kiel, Germany.
| | - Graeme Campbel
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, Kiel University, D-24118 Kiel, Germany.
| | - Claus-C. Glüer
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, Kiel University, D-24118 Kiel, Germany.
| | - Ralph Lucius
- Anatomical Institute, Kiel University, D-24118 Kiel, Germany.
| | - Christoph Röcken
- Department of Pathology, Kiel University and University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany.
| | - Andreas Tholey
- Institute of Experimental Medicine, Proteomics & Bioanalytics, Kiel University, D-24105 Kiel, Germany.
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Kiel University, D-24118 Kiel, Germany.
| |
Collapse
|
3
|
Chang YT, Kazui H, Ikeda M, Huang CW, Huang SH, Hsu SW, Chang WN, Chang CC. Genetic Interaction of APOE and FGF1 is Associated with Memory Impairment and Hippocampal Atrophy in Alzheimer's Disease. Aging Dis 2019; 10:510-519. [PMID: 31164996 PMCID: PMC6538224 DOI: 10.14336/ad.2018.0606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/06/2018] [Indexed: 11/30/2022] Open
Abstract
The APOE and fibroblast growth factor 1 (FGF1) have both been associated with amyloid β accumulation and neurodegeneration. Investigation the effect of APOE-FGF1 interactions on episodic memory (EM) deficits and hippocampus atrophy (HA) might elucidate the complex clinical-pathological relationship in Alzheimer’s disease (AD). EM performance and hippocampal volume (HV) were characterized in patients with mild AD based on APOE-ε4 carrier status (APOE-ε4 carriers versus non-carriers) and FGF1 single nucleotide polymorphism (FGF1-rs34011-GG versus FGF1-rs34011-A-allele carriers). The clinical-pathological relationships within each genotypic group (ε4+/GG-carrier, ε4+/A-allele-carrier, ε4-/GG-carrier and ε4-/A-allele-carrier) were analyzed. There were no significant differences between the FGF1-rs34011-GG and FGF1-rs34011-A-allele carriers for the level of EM performance or HV (p> 0.05). The bilateral HV was significantly smaller and EM impairment was significantly worse in ε4+/GG-carrier than in ε4-/A-allele-carrier, and an interaction effect of APOE (APOE-ε4 carriers versus non-carriers) with FGF1 (FGF1-rs34011-GG versus FGF1-rs34011-A-allele carriers) predicted EM impairment (F4,92= 3.516, p= 0.018) and structural changes in voxel-based morphometry. Our data shows that concurrent consideration of APOE and FGF1 polymorphisms might be required to understand the clinical-pathological relationship in AD.
Collapse
Affiliation(s)
- Ya-Ting Chang
- 1Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hiroaki Kazui
- 2Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Manabu Ikeda
- 2Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Chi-Wei Huang
- 1Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Shu-Hua Huang
- 3Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Shih-Wei Hsu
- 4Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Wen-Neng Chang
- 1Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chiung-Chih Chang
- 1Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| |
Collapse
|
4
|
Ito JI, Nagayasu Y, Ogawa T, Okihara H, Michikawa M. Biochemical properties in membrane of rat astrocytes under oxidative stress. Brain Res 2015; 1615:1-11. [DOI: 10.1016/j.brainres.2015.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/16/2015] [Accepted: 04/04/2015] [Indexed: 10/23/2022]
|
5
|
Ito JI, Nagayasu Y, Miura Y, Yokoyama S, Michikawa M. Astrocyte׳s endogenous apoE generates HDL-like lipoproteins using previously synthesized cholesterol through interaction with ABCA1. Brain Res 2014; 1570:1-12. [DOI: 10.1016/j.brainres.2014.04.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/01/2014] [Accepted: 04/26/2014] [Indexed: 10/25/2022]
|
6
|
Nagayasu Y, Morita SY, Hayashi H, Miura Y, Yokoyama K, Michikawa M, Ito JI. Increasing cellular level of phosphatidic acid enhances FGF-1 production in long term-cultured rat astrocytes. Brain Res 2014; 1563:31-40. [DOI: 10.1016/j.brainres.2014.03.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/18/2014] [Accepted: 03/22/2014] [Indexed: 11/15/2022]
|
7
|
The Impact of Lipoproteins on Wound Healing: Topical HDL Therapy Corrects Delayed Wound Healing in Apolipoprotein E Deficient Mice. Pharmaceuticals (Basel) 2014; 7:419-32. [PMID: 24705596 PMCID: PMC4014700 DOI: 10.3390/ph7040419] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/06/2014] [Accepted: 03/26/2014] [Indexed: 12/22/2022] Open
Abstract
Chronic non-healing wounds lead to considerable morbidity and mortality. Pleiotropic effects of high density lipoproteins (HDL) may beneficially affect wound healing. The objectives of this murine study were: (1) to investigate the hypothesis that hypercholesterolemia induces impaired wound healing and (2) to study the effect of topical HDL administration in a model of delayed wound healing. A circular full thickness wound was created on the back of each mouse. A silicone splint was used to counteract wound contraction. Coverage of the wound by granulation tissue and by epithelium was quantified every 2 days. Re-epithelialization from day 0 till day 10 was unexpectedly increased by 21.3% (p < 0.05) in C57BL/6 low density lipoprotein (LDLr) deficient mice with severe hypercholesterolemia (489 ± 14 mg/dL) compared to C57BL/6 mice and this effect was entirely abrogated following cholesterol lowering adenoviral LDLr gene transfer. In contrast, re-epithelialization in hypercholesterolemic (434 ± 16 mg/dL) C57BL/6 apolipoprotein (apo) E−/− mice was 22.6% (p < 0.0001) lower than in C57BL/6 mice. Topical HDL gel administered every 2 days increased re-epithelialization by 25.7% (p < 0.01) in apo E−/− mice. In conclusion, topical HDL application is an innovative therapeutic strategy that corrects impaired wound healing in apo E−/− mice.
Collapse
|
8
|
Enhancement of FGF-1 release along with cytosolic proteins from rat astrocytes by hydrogen peroxide. Brain Res 2013; 1522:12-21. [DOI: 10.1016/j.brainres.2013.05.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 04/10/2013] [Accepted: 05/22/2013] [Indexed: 11/24/2022]
|
9
|
Dietary β-carotene regulates interleukin-1β-induced expression of apolipoprotein E in astrocytes isolated from stroke-prone spontaneously hypertensive rats. Neurochem Int 2012; 62:43-9. [PMID: 23147682 DOI: 10.1016/j.neuint.2012.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 10/29/2012] [Accepted: 11/01/2012] [Indexed: 12/31/2022]
Abstract
Stroke-prone spontaneously hypertensive rats (SHRSP) have an abnormality in cholesterol synthesis, but the pathological relevance of this to stroke and related neuronal disorders is not yet clear. The induction of astrocyte-derived cholesterol transportation to neurons by apolipoprotein E (apoE) promotes neuronal repair after brain injuries such as stroke. Such repair is reduced by interleukin-1 beta (IL-1β) and stroke conditions. Furthermore, fibroblast growth factor 1 (FGF1) regulates the production of apoE-cholesterol-rich high density lipoproteins (HDL) and induces gliosis of astrocytes. On the other hand, high levels of plasma carotenoids reduce the risk of ischemic stroke. Thus, we investigated the expression of apoE in primary astrocytes that had been treated with IL-1β or β-carotene. In addition, we compared the expression levels of Apoe genes in astrocytes from SHRSP/Izm and normal control rats, Wistar-Kyoto rats (WKY/Izm) following hypoxia/reoxygenation (H/R). The expression levels of genes and proteins were investigated by RT-PCR, Western blotting (WB), and immunofluorescence analysis. IL-1β decreased the expression levels of the Apoe gene. Conversely, β-carotene significantly enhanced the expression levels of genes related to cholesterol regulation, including Abca1, Abcg1, Hmgcr as well as Apoe. During H/R, the gene expression levels of Apoe were decreased in the SHRSP/Izm rats in comparison with the WKY/Izm rats. These results suggest that IL-1β decreases Apoe expression levels, whereas β-carotene strongly elevates Apoe levels and inhibits FGF1-mediated gliosis of astrocytes. Furthermore, under hypoxic stress, astrocytes isolated from SHRSP/Izm rats displayed altered regulation of Apoe compared with those from WKY/Izm rats.
Collapse
|
10
|
Bian JT, Zhao HL, Zhang ZX, Bi XH, Zhang JW. No association of the C>T polymorphism that is located 1385 upstream from initial code of fibroblast growth factor 1 gene with Alzheimer's disease in Chinese. Brain Res 2010; 1328:113-7. [DOI: 10.1016/j.brainres.2010.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 03/08/2010] [Accepted: 03/09/2010] [Indexed: 10/19/2022]
|
11
|
Increased acidic fibroblast growth factor concentrations in the serum and cerebrospinal fluid of patients with Alzheimer’s disease. J Clin Neurosci 2010; 17:357-9. [DOI: 10.1016/j.jocn.2009.05.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 05/17/2009] [Indexed: 11/18/2022]
|
12
|
Nishida T, Ito JI, Nagayasu Y, Yokoyama S. FGF-1-Induced Reactions for Biogenesis of apoE-HDL are Mediated by Src in Rat Astrocytes. J Biochem 2009; 146:881-6. [DOI: 10.1093/jb/mvp135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Lu R, Ito J, Iwamoto N, Nishimaki-Mogami T, Yokoyama S. FGF-1 induces expression of LXRalpha and production of 25-hydroxycholesterol to upregulate the apoE gene in rat astrocytes. J Lipid Res 2009; 50:1156-64. [PMID: 19229075 DOI: 10.1194/jlr.m800594-jlr200] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fibroblast growth factor 1 (FGF-1) enhances apolipoprotein E (apoE) expression and apoE-HDL biogenesis in autocrine fashion in astrocytes (Ito, J., Y. Nagayasu, R. Lu, A. Kheirollah, M. Hayashi, and S. Yokoyama. Astrocytes produce and secrete FGF-1, which promotes the production of apoE-HDL in a manner of autocrine action. J. Lipid Res. 2005. 46: 679-686) associated with healing of brain injury (Tada,T., J-i. Ito, M. Asai, and S. Yokoyama. Fibroblast growth factor 1 is produced prior to apolipoprotein E in the astrocytes after cryo-injury of mouse brain. Neurochem. Int. 2004. 45: 23-30). FGF-1 stimulates mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) to increase cholesterol biosynthesis and phosphatidylinositol 3-OH kinase (PI3K)/Akt to enhance apoE-HDL secretion (Ito, J., Y. Nagayasu, K. Okumura-Noji, R. Lu, T. Nishida, Y. Miura, K. Asai, A. Kheirollah, S. Nakaya, and S. Yokoyama. Mechanism for FGF-1 to regulate biogenesis of apoE-HDL in astrocytes. J. Lipid Res. 2007. 48: 2020-2027). We investigated the mechanism for FGF-1 to upregulate apoE transcription. FGF-1 increased apoE and liver X receptor alpha (LXRalpha) mRNAs in rat astrocytes. Increase of LXRalpha mRNA was suppressed by inhibition of the FGF-1 receptor-1 and MEK/ERK but not by inhibition of PI3K/Akt. The increases of apoE mRNA and apoE-HDL secretion were both inhibited by downregulation or inhibition of LXRalpha, while they were partially suppressed by inhibiting cholesterol biosynthesis. We identified the liver X receptor element responsible for activation of the rat apoE promoter by FGF-1 located between -450 and -320 bp, and the direct repeat 4 (DR4) element in this region (-448 to -433 bp) was responsible for the activation. Chromatin immunoprecipitation analysis supported that FGF-1 enhanced association of LXR with the rat apoE promoter. FGF-1 partially activated the apoE promoter even in the presence of an MEK inhibitor that inhibits the FGF-1-mediated enhancement of cholesterol biosynthesis. On the other hand, FGF-1 induced production of 25-hydroxycholesterol by MEK/ERK as an sterol regulatory element-dependent reaction besides cholesterol biosynthesis. We concluded that FGF-1-induced apoE expression in astrocytes depends on LXRalpha being mediated by both LXRalpha expression and an LXRalpha ligand biosynthesis.
Collapse
Affiliation(s)
- Rui Lu
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | | | | | | |
Collapse
|
14
|
Ito JI, Nagayasu Y, Okumura-Noji K, Lu R, Nishida T, Miura Y, Asai K, Kheirollah A, Nakaya S, Yokoyama S. Mechanism for FGF-1 to regulate biogenesis of apoE-HDL in astrocytes. J Lipid Res 2007; 48:2020-7. [PMID: 17548887 DOI: 10.1194/jlr.m700188-jlr200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fibroblast growth factor-1 (FGF-1) is secreted by astrocytes and stimulates apolipoprotein E (apoE)-HDL biogenesis by an autocrine mechanism to help in recovery from brain injury. In apoE-deficient mouse astrocytes, FGF-1 stimulated cholesterol biosynthesis without enhancing its release, indicating a signaling pathway independent of apoE biosynthesis upregulation. SU5402, an inhibitor of FGF receptor, inhibited FGF-1-induced phosphorylation of MEK, ERK, and Akt, as well as all the apoE-HDL biogenesis-related events in rat astrocytes. LY294002, an inhibitor of phosphatidylinositide 3-OH kinase (PI3K) and of Akt phosphorylation, inhibited apoE-HDL secretion but not cholesterol biosynthesis, whereas U0126, an inhibitor of MEK and of ERK phosphorylation, inhibited cholesterol biosynthesis but not apoE-HDL secretion. Increase of apoE-mRNA by FGF-1 was not influenced by either inhibitor. When rat apoE/pcDNA3.his was transfected to transformed rat astrocyte GA-1 cells that otherwise do not synthesize apoE (GA-1/25), FGF-1 did not influence apoE-mRNA, but did increase the apoE secretion and Akt phosphorylation that were suppressed by LY294002. Lipid biosynthesis was increased by FGF-1 in GA-1/25 cells and suppressed by U0126. FGF-1 upregulates apoE-HDL biogenesis by three independent signaling pathways. The PI3K/Akt pathway upregulates secretion of apoE/apoE-HDL, the MEK/ERK pathway stimulates cholesterol biosynthesis, and an unknown pathway enhances apoE transcription.
Collapse
Affiliation(s)
- Jin-Ichi Ito
- Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhang L, Zhang WP, Chen KD, Qian XD, Fang SH, Wei EQ. Caffeic acid attenuates neuronal damage, astrogliosis and glial scar formation in mouse brain with cryoinjury. Life Sci 2006; 80:530-7. [PMID: 17074364 DOI: 10.1016/j.lfs.2006.09.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 08/26/2006] [Accepted: 09/29/2006] [Indexed: 12/01/2022]
Abstract
Traumatic brain injury induces neuron damage in early phase, and astrogliosis and the formation of the glial scar in late phase. Caffeic acid (3, 4-dihydroxycinnamic acid), one of the natural phenolic compounds, exerts neuroprotective effects against ischemic brain injuries with anti-oxidant and anti-inflammatory properties, and by scavenging reactive species. However, whether caffeic acid has protective effects against traumatic brain injury is unknown. Therefore, we determined the effect of caffeic acid on the lesion in the early (1 day) and late phases (7 to 28 days) of cryoinjury in mice. We found that caffeic acid (10 and 50 mg/kg, i.p., for 7 days after cryoinjury) reduced the lesion area and attenuated the neuron loss around the lesion core 1 to 28 days, but attenuated the neuron loss in the lesion core only 1 day after cryoinjury. Moreover, caffeic acid attenuated astrocyte proliferation, glial scar wall formation and glial fibrillary acidic protein (GFAP) protein expression in the late phase of cryoinjury (7 to 28 days). Caffeic acid also inhibited the reduction of superoxide dismutase activity and the increase in malondialdehyde content in the brain 1 day after cryoinjury. These results indicate that caffeic acid exerts a protective effect in traumatic brain injury, especially on glial scar formation in the late phase, which at least is associated with its anti-oxidant ability.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacology, School of Medicine, Zhejiang University, 388, Yu Hang Tang Road, Hangzhou 310058, People's Republic of China
| | | | | | | | | | | |
Collapse
|
16
|
Carter CJ. Convergence of genes implicated in Alzheimer's disease on the cerebral cholesterol shuttle: APP, cholesterol, lipoproteins, and atherosclerosis. Neurochem Int 2006; 50:12-38. [PMID: 16973241 DOI: 10.1016/j.neuint.2006.07.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 06/30/2006] [Accepted: 07/11/2006] [Indexed: 11/24/2022]
Abstract
Polymorphic genes associated with Alzheimer's disease (see ) delineate a clearly defined pathway related to cerebral and peripheral cholesterol and lipoprotein homoeostasis. They include all of the key components of a glia/neurone cholesterol shuttle including cholesterol binding lipoproteins APOA1, APOA4, APOC1, APOC2, APOC3, APOD, APOE and LPA, cholesterol transporters ABCA1, ABCA2, lipoprotein receptors LDLR, LRP1, LRP8 and VLDLR, and the cholesterol metabolising enzymes CYP46A1 and CH25H, whose oxysterol products activate the liver X receptor NR1H2 and are metabolised to esters by SOAT1. LIPA metabolises cholesterol esters, which are transported by the cholesteryl ester transport protein CETP. The transcription factor SREBF1 controls the expression of most enzymes of cholesterol synthesis. APP is involved in this shuttle as it metabolises cholesterol to 7-betahydroxycholesterol, a substrate of SOAT1 and HSD11B1, binds to APOE and is tethered to LRP1 via APPB1, APBB2 and APBB3 at the cytoplasmic domain and via LRPAP1 at the extracellular domain. APP cleavage products are also able to prevent cholesterol binding to APOE. BACE cleaves both APP and LRP1. Gamma-secretase (PSEN1, PSEN2, NCSTN) cleaves LRP1 and LRP8 as well as APP and their degradation products control transcription factor TFCP2, which regulates thymidylate synthase (TS) and GSK3B expression. GSK3B is known to phosphorylate the microtubule protein tau (MAPT). Dysfunction of this cascade, carved out by genes implicated in Alzheimer's disease, may play a major role in its pathology. Many other genes associated with Alzheimer's disease affect cholesterol or lipoprotein function and/or have also been implicated in atherosclerosis, a feature of Alzheimer's disease, and this duality may well explain the close links between vascular and cerebral pathology in Alzheimer's disease. The definition of many of these genes as risk factors is highly contested. However, when polymorphic susceptibility genes belong to the same signaling pathway, the risk associated with multigenic disease is better related to the integrated effects of multiple polymorphisms of genes within the same pathway than to variants in any single gene [Wu, X., Gu, J., Grossman, H.B., Amos, C.I., Etzel, C., Huang, M., Zhang, Q., Millikan, R.E., Lerner, S., Dinney, C.P., Spitz, M.R., 2006. Bladder cancer predisposition: a multigenic approach to DNA-repair and cell-cycle-control genes. Am. J. Hum. Genet. 78, 464-479.]. Thus, the fact that Alzheimer's disease susceptibility genes converge on a clearly defined signaling network has important implications for genetic association studies.
Collapse
|
17
|
Noureddine MA, Li YJ, van der Walt JM, Walters R, Jewett RM, Xu H, Wang T, Walter JW, Scott BL, Hulette C, Schmechel D, Stenger JE, Dietrich F, Vance JM, Hauser MA. Genomic convergence to identify candidate genes for Parkinson disease: SAGE analysis of the substantia nigra. Mov Disord 2006; 20:1299-309. [PMID: 15966006 DOI: 10.1002/mds.20573] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Genomic convergence is a multistep approach that combines gene expression with genomic linkage to identify and prioritize susceptibility genes for complex disease. As a first step, we previously performed linkage analysis on 174 multiplex Parkinson's disease (PD) families, identifying five peaks for PD risk and two for genes affecting age at onset (AAO) in PD [Hauser et al., Hum Mol Genet 2003;12:671-677]. We report here the next step: serial analysis of gene expression [SAGE; Scott et al., JAMA 2001;286:2239-2242] to analyze substantia nigra tissue from three PD patients and two age-matched controls. We find 933 differentially expressed genes (P<0.05) between PD and controls, but of these, only 50 genes represented by unique SAGE tags map within our previously described PD linkage regions. Furthermore, genes encoded by mitochondrial DNA are expressed 1.5-fold higher in PD patients versus controls, without an increase in the corresponding nuclear-encoded mitochondrial components, suggesting an increase in mtDNA genomes in PD or a disjunction with nuclear expression. The next step in the genomic convergence process will be to screen these 50 high-quality candidate genes for association with PD risk susceptibility and genetic effects on AAO.
Collapse
Affiliation(s)
- Maher A Noureddine
- Center for Human Genetics, Duke University, Durham, North Carolina 27710-2903, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ito JI, Nagayasu Y, Lu R, Kheirollah A, Hayashi M, Yokoyama S. Astrocytes produce and secrete FGF-1, which promotes the production of apoE-HDL in a manner of autocrine action. J Lipid Res 2005; 46:679-86. [PMID: 15627653 DOI: 10.1194/jlr.m400313-jlr200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The astrocytes prepared by 1 week secondary culture after 1 month primary culture of rat brain cells (M/W cells) synthesized and secreted apolipoprotein E (apoE) and cholesterol more than the astrocytes prepared by conventional 1 week primary and 1 week secondary culture (W/W cells) (Ueno, S., J. Ito, Y. Nagayasu, T. Furukawa, and S. Yokoyama. 2002. An acidic fibroblast growth factor-like factor secreted into the brain cell culture medium upregulates apoE synthesis, HDL secretion and cholesterol metabolism in rat astrocytes. Biochim. Biophys. Acta. 1589: 261-272). M/W cells also highly expressed fibroblast growth factor-1 (FGF-1) mRNA. FGF-1 was identified in the cell lysate of both cell types, but M/W cells released more of it into the medium. Immunostaining of FGF-1 and apoE revealed that both localized in the cells that produce glial fibrillary acidic protein. The conditioned media of M/W cells and FGF-1 stimulated W/W cells to release apoE and cholesterol to generate more HDL. Pretreatment with a goat anti-FGF-1 antibody or heparin depleted the stimulatory activity of M/W cell-conditioned medium. The presence of the anti-FGF-1 antibody in the medium suppressed apoE secretion by M/W cells. Differential inhibition of signaling pathways suggested that FGF-1 stimulates apoE synthesis via the phosphoinositide 3-OH kinase for PI3K/Akt pathway. Thus, astrocytes release FGF-1, which promotes apoE-HDL production by an autocrine mechanism. These results are consistent with our in vivo observation that astrocytes produce FGF-1 before the increase of apoE in the postinjury lesion of the mouse brain (Tada, T., J. Ito, M. Asai, and S. Yokoyama. 2004. Fibroblast growth factor 1 is produced prior to apolipoprotein E in the astrocytes after cryo-injury of mouse brain. Neurochem. Int. 45: 23-30).
Collapse
Affiliation(s)
- Jin-ichi Ito
- Department of Biochemistry, Cell Biology, and Metabolism, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Ito JI, Li H, Nagayasu Y, Kheirollah A, Yokoyama S. Apolipoprotein A-I induces translocation of protein kinase Cα to a cytosolic lipid-protein particle in astrocytes. J Lipid Res 2004; 45:2269-76. [PMID: 15375180 DOI: 10.1194/jlr.m400222-jlr200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein A-I (apoA-I) induces the translocation of newly synthesized cholesterol as well as caveolin-1 to the cytosolic lipid-protein particle (CLPP) fraction in astrocytes before its appearance in high density lipoprotein generated in the medium (Ito, J., Y. Nagayasu, K. Kato, R. Sato, and S. Yokoyama. 2002. Apolipoprotein A-I induces translocation of cholesterol, phospholipid, and caveolin-1 to cytosol in rat astrocytes. J. Biol. Chem. 277: 7929-7935). We here report the association of signal-related molecules with CLPP. ApoA-I induces rapid translocation of protein kinase Calpha to the CLPP fraction and its phosphorylation in astrocytes. ApoA-I also induces the translocation of phospholipase Cgamma to CLPP. Diacylglyceride (DG) production is increased by apoA-I in the cells, with a maximum at 5 min after the stimulation, and the increase takes place also in the CLPP fraction. An inhibitor of receptor-coupled phospholipase C, U73122, inhibited all the apoA-I-induced events, such as DG production, cholesterol translocation to the cytosol, release of cholesterol, and translocation of protein kinase Calpha into the CLPP fraction. CLPP may thus be involved in the apoA-I-initiated signal transduction in astrocytes that is related to intracellular cholesterol trafficking for the generation of high density lipoprotein in the brain.
Collapse
Affiliation(s)
- Jin-ichi Ito
- Biochemistry, Cell Biology, and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | | | | | | |
Collapse
|
20
|
Yamagata H, Chen Y, Akatsu H, Kamino K, Ito JI, Yokoyama S, Yamamoto T, Kosaka K, Miki T, Kondo I. Promoter polymorphism in fibroblast growth factor 1 gene increases risk of definite Alzheimer's disease. Biochem Biophys Res Commun 2004; 321:320-3. [PMID: 15358178 DOI: 10.1016/j.bbrc.2004.06.142] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Indexed: 11/22/2022]
Abstract
Fibroblast growth factor 1 (FGF1, also known as acidic FGF) protects selective neuronal populations against neurotoxic effects such as those in Alzheimer's disease (AD) and HIV encephalitis. The FGF1 gene is therefore a strong candidate gene for AD. Using the promoter polymorphism of the FGF1 gene, we examined the relationship between AD and the FGF1 and apolipoprotein E (APOE) genes in 100 Japanese autopsy-confirmed late-onset AD patients and 106 age-matched non-demented controls. The promoter polymorphism (-1385 A/G) was significantly associated with AD risk. The odds ratio for AD associated with the GG vs non-GG genotype was 2.02 (95% CI = 1.16-3.52), while that of s4 vs non-ł4 in APOE4 gene was 5.19 (95% CI = 2.68-10.1). The odds ratio for APOEP4 and FGF1 GG carriers was 20.5 (95% CI = 6.88-60.9). The results showed that the FGF1 gene is associated with autopsy-confirmed AD.
Collapse
Affiliation(s)
- Hidehisa Yamagata
- Department of Medical Genetics, Ehime University School of Medicine, Ehime, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|