1
|
Wang W, Zhang L, Deng C, Chen F, Yu Q, Hu Y, Lu Q, Li P, Zhang A. In utero exposure to methylmercury impairs cognitive function in adult offspring: Insights from proteomic modulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113191. [PMID: 35051767 DOI: 10.1016/j.ecoenv.2022.113191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Methylmercury (MeHg) is a hazardous substance that has unique neurodevelopmental toxic effects. However, its molecular alteration profile, sensitive response biomarkers, and mechanism of neuronal injury remain largely unknown. Here, the effects of intrauterine methylmercury chloride (low-, medium- and high-dose groups: 0.6 mg/kg/d, 1.2 mg/kg/d, 2.4 mg/ kg /d, respectively) exposure on learning and memory were assessed in offspring rats by behavioral tests, pathological analysis and hippocampal proteomic analysis. The results suggested that intrauterine MeHg exposure impairs spatial learning and memory and leads a significant reduction in the number and dispersion scattered arrangement in the hippocampus of offspring. Furthermore, in the tandem mass tag-based proteomics analysis, compared with the control group, a total of 74 differentially expressed proteins (DEPs) were found in the MeHg exposure groups; specifically, 32 down-regulated and 42 up-regulated proteins were identified. In addition, the pathways enrichment analysis indicated that these DEPs are implicated in several biological processes, such as synaptic plasticity and energy metabolism, as well as various molecular functional categories. Simultaneously, MeHg reduced the postsynaptic density, diminished the active zone, amplified the synaptic cleft and changed the synaptic interface of pyramidal cells. Western blot analysis further revealed that MeHg significantly reduced the levels of Forkhead box protein (FOXP2), Synaptophysin (SYP) and Postsynaptic density protein 95 (PSD-95), and down-regulated the N-methyl-D-aspartate receptor 1 (NMDAR1), N-methyl-D-aspartate receptor 2 A (NR2A) and N-methyl-D-aspartate receptor 2B (NR2B). In general, from a functional perspective, most overlapping proteins were related to NMDA receptor-mediated glutamatergic signaling, which is an excitotoxicity mechanism known to influence learning and memory. These discoveries contribute to our understanding of the relationship between MeHg and cognitive deficits and provide insight into the protein mediators of this relationship and possible prospective early biomarkers.
Collapse
Affiliation(s)
- Wenjuan Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| | - Li Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Caiyun Deng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Fang Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Qing Yu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Yi Hu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Qin Lu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| |
Collapse
|
2
|
Tanamoto R, Shindo Y, Niwano M, Matsumoto Y, Miki N, Hotta K, Oka K. Qualitative and quantitative estimation of comprehensive synaptic connectivity in short- and long-term cultured rat hippocampal neurons with new analytical methods inspired by Scatchard and Hill plots. Biochem Biophys Res Commun 2016; 471:486-91. [PMID: 26896767 DOI: 10.1016/j.bbrc.2016.02.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/14/2016] [Indexed: 02/04/2023]
Abstract
To investigate comprehensive synaptic connectivity, we examined Ca(2+) responses with quantitative electric current stimulation by indium-tin-oxide (ITO) glass electrode with transparent and high electro-conductivity. The number of neurons with Ca(2+) responses was low during the application of stepwise increase of electric current in short-term cultured neurons (less than 17 days in-vitro (DIV)). The neurons cultured over 17 DIV showed two-type responses: S-shaped (sigmoid) and monotonous saturated responses, and Scatchard plots well illustrated the difference of these two responses. Furthermore, sigmoid like neural network responses over 17 DIV were altered to the monotonous saturated ones by the application of the mixture of AP5 and CNQX, specific blockers of NMDA and AMPA receptors, respectively. This alternation was also characterized by the change of Hill coefficients. These findings indicate that the neural network with sigmoid-like responses has strong synergetic or cooperative synaptic connectivity via excitatory glutamate synapses.
Collapse
Affiliation(s)
- Ryo Tanamoto
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Japan
| | - Yutaka Shindo
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Japan
| | - Mariko Niwano
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Japan
| | - Yoshinori Matsumoto
- Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, Japan
| | - Norihisa Miki
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Kohji Hotta
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Japan
| | - Kotaro Oka
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Japan.
| |
Collapse
|
3
|
Sulforaphane Prevents Methylmercury-Induced Oxidative Damage and Excitotoxicity Through Activation of the Nrf2-ARE Pathway. Mol Neurobiol 2016; 54:375-391. [PMID: 26742517 DOI: 10.1007/s12035-015-9643-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 12/16/2015] [Indexed: 12/29/2022]
Abstract
Methylmercury (MeHg) is a prominent environmental neurotoxicant, which induces oxidative damage and an indirect excitotoxicity caused by altered glutamate (Glu) metabolism. However, the interaction between oxidative damage and excitotoxicity in MeHg-exposed rats has not been fully recognized. Here, we explored the interaction between oxidative damage and excitotoxicity and evaluated the preventive effects of sulforaphane (SFN) on MeHg-induced neurotoxicity in rat cerebral cortex. Seventy-two rats were randomly assigned to four groups: control group, MeHg-treated groups (4 and 12 μmol/kg), and SFN pretreatment group. After treatment (28 days), the rats were killed and the cerebral cortex was analyzed. Then, Hg, glutathione (GSH), malondialdehyde (MDA), protein sulfhydryl, protein carbonyl, 8-hydroxy-2-deoxyguanosine (8-OHdG), and the levels of reactive oxygen species (ROS) and apoptosis were examined. Glu and glutamine (Gln) levels, glutamine synthetase (GS), phosphate-activated glutaminase (PAG), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), Na+-K+-ATPase and Ca2+-ATPase activities, intracellular Ca2+ levels, and the mRNA and protein expressions of Nrf2, Nrf2-regulated gene products, and N-methyl-D-aspartate receptors (NMDARs) were investigated in rat cerebral cortex. In our study, MeHg exposure not only induced Hg accumulation, apoptosis, ROS formation, GSH depletion, inhibition of antioxidant enzyme activities, and activation of Nrf2-ARE pathway signaling but also caused lipid, protein, and DNA peroxidative damage in a dose-dependent manner in rat cerebral cortex. Moreover, MeHg treatment significantly altered Gln/Glu cycling and NMDAR expression and resulted in calcium overloading. Furthermore, the present study also indicated that SFN pretreatment significantly reinforced the activation of the Nrf2-ARE pathway, which could prevent the toxic effects of MeHg exposure. Collectively, MeHg initiates multiple additive or synergistic disruptive mechanisms that lead to oxidative damage and excitotoxicity in rat cerebral cortex; pretreatment with SFN might prevent the MeHg-induced neurotoxicity by reinforcing the activation of the Nrf2-ARE pathway and then downregulating the interaction between oxidative damage and excitotoxicity pathways.
Collapse
|
4
|
Kambe Y, Nakamichi N, Takarada T, Fukumori R, Yoneda Y. Induced tolerance to glutamate neurotoxicity through down-regulation of NR2 subunits of N-methyl-D-aspartate receptors in cultured rat striatal neurons. J Neurosci Res 2010; 88:2177-87. [PMID: 20336776 DOI: 10.1002/jnr.22388] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have previously shown differential vulnerabilities to glutamate (Glu) excitotoxicity mediated by the N-methyl-D-aspartate (NMDA) receptor (NMDAR) between rat cortical and rat hippocampal neurons in culture. In this study, we evaluated the possible induced tolerance to NMDA neurotoxicity in cultured rat striatal neurons with prior sustained activation of NMDAR. Brief exposure to Glu or NMDA for 1 hr led to a significant decrease in cellular vitality determined 24 hr later in cultured rat striatal neurons, whereas no marked loss was seen in cellular survival after exposure to Glu or NMDA in striatal neurons previously cultured with Glu or NMDA. Sustained culture with Glu or NMDA invariably led to a significant decrease in protein levels of NR2, but not NR1, subunits without affecting their mRNA levels. Similar induced tolerance was seen to the excitotoxicity of NMDA in hippocampal neurons in a manner sensitive to an NMDAR antagonist. Prior culture with NMDA induced less effective alterations in both intracellular free Ca(2+) levels and mitochondrial membrane potentials after the addition of NMDA in striatal neurons. However, calpain inhibitor-I significantly prevented the decreased NR2B and NR2C protein levels in striatal neurons cultured with NMDA. These results suggest that prior tonic activation of NMDAR would induce tolerance to the excitotoxicity mediated by NMDAR through a mechanism related to calpain-induced down-regulation of particular NR2 subunits in rat striatal neurons.
Collapse
Affiliation(s)
- Yuki Kambe
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | | | | | | | | |
Collapse
|
6
|
Masuko T, Nagaoka H, Miyake M, Metori K, Kizawa Y, Kashiwagi K, Igarashi K, Kusama T. Cyclophane and acyclic cyclophane: Novel channel blockers of N-methyl-d-aspartate receptor. Neurochem Int 2007; 50:443-9. [PMID: 17113196 DOI: 10.1016/j.neuint.2006.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 09/29/2006] [Accepted: 10/09/2006] [Indexed: 11/16/2022]
Abstract
The effects of cyclophanes (CPCn, CPPy and TGDMAP) and acyclic cyclophane (ATGDMAP) on various glutamate receptors were studied with these receptors expressed in Xenopus oocytes using voltage-clamp recording. CPCn, CPPy, TGDMAP and ATGDMAP were found to inhibit macroscopic currents at heteromeric NMDA receptors (NR1/NR2), but not Ca(2+)-permeable AMPA receptors (GluR1), Ca(2+)-nonpermeable AMPA receptors (GluR1/GluR2) and metabotropic glutamate receptors (mGluR1alpha). The inhibition of NR1/NR2A receptors by these compounds was more potent than those of the other NMDA receptor subtypes. At a resting potential (-70 mV), the IC(50) values of CPCn, CPPy, TGDMAP and ATGDMAP for NR1/NR2A receptors were 0.5+/-0.1, 1.0+/-0.2, 8.0+/-0.8 and 4.9+/-0.5 microM, respectively. The inhibition by these compounds was voltage-dependent, that is, the degree of inhibition was in the order of negative holding potentials, -100 mV>-70 mV>-20 mV. Results of experiments using mutant NR1 and NR2 subunits identified residues that influence block by CPCn. The inhibition by CPCn was not altered significantly in the mutants at the critical asparagines in the M2 loop, NR1 N616, NR2B N615 and NR2B N616, these residues are known to form the narrowest region of the channel and the binding site of Mg(2+). However, mutations at NR1 N650, located in the vestibule of channel pore, and NR1 D669, located in the extracellular region, reduced the inhibition by CPCn, suggesting that these amino acid residues interact with CPCn. These results suggest that CPCn interacts directly with the mouth or vestibule of the ion channel, like a lid.
Collapse
Affiliation(s)
- Takashi Masuko
- College of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|