1
|
Lu J, Huang C, Lu Q, Lu X. Therapeutic and Prophylactic Effects of Amphotericin B Liposomes on Chronic Social Defeat Stress-Induced Behavioral Abnormalities in Mice. Front Pharmacol 2022; 13:918177. [PMID: 35910388 PMCID: PMC9335357 DOI: 10.3389/fphar.2022.918177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, innate immune system stimulants, such as lipopolysaccharide (LPS) and macrophage-colony stimulating factor (M-CSF), were reported to prevent and reverse chronic stress-induced behavioral abnormalities, suggesting that innate immune stimulation could be a potential strategy for the treatment and prevention of mental disorders. Amphotericin B liposome is a clinically available antifungal medication that can stimulate macrophages and microglia. We hypothesize that amphotericin B liposome may be used to prevent and reverse behavioral abnormalities triggered by chronic stress. As expected, our results showed that a single injection of amphotericin B liposome (1 mg/kg) immediately after stress cessation reversed the decrease in time spent in the interaction zone in the social interaction test (SIT) and the increase in immobility time in the tail suspension test (TST) and forced swimming test (FST) in mice caused by chronic social defeat stress (CSDS). In addition, a single injection of amphotericin B liposomes (1 mg/kg) 1 day before stress exposure was found to prevent the CSDS-induced decrease in time spent in the interaction zone in the SIT and the increase in immobility time in the TST and FST in mice. Pretreatment with minocycline to inhibit the innate immune response was able to abolish the reversal effect of post-stress injection of amphotericin B liposomes on CSDS-induced behavioral abnormalities and the prophylactic effect of pre-stress injection of amphotericin B liposomes on CSDS-induced behavioral abnormalities. These results demonstrate that amphotericin B liposomes have both therapeutic and prophylactic effects on chronic stress-induced behavioral abnormalities in mice by mobilizing the innate immune response.
Collapse
Affiliation(s)
- Jiashu Lu
- Department of Pharmacy, The People’s Hospital of Taizhou, The Fifth Affiliated Hospital of Nantong University, Taizhou, China
- *Correspondence: Jiashu Lu,
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Qun Lu
- Department of Pharmacy, Nantong Third Hospital Affiliated to Nantong University, Nantong, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
2
|
Pazos M, Dibello E, Mesa JM, Sames D, Comini MA, Seoane G, Carrera I. Iboga Inspired N-Indolylethyl-Substituted Isoquinuclidines as a Bioactive Scaffold: Chemoenzymatic Synthesis and Characterization as GDNF Releasers and Antitrypanosoma Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030829. [PMID: 35164094 PMCID: PMC8839081 DOI: 10.3390/molecules27030829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022]
Abstract
The first stage of the drug discovery process involves the identification of small compounds with biological activity. Iboga alkaloids are monoterpene indole alkaloids (MIAs) containing a fused isoquinuclidine-tetrahydroazepine ring. Both the natural products and the iboga-inspired synthetic analogs have shown a wide variety of biological activities. Herein, we describe the chemoenzymatic preparation of a small library of novel N-indolylethyl-substituted isoquinuclidines as iboga-inspired compounds, using toluene as a starting material and an imine Diels-Alder reaction as the key step in the synthesis. The new iboga series was investigated for its potential to promote the release of glial cell line-derived neurotrophic factor (GDNF) by C6 glioma cells, and to inhibit the growth of infective trypanosomes. GDNF is a neurotrophic factor widely recognized by its crucial role in development, survival, maintenance, and protection of dopaminergic neuronal circuitries affected in several neurological and psychiatric pathologies. Four compounds of the series showed promising activity as GDNF releasers, and a leading structure (compound 11) was identified for further studies. The same four compounds impaired the growth of bloodstream Trypanosoma brucei brucei (EC50 1-8 μM) and two of them (compounds 6 and 14) showed a good selectivity index.
Collapse
Affiliation(s)
- Mariana Pazos
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (M.P.); (E.D.); (J.M.M.); (G.S.)
| | - Estefania Dibello
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (M.P.); (E.D.); (J.M.M.); (G.S.)
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay;
| | - Juan Manuel Mesa
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (M.P.); (E.D.); (J.M.M.); (G.S.)
| | - Dalibor Sames
- Department of Chemistry, Columbia University, New York, NY 10027, USA;
| | - Marcelo Alberto Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay;
| | - Gustavo Seoane
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (M.P.); (E.D.); (J.M.M.); (G.S.)
| | - Ignacio Carrera
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (M.P.); (E.D.); (J.M.M.); (G.S.)
- Correspondence: ; Tel.: +598-2-9247-881
| |
Collapse
|
3
|
Holec SA, Block AJ, Bartz JC. The role of prion strain diversity in the development of successful therapeutic treatments. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:77-119. [PMID: 32958242 PMCID: PMC8939712 DOI: 10.1016/bs.pmbts.2020.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prions are a self-propagating misfolded conformation of a cellular protein. Prions are found in several eukaryotic organisms with mammalian prion diseases encompassing a wide range of disorders. The first recognized prion disease, the transmissible spongiform encephalopathies (TSEs), affect several species including humans. Alzheimer's disease, synucleinopathies, and tauopathies share a similar mechanism of self-propagation of the prion form of the disease-specific protein reminiscent of the infection process of TSEs. Strain diversity in prion disease is characterized by differences in the phenotype of disease that is hypothesized to be encoded by strain-specific conformations of the prion form of the disease-specific protein. Prion therapeutics that target the prion form of the disease-specific protein can lead to the emergence of drug-resistant strains of prions, consistent with the hypothesis that prion strains exist as a dynamic mixture of a dominant strain in combination with minor substrains. To overcome this obstacle, therapies that reduce or eliminate the template of conversion are efficacious, may reverse neuropathology, and do not result in the emergence of drug resistance. Recent advancements in preclinical diagnosis of prion infection may allow for a combinational approach that treats the prion form and the precursor protein to effectively treat prion diseases.
Collapse
Affiliation(s)
- Sara A.M. Holec
- Institute for Applied Life Sciences and Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States,Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States
| | - Alyssa J. Block
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States,Corresponding author:
| |
Collapse
|
4
|
Zhang J, Cao D, Yu S, Chen L, Wei D, Shen C, Zhuang L, Wang Q, Xu X, Tong Y. Amphotericin B suppresses M2 phenotypes and B7-H1 expression in macrophages to prevent Raji cell proliferation. BMC Cancer 2018; 18:467. [PMID: 29695237 PMCID: PMC5918564 DOI: 10.1186/s12885-018-4266-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 03/20/2018] [Indexed: 12/31/2022] Open
Abstract
Background Macrophages in the tumor microenvironment play a critical role in tumorigenesis and anti-cancer drug resistance. Burkitt’s lymphoma (BL) is a B-cell non-Hodgkin’s lymphoma with dense macrophage infiltration. However, the role for macrophages in BL remains largely unknown. Methods B7-H1, a transmembrane glycoprotein in the B7 family, suppresses T cell activation and proliferation and induces the apoptosis of activated T cells. The expression of B7-H1 in BL clinical tissues was determined by streptavidin-peroxidase immunohistochemistry. The mutual regulation between macrophages and BL Raji cells was investigated in a co-culture system. The cell proliferation and cell cycle distribution of Raji cells were determined using BrdU staining coupled with flow cytometry. CD163, CD204 and B7-H1 expression was assessed by flow cytometry and Western blot. Cell invasion was analyzed by Transwell assay. The expression of cytokines was detected by quantitative RT-PCR. Immunofluorescence and allogeneic T-cell proliferation assays were used to compare the expression of B7-H1, p-STAT6, or p-STAT3 and CD3+ T cell proliferation treated with or without amphotericin B. Results B7-H1 was highly expressed in tumor infiltration macrophages in most clinical BL tissues. In vitro, Raji cells synthesized IL-4, IL-6, IL-10 and IL-13 to induce CD163, CD204 and B7-H1 expression in co-cultured macrophages, which in turn promoted Raji cell proliferation and invasion. Interestingly, antifungal agent amphotericin B not only inhibited STAT6 phosphorylation to suppress the M2 polarization of macrophages, but also promoted CD3+ T cell proliferation by regulating B7-H1 protein expression in macrophages. Conclusion Amphotericin B might represent a novel immunotherapeutic approach to treat patients with BL. Electronic supplementary material The online version of this article (10.1186/s12885-018-4266-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Hematology, The First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Dongqing Cao
- Neurosurgical Immunology Laboratory, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuangquan Yu
- Neurosurgical Immunology Laboratory, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Lingchao Chen
- Neurosurgical Immunology Laboratory, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Daolin Wei
- Department of Hematology, The First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Chang Shen
- Department of Hematology, The First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Lin Zhuang
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qian Wang
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoping Xu
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yin Tong
- Department of Hematology, The First People's Hospital, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
5
|
Mohamed HA, Radwan RR, Raafat AI, Ali AEH. Antifungal activity of oral (Tragacanth/acrylic acid) Amphotericin B carrier for systemic candidiasis: in vitro and in vivo study. Drug Deliv Transl Res 2017; 8:191-203. [DOI: 10.1007/s13346-017-0452-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Amphotericin B Increases Transglutaminase 2 Expression Associated with Upregulation of Endocytotic Activity in Mouse Microglial Cell Line BV-2. Neurochem Res 2017; 42:1488-1495. [PMID: 28224343 DOI: 10.1007/s11064-017-2205-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 12/14/2022]
Abstract
Amphotericin B (AmB), a polyene antibiotic, is reported to cause the microglial activation to induce nitric oxide (NO) production and proinflammatory cytokines expression, and change neurotrophic factors expression in cultured microglia (Motoyoshi et al. in Neurochem Int 52:1290-1296, 2008). On the other hand, tissue-type transglutaminase (TG2) is involved in connection to phagocytes with apoptotic cells. Engulfment of neurons by activated microglia is thought to cause neurodegenerative diseases but detail is unclear, and involvement of TG2 in phagocytosis has been reported in our previous study using lipopolysaccharide-stimulated BV-2 cells (Kawabe et al. in Neuroimmunomodulation 22(4):243-249, 2015). In the present study, we examined the changes of TG2 expression, phagocytosis and pinocytosis in BV-2 cells stimulated by AmB. AmB stimulation increased TG2 expression and TG activity. Phagocytosis of dead cells and pinocytosis of fluorescent microbeads were also up-regulated by AmB stimulation in BV-2 cells. Blockade of TG activity by cystamine, an inhibitor of TGs, suppressed AmB-enhanced TG2 expression, TG activity, NO production, phagocytosis and pinocytosis. Excessive NO production from microglia and/or facilitation of phagocytosis might be involved in neuronal death. To control TG activity might make possible to protect neurons and care for CNS diseases.
Collapse
|
7
|
Nakajima H, Itakura M, Sato K, Nakamura S, Azuma YT, Takeuchi T. Extracellular poly(ADP-ribose) is a neurotrophic signal that upregulates glial cell line-derived neurotrophic factor (GDNF) levels in vitro and in vivo. Biochem Biophys Res Commun 2017; 484:385-389. [PMID: 28130107 DOI: 10.1016/j.bbrc.2017.01.129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/23/2017] [Indexed: 01/10/2023]
Abstract
Synthesis of poly(ADP-ribose) (PAR) is catalyzed by PAR polymerase-1 (PARP-1) in neurons. PARP1 plays a role in various types of brain damage in neurodegenerative disorders. In neurons, overactivation of PARP-1 during oxidative stress induces robust PAR formation, which depletes nicotinamide adenine dinucleotide levels and leads to cell death. However, the role of the newly-formed PAR in neurodegenerative disorders remains elusive. We hypothesized that the effects of PAR could occur in the extracellular space after it is leaked from damaged neurons. Here we report that extracellular PAR (EC-PAR) functions as a neuroprotective molecule by inducing the synthesis of glial cell line-derived neurotrophic factor (GDNF) in astrocytes during neuronal cell death, both in vitro and in vivo. In primary rat astrocytes, exogenous treatment with EC-PAR produced GDNF but not other neurotrophic factors. The effect was concentration-dependent and did not affect cell viability in rat C6 astrocytoma cells. Topical injection of EC-PAR into rat striatum upregulated GDNF levels in activated astrocytes and improved pathogenic rotation behavior in a unilateral 6-hydroxydopamine model of Parkinson disease in rats. These findings indicate that EC-PAR acts as a neurotrophic enhancer by upregulating GDNF levels. This effect protects the remaining neurons following oxidative stress-induced brain damage, such as that seen with Parkinson disease.
Collapse
Affiliation(s)
- Hidemitsu Nakajima
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinkuourai-kita, Izumisano, Osaka, 5988531, Japan.
| | - Masanori Itakura
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinkuourai-kita, Izumisano, Osaka, 5988531, Japan
| | - Keishi Sato
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinkuourai-kita, Izumisano, Osaka, 5988531, Japan
| | - Sunao Nakamura
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinkuourai-kita, Izumisano, Osaka, 5988531, Japan
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinkuourai-kita, Izumisano, Osaka, 5988531, Japan
| | - Tadayoshi Takeuchi
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinkuourai-kita, Izumisano, Osaka, 5988531, Japan
| |
Collapse
|
8
|
Ruiz-Mendoza S, Macedo-Ramos H, Santos FA, Quadros-de-Souza LC, Paiva MM, Pinto TCA, Teixeira LM, Baetas-da-Cruz W. Streptococcus pneumoniae infection regulates expression of neurotrophic factors in the olfactory bulb and cultured olfactory ensheathing cells. Neuroscience 2016; 317:149-61. [PMID: 26791522 DOI: 10.1016/j.neuroscience.2016.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 12/31/2015] [Accepted: 01/05/2016] [Indexed: 12/22/2022]
Abstract
Streptococcus pneumoniae is the causative agent of numerous diseases including severe invasive infections such as bacteremia and meningitis. It has been previously shown that strains of S. pneumoniae that are unable to survive in the bloodstream may colonize the CNS. However, information on cellular components and pathways involved in the neurotropism of these strains is still scarce. The olfactory system is a specialized tissue in which olfactory receptor neurons (ORNs) are interfacing with the external environment through several microvilli. Olfactory ensheathing cells (OECs) which also form the glial limiting membrane at the surface of the olfactory bulb (OB) are the only cells that ensheathe the ORNs axons. Since previous data from our group showed that OECs may harbor S. pneumoniae, we decided to test whether infection of the OB or OEC cultures modulates the expression levels of neurotrophic factor's mRNA and its putative effects on the activation and viability of microglia. We observed that neurotrophin-3 (NT-3) and glial cell-line-derived neurotrophic factor (GDNF) expression was significantly higher in the OB from uninfected mice than in infected mice. A similar result was observed when we infected OEC cultures. Brain-derived neurotrophic factor (BNDF) expression was significantly lower in the OB from infected mice than in uninfected mice. In contrast, in vitro infection of OECs resulted in a significant increase of BDNF mRNA expression. An upregulation of high-mobility group box 1 (HMGB1) expression was observed in both OB and OEC cultures infected with S. pneumoniae. Moreover, we found that conditioned medium from infected OEC cultures induced the expression of the pro-apoptotic protein cleaved-caspase-3 and an apparently continuous nuclear factor-kappa B (NF-κB) p65 activation in the N13 microglia. Altogether, our data suggest the possible existence of an OEC-pathogen molecular interface, through which the OECs could interfere on the activation and viability of microglia, favoring the access of non-hematogenous S. pneumoniae strains to the CNS in the absence of bacteremia.
Collapse
Affiliation(s)
- S Ruiz-Mendoza
- Laboratório Translacional em Fisiologia Molecular, Centro de Cirurgia Experimental, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto de Biofísica Carlos Chagas Filho, Programa de Pós-Graduação em Ciências Biológicas (Fisiologia), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - H Macedo-Ramos
- Laboratório Translacional em Fisiologia Molecular, Centro de Cirurgia Experimental, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto de Biofísica Carlos Chagas Filho, Programa de Pós-Graduação em Ciências Biológicas (Fisiologia), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - F A Santos
- Laboratório Translacional em Fisiologia Molecular, Centro de Cirurgia Experimental, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - L C Quadros-de-Souza
- Laboratório Translacional em Fisiologia Molecular, Centro de Cirurgia Experimental, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - M M Paiva
- Instituto Nacional de Tecnologia, Rio de Janeiro, RJ, Brazil
| | - T C A Pinto
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - L M Teixeira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - W Baetas-da-Cruz
- Laboratório Translacional em Fisiologia Molecular, Centro de Cirurgia Experimental, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto de Biofísica Carlos Chagas Filho, Programa de Pós-Graduação em Ciências Biológicas (Fisiologia), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
9
|
Motoyoshi-Yamashiro A, Takano K, Kawabe K, Izawa T, Nakajima H, Moriyama M, Nakamura Y. Amphotericin B induces glial cell line-derived neurotrophic factor in the rat brain. J Vet Med Sci 2014; 76:1353-8. [PMID: 25283947 PMCID: PMC4221168 DOI: 10.1292/jvms.14-0160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Amphotericin B (AmB) is a
polyene antifungal drug and is reported to be one of a few reagents having therapeutic
effects on prion diseases, that is, a delay in the appearance of clinical signs and
prolongation of the survival time in an animal model. In prion diseases, glial cells have
been suggested to play important roles; however, the therapeutic mechanism of AmB on prion
diseases remains elusive. We have previously reported that AmB changed the expression of
neurotrophic factors in microglia and astrocytes (Motoyoshi et al., 2008,
Neurochem. Int. 52, 1290–1296; Motoyoshi-Yamashiro et
al., 2013, ibid. 63, 93–100). These results suggested that
neurotrophic factors derived from glial cells might be involved in the therapeutic
mechanism of AmB. In the present study, we examined immunohistochemically the effects of
AmB on the expression of neurotrophic factors in the rat brain. We found that direct
injection of AmB into the striatum significantly enhanced the expression of glial cell
line-derived neurotrophic factor protein. Amphotericin B also increased the expressions of
CD11b and glial fibrillary acidic protein, markers of microglia and astrocytes,
respectively. Moreover, expressions of the two neurotrophic factors by AmB were
co-localized with the expression of CD11b or glial fibrillary acidic protein. These
results suggest that AmB in vivo might also activate glial cells and
induce the production of neurotrophic factors protecting neurons in prion diseases.
Collapse
Affiliation(s)
- Akiko Motoyoshi-Yamashiro
- Laboratory of Integrative Physiology in Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Carlson RD, Rolfes MA, Birkenkamp KE, Nakasujja N, Rajasingham R, Meya DB, Boulware DR. Predictors of neurocognitive outcomes on antiretroviral therapy after cryptococcal meningitis: a prospective cohort study. Metab Brain Dis 2014; 29:269-279. [PMID: 24399496 PMCID: PMC4033836 DOI: 10.1007/s11011-013-9476-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 12/18/2013] [Indexed: 11/30/2022]
Abstract
Cryptococcal meningitis is the most common cause of adult meningitis in Africa, yet neurocognitive outcomes are unknown. We investigated the incidence and predictors of neurologic impairment among cryptococcal survivors. HIV-infected, antiretroviral-naive Ugandans with cryptococcal meningitis underwent standardized neuropsychological testing at 1, 3, 6, and 12 months. A quantitative neurocognitive performance z-score (QNPZ) was calculated based on population z-scores from HIV-negative Ugandans (n = 100). Comparison was made with an HIV-infected, non-meningitis cohort (n = 110). Among 78 cryptococcal meningitis survivors with median CD4 count of 13 cells/μL (interquartile range: 6-44), decreased global cognitive function occurred through 12 months compared with the HIV-infected, non-cryptococcosis cohort (QNPZ-6 at 12 months, P = 0.036). Tests of performance in eight cognitive domains was impaired 1 month after cryptococcal diagnosis; however, cryptococcal meningitis survivors improved their global neurocognitive function over 12 months with residual impairment (mean z-scores < -1), only in domains of motor speed, gross motor and executive function at 12 months. There was no evidence that neurocognitive outcome was associated with initial demographics, HIV parameters, or meningitis severity. Paradoxically, persons with sterile CSF cultures after 14 days of induction amphotericin therapy had worse neurocognitive outcomes than those still culture-positive at 14 days (P = 0.002). Cryptococcal meningitis survivors have significant short-term neurocognitive impairment with marked improvement over the first 12 months. Few characteristics related to severity of cryptococcosis, including Cryptococcus burden, were associated with neurocognitive outcome.
Collapse
Affiliation(s)
- Renee Donahue Carlson
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Melissa A Rolfes
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Kate E Birkenkamp
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Noeline Nakasujja
- Infectious Disease Institute, School of Medicine, Department of Medicine, Kampala, Uganda
- Makerere University College of Health Sciences, School of Medicine, Department of Medicine, Kampala, Uganda
- Makerere University College of Health Sciences, School of Medicine, Department of Psychiatry, Kampala, Uganda
| | - Radha Rajasingham
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- Infectious Disease Institute, School of Medicine, Department of Medicine, Kampala, Uganda
| | - David B Meya
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- Infectious Disease Institute, School of Medicine, Department of Medicine, Kampala, Uganda
- Makerere University College of Health Sciences, School of Medicine, Department of Medicine, Kampala, Uganda
| | - David R Boulware
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
11
|
Motoyoshi-Yamashiro A, Tamura M, Moriyama M, Takano K, Kawabe K, Nakajima H, Katoh-Semba R, Furuichi T, Nakamura Y. Activation of cultured astrocytes by amphotericin B: stimulation of NO and cytokines production and changes in neurotrophic factors production. Neurochem Int 2013; 63:93-100. [PMID: 23727061 DOI: 10.1016/j.neuint.2013.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 04/30/2013] [Accepted: 05/19/2013] [Indexed: 11/17/2022]
Abstract
Amphotericin B (AmB) is a polyene antibiotic and reported to be one of a few reagents having therapeutic effects on prion diseases, such as the delay in the appearing of the clinical signs and the prolongation of the survival time. In prion diseases, glial cells have been suggested to play important roles by proliferating and producing various factors such as nitric oxide, proinflammatory cytokines, and neurotrophic factors. However, the therapeutic mechanism of AmB on prion diseases remains elusive. We have previously reported that AmB changed the expression of neurotoxic and neurotrophic factors in microglia (Motoyoshi et al., 2008, Neurochem. Int. 52, 1290-1296). In the present study, we examined the effects of AmB on cellular functions of rat cultured astrocytes. We found that AmB could activate astrocytes to produce nitric oxide via inducible nitric oxide synthase induction. AmB also induced mRNA expression of interleukin-1β and tumor necrosis factor-α, and productions of their proteins in astrocytes. Moreover, AmB changed levels of neurotrophic factor mRNAs and proteins. Among three neurotrophic factors examined here, neurotrophin-3 mRNA expression and its protein production in the cells were down-regulated by AmB stimulation. On the other hand, AmB significantly enhanced the amounts of glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor proteins in the cells and the medium. These results suggest that AmB might show therapeutic effects on prion diseases by controlling the expression and production of such mediators in astrocytes.
Collapse
Affiliation(s)
- Akiko Motoyoshi-Yamashiro
- Laboratory of Integrative Physiology in Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kim YT, Caldwell JM, Bellamkonda RV. Nanoparticle-mediated local delivery of Methylprednisolone after spinal cord injury. Biomaterials 2009; 30:2582-90. [PMID: 19185913 DOI: 10.1016/j.biomaterials.2008.12.077] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 12/30/2008] [Indexed: 11/29/2022]
Abstract
Systemic administration of a high-dose of Methylprednisolone (MP) can reduce neurological deficits after acute spinal cord injury (SCI). However, the use of high-dose MP in treating acute SCI is controversial due to significant dose related side effects and relatively modest improvements in neurological function. Here, using a rat model of SCI, we compare the efficacy of controlled, nanoparticle-enabled local delivery of MP to the injured spinal cord with systemic delivery of MP, and a single local injection of MP without nanoparticles. Based on histological and behavioral data, we report that local, sustained delivery of MP via nanoparticles is significantly more effective than systemic delivery. Relative to systemic delivery, MP-nanoparticle therapy significantly reduced lesion volume and improved behavioral outcomes. Nanoparticle-enabled delivery of MP presents an effective method for introducing MP locally after SCI and significantly enhances therapeutic effectiveness compared to bare MP administered either systemically or locally.
Collapse
Affiliation(s)
- Young-tae Kim
- Neurological Biomaterials and Therapeutics, Laboratory for Neuroengineering, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | | | | |
Collapse
|