1
|
Kühl T, Georgieva MG, Hübner H, Lazarova M, Vogel M, Haas B, Peeva MI, Balacheva AA, Bogdanov IP, Milella L, Ponticelli M, Garev T, Faraone I, Detcheva R, Minchev B, Petkova-Kirova P, Tancheva L, Kalfin R, Atanasov AG, Antonov L, Pajpanova TI, Kirilov K, Gastreich M, Gmeiner P, Imhof D, Tzvetkov NT. Neurotensin(8-13) analogs as dual NTS1 and NTS2 receptor ligands with enhanced effects on a mouse model of Parkinson's disease. Eur J Med Chem 2023; 254:115386. [PMID: 37094450 DOI: 10.1016/j.ejmech.2023.115386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
The modulatory interactions between neurotensin (NT) and the dopaminergic neurotransmitter system in the brain suggest that NT may be associated with the progression of Parkinson's disease (PD). NT exerts its neurophysiological effects by interactions with the human NT receptors type 1 (hNTS1) and 2 (hNTS2). Therefore, both receptor subtypes are promising targets for the development of novel NT-based analogs for the treatment of PD. In this study, we used a virtually guided molecular modeling approach to predict the activity of NT(8-13) analogs by investigating the docking models of ligands designed for binding to the human NTS1 and NTS2 receptors. The importance of the residues at positions 8 and/or 9 for hNTS1 and hNTS2 receptor binding affinity was experimentally confirmed by radioligand binding assays. Further in vitro ADME profiling and in vivo studies revealed that, compared to the parent peptide NT(8-13), compound 10 exhibited improved stability and BBB permeability combined with a significant enhancement of the motor function and memory in a mouse model of PD. The herein reported NTS1/NTS2 dual-specific NT(8-13) analogs represent an attractive tool for the development of therapeutic strategies against PD and potentially other CNS disorders.
Collapse
Affiliation(s)
- Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Maya G Georgieva
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander- Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, D-91058, Erlangen, Germany
| | - Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria
| | - Matthias Vogel
- Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Bodo Haas
- Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Martina I Peeva
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Aneliya A Balacheva
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Ivan P Bogdanov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Luigi Milella
- Department of Science, University of Basilicata, V.le dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Maria Ponticelli
- Department of Science, University of Basilicata, V.le dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Tsvetomir Garev
- UMBALSM "N. I. Pirogov"-Hospital, 1606 Pette Kyosheta, Sofia, Bulgaria
| | - Immacolata Faraone
- Department of Science, University of Basilicata, V.le dell'Ateneo Lucano 10, 85100, Potenza, Italy; Innovative Startup Farmis s.r.l., Via Nicola Vaccaro 40, 85100, Potenza, Italy
| | - Roumyana Detcheva
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Borislav Minchev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria
| | - Polina Petkova-Kirova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria; Weizmann Institute of Science, 234 Herzl St., Rehovot, 7610001, Israel
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria
| | - Atanas G Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria; Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552, Magdalenka, Poland
| | - Liudmil Antonov
- Institute of Electronics, Bulgarian Academy of Sciences, Blvd. Tsarigradsko Chaussee 72, 1784, Sofia, Bulgaria
| | - Tamara I Pajpanova
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Kiril Kirilov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria; Department of Natural Sciences, New Bulgarian University, 21 Montevideo Str., Sofia, 1618, Bulgaria
| | - Marcus Gastreich
- BioSolveIT GmbH, An der Ziegelei 79, 53757 St. Augustin, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander- Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, D-91058, Erlangen, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Nikolay T Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria.
| |
Collapse
|
2
|
Chen X, Ma Y, Mou X, Liu H, Ming H, Chen Y, Liu Y, Liu S. Synergistic Effect of Several Neurotransmitters in PFC-NAc-VTA Neural Circuit for the Anti-Depression Effect of Shuganheweitang in a Chronic Unpredictable Mild Stress Model. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211002415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Depression, a major worldwide mental disorder, leads to massive disability and can result in death. The PFC-NAc-VTA neuro circuit is related to emotional, neurovegetative, and cognitive functions, which emerge as a circuit-level framework for understanding reward deficits in depression. Neurotransmitters, which are widely distributed in different brain regions, are important detected targets for the evaluation of depression. Shuganheweitang (SGHWT) is a popular prescription in clinical therapy for depression. In order to investigate its possible pharmacodynamics and anti-depressive mechanism, the complex plant material was separated into different fractions. These in low and high doses, along with low and high doses of SGHWT were tested in animal behavior tests. The low and high doses of SGHWT were more effective than the various fractions, which indicate the importance of synergistic function in traditional Chinese medicine. Furthermore, amino acid (GABA, Glu) and monoamine neurotransmitters (DA, 5-HT, NA, 5-HIAA) in the PFC-NAc-VTA neuro circuit were investigated by UPLC-MS/MS. The level trend of DA and 5-HT were consistent in the PFC-NAc-VTA neuro circuit, whereas 5-HIAA was decreased in the PFC, Glu was decreased in the PFC and VTA, and NA and GABA were decreased in the NAc. The results indicate that the pathogenesis of depression is associated with dysfunction of the PFC-NAc-VTA neural circuit, mainly through the neural projection effects of neurotransmitters associated with various brain regions in the neural circuit. PCA and OPLS-DA score plots demonstrated the similarities of individuals within each group and the differences among the groups. In this study, SGHWT could regulate the concentration level of different neurotransmitters in the PFC-NAc-VTA neuro circuit to improve the depression, which benefitted from the recognition of the brain reward circuitry in mood disorders.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Hubei Province Resource and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, P. R. China
| | - Yuanchun Ma
- Hubei University of Chinese Medicine, Wuhan, P. R. China
- Dr Ma’s Laboratories Inc., VancouverBC, Canada
| | - Xiongjun Mou
- Key Laboratory of Hubei Province Resource and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, P. R. China
| | - Hao Liu
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan P. R. China
| | - Hao Ming
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan P. R. China
| | - Yu Chen
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan P. R. China
| | - Yanwen Liu
- Key Laboratory of Hubei Province Resource and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, P. R. China
| | - Songlin Liu
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan P. R. China
| |
Collapse
|
3
|
Yin M, Kim YO, Choi JI, Jeong S, Yang SH, Bae HB, Yoon MH. Antinociceptive role of neurotensin receptor 1 in rats with chemotherapy-induced peripheral neuropathy. Korean J Pain 2020; 33:318-325. [PMID: 32989196 PMCID: PMC7532295 DOI: 10.3344/kjp.2020.33.4.318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect of anti-cancer drugs. Neurotensin receptors (NTSRs) are widely distributed within the pain circuits in the central nervous system. The purpose of this study was to determine the role of NTSR1 by examining the effects of an NTSR1 agonist in rats with CIPN and investigate the contribution of spinal serotonin receptors to the antinociceptive effect. Methods Sprague–Dawley rats (weight 150–180 g) were used in this study. CIPN was induced by injecting cisplatin (2 mg/kg) once a day for 4 days. Intrathecal catheters were placed into the subarachnoid space of the CIPN rats. The antiallodynic effects of intrathecally or intraperitoneally administered PD 149163, an NTSR1 agonist, were evaluated. Furthermore, the levels of serotonin in the spinal cord were measured by high-performance liquid chromatography. Results Intrathecal or intraperitoneal PD 149163 increased the paw withdrawal threshold in CIPN rats. Intrathecal administration of the NTSR1 antagonist SR 48692 suppressed the antinociceptive effect of PD 149163 given via the intrathecal route, but not the antinociceptive effect of intraperitoneally administered PD 149163. Intrathecal administration of dihydroergocristine, a serotonin receptor antagonist, suppressed the antinociceptive effect of intrathecally administered, but not intraperitoneally administered, PD 149163. Injecting cisplatin diminished the serotonin level in the spinal cord, but intrathecal or intraperitoneal administration of PD 149163 did not affect this reduction. Conclusions NTSR1 played a critical role in modulating CIPN-related pain. Therefore, NTSR1 agonists may be useful therapeutic agents to treat CIPN. In addition, spinal serotonin receptors may be indirectly involved in the effect of NTSR1 agonist.
Collapse
Affiliation(s)
- Mei Yin
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, Korea.,The Brain Korea 21 Project, Center for Biomedical Human Resources at Chonnam National University, Gwangju, Korea
| | - Yeo-Ok Kim
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Jeong-Il Choi
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Seongtae Jeong
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Si-Ho Yang
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Hong-Beom Bae
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, Korea.,The Brain Korea 21 Project, Center for Biomedical Human Resources at Chonnam National University, Gwangju, Korea
| | - Myung-Ha Yoon
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, Korea.,The Brain Korea 21 Project, Center for Biomedical Human Resources at Chonnam National University, Gwangju, Korea
| |
Collapse
|
4
|
Tschumi CW, Beckstead MJ. Neurotensin speeds inhibition of dopamine neurons through temporal modulation of GABA A and GABA B receptor-mediated synaptic input. Neuropharmacology 2018; 131:414-423. [PMID: 29307543 DOI: 10.1016/j.neuropharm.2018.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/02/2017] [Accepted: 01/02/2018] [Indexed: 01/20/2023]
Abstract
Midbrain dopamine neurons play physiological roles in many processes including reward learning and motivated behavior, and are tonically inhibited by γ-aminobutyric acid (GABA)ergic input from multiple brain regions. Neurotensin (NT) is a neuropeptide which acutely modulates midbrain dopamine neuron excitability through multiple mechanisms, one of which is a decrease of GABA-mediated inhibition. However, the mechanisms through which NT depresses GABA signaling are not known. Here we used whole cell patch-clamp electrophysiology of dopamine neurons in mouse brain slices to show that NT acts both presynaptically to increase GABAA and postsynaptically to decrease GABAB receptor-mediated currents in the substantia nigra. The active peptide fragment NT8-13 enhanced GABAA signaling presynaptically by causing an increase in the size of the readily releasable pool of GABA via activation of the NT type-1 receptor and protein kinase A. Conversely, NT8-13 depressed GABAB signaling postsynaptically via the NT type-2 receptor in a process that was modulated by protein kinase C. Both forms of plasticity could be observed simultaneously in single dopamine neurons. Thus, as the kinetics of GABAA signaling are significantly faster than those of GABAB signaling, NT functionally speeds GABAergic input to midbrain dopamine neurons. This finding contributes to our understanding of how neuropeptide-induced plasticity can simultaneously differentiate and integrate signaling by a single neurotransmitter in a single cell and provides a basis for understanding how neuropeptides use temporal shifts in synaptic strength to encode information.
Collapse
Affiliation(s)
- Christopher W Tschumi
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104-5005, USA; Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, San Antonio, TX, 78229, USA
| | - Michael J Beckstead
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104-5005, USA; Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
5
|
Carey LM, Rice RJ, Prus AJ. The Neurotensin NTS 1 Receptor Agonist PD149163 Produces Antidepressant-Like Effects in the Forced Swim Test: Further Support for Neurotensin as a Novel Pharmacologic Strategy for Antidepressant Drugs. Drug Dev Res 2017; 78:196-202. [PMID: 28736839 DOI: 10.1002/ddr.21393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/11/2017] [Indexed: 11/09/2022]
Abstract
Preclinical Research Neurotensin is a nonbrain penetrant neuropeptide neurotransmitter that alters dopaminergic and serotonergic neurotransmission. Previous animal behavioral studies have demonstrated that intra-ventral tegmental administration of neurotensin and system administration of the selective neurotensin NTS1 receptor agonist, PD149163 produce antidepressant-like effects in a forced swim test and a differential reinforcement of low rate task, respectively. The present study sought to expand upon these past findings by assessing systemic administration of PD149163 in a forced swim test, a primary antidepressant preclinical screening model, in mice. The tricyclic antidepressant drug imipramine was tested for comparison, and both compounds were also assessed in an open field test. Both PD149163 and imipramine reduced time spent immobile, an antidepressant-like effect, in the forced swim test. The highest dose of each compound significantly reduced locomotor activity. These findings provide further evidence for the putative antidepressant effects for PD149163 and suggest that NTS1 receptor activation may be a novel pharmacologic strategy for antidepressant drug development. Drug Dev Res 78 : 196-202, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lawrence M Carey
- Department of Psychological Science, Northern Michigan University, Marquette, MI, 49855
| | - Remington J Rice
- Department of Psychological Science, Northern Michigan University, Marquette, MI, 49855
| | - Adam J Prus
- Department of Psychological Science, Northern Michigan University, Marquette, MI, 49855
| |
Collapse
|
6
|
Qiu Y, Chen D, Huang X, Huang L, Tang L, Jiang J, Chen L, Li S. Neuroprotective effects of HTR1A antagonist WAY-100635 on scopolamine-induced delirium in rats and underlying molecular mechanisms. BMC Neurosci 2016; 17:66. [PMID: 27760517 PMCID: PMC5070354 DOI: 10.1186/s12868-016-0300-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 10/05/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Limited surveys have assessed the performance of 5-hydroxytreptamine receptor 1A and its antagonist WAY-100635 in pharmacological manipulations targeting delirium therapies. The purpose of this paper was to assess the central pharmacological activity of WAY-100635 in a rat model of scopolamine-induced delirium and its underlying mechanism. RESULTS A delirium rat model was established by intraperitoneal injection of scopolamine and behavioral changes evaluated through open field and elevated plus maze experiments. Concentrations of monoamines in the hippocampus and amygdalae were detected by high performance liquid chromatography. The effect of WAY-100635 on the recovery of rats from delirium was assessed by stereotactic injection of WAY-100635 and its mechanism of action determined by measuring mRNA and protein expression via real time PCR and western blotting methods. The total distance and the number of crossing and rearing in the elevated plus maze test and the time spent in the light compartment in the dark/light test of scopolamine-treated rats were significantly increased while the percentage of time spent in the open arms was decreased, showing the validity of the established delirium rat model. The measurement of the concentrations of noradrenaline, 3,4-dihydroxyphenylacetic acid, the homovanillic acid, 5-hydroxy-3-indoleacetic acid and serotonin concentrations in the cerebrospinal fluid (CSF) of scopolamine-induced delirium rats were significantly increased. The intra-hippocampus and intra-BLA injections of WAY-100635 improved the delirium-like behavior of rats by significantly reducing the expression of NLRP3 inflammasome and the release of IL1-β and IL8 into CSF. CONCLUSIONS Taken together, these findings indicate that WAY-100635 may exert a therapeutic effect on post-operative delirium by controlling neurotransmission as well as suppressing neuroinflammation in the central nervous system.
Collapse
Affiliation(s)
- Yimin Qiu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiaotong University, 800 Dongchuan Rd., Minhang District, Shanghai, 200080 China
| | - Dongmei Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiaotong University, 800 Dongchuan Rd., Minhang District, Shanghai, 200080 China
| | - Xiaojing Huang
- Department of Pain Management, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Lina Huang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiaotong University, 800 Dongchuan Rd., Minhang District, Shanghai, 200080 China
| | - Liang Tang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiaotong University, 800 Dongchuan Rd., Minhang District, Shanghai, 200080 China
| | - Jihong Jiang
- Department of Pain Management, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Lianhua Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiaotong University, 800 Dongchuan Rd., Minhang District, Shanghai, 200080 China
| | - Shitong Li
- Department of Anesthesiology and Pain Management, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
7
|
Qiu Y, Huang X, Huang L, Tang L, Jiang J, Chen L, Li S. 5-HT(1A) receptor antagonist improves behavior performance of delirium rats through inhibiting PI3K/Akt/mTOR activation-induced NLRP3 activity. IUBMB Life 2016; 68:311-9. [PMID: 26946964 DOI: 10.1002/iub.1491] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/28/2016] [Indexed: 11/11/2022]
Abstract
Postoperative delirium is a common complication that often results in poor outcomes in surgical and elderly patients. Accumulating evidences suggest that the pathophysiology of delirium results from multiple neurotransmitter system dysfunctions. To further clarify the effects of the selective serotonin (5-HT) (1A) antagonist WAY-100635 on the behaviors in scopolamine induced-delirium rats and to explore the molecular mechanism, in this study, we investigated the change of monoamine levels in the cerebrospinal fluid (CSF) and different brain regions using high-performance liquid chromatography and assessed the behavioral retrieval of delirium rats treated with WAY-100635. It was found that 5-hydroxy-3-indoleacetic acid (5-HIAA), 3,4-dihydroxyphenylacetic acid, and homovanillic acid concentrations in the CSF of scopolamine-induced delirium rats were significantly increased, among which 5-HIAA was also increased in hippocampus and basolateral amygdala (BLA), and 5-HT(1A) receptor was significantly higher in the hippocampuses and BLA than other brain regions. Furthermore, intrahippocampus and intra-BLA stereotactic injection of WAY-100635 improved the delirium-like behavior of rats. Mechanistically, after WAY-100635 treatment, significant reduction of IL-1β release into CSF and NOD-like receptor family, pyrin domain containing 3 (NLRP3) expression, phosphorylated phosphatidylinositol-3-kinase (PI3K), protein kinase B (AKT), and S6K was observed. Altogether, these results suggest that delirium rats induced by scopolamine may be correlated with an increased cerebral concentration of 5-HT and dopamine neurotransmitters system; the selective 5-HT(1A) antagoniszts can reverse the delirium symptoms at some extent through tendering PI3K/Akt/mammalian target of rapamycin complex 1 (mTOR) activation-induced NLRP3 activity and then reducing IL-1β release.
Collapse
Affiliation(s)
- Yimin Qiu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xiaojing Huang
- Department of Pain Management, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Lina Huang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Liang Tang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jihong Jiang
- Department of Pain Management, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Lianhua Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shitong Li
- Department of Anesthesiology and Pain Management, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
8
|
Khlebnikova NN, Kushnareva EY, Kudrin VS, Krupina NA. The effects of imipramine and the inhibitor of prolylendopeptidase benzyloxycarbonyl-methionyl-2(S)-cyanopyrrolidine on the levels of monoamines and their metabolites in the brain of rats with an experimental anxious-depressive state. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414040059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Neurotensin-Like Peptides as Potential Antipsychotics: Modulation of the Serotonin System. Bull Exp Biol Med 2014; 157:738-41. [DOI: 10.1007/s10517-014-2656-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Indexed: 10/24/2022]
|
10
|
Vadnie CA, Park JH, Abdel Gawad N, Ho AMC, Hinton DJ, Choi DS. Gut-brain peptides in corticostriatal-limbic circuitry and alcohol use disorders. Front Neurosci 2014; 8:288. [PMID: 25278825 PMCID: PMC4166902 DOI: 10.3389/fnins.2014.00288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/26/2014] [Indexed: 12/22/2022] Open
Abstract
Peptides synthesized in endocrine cells in the gastrointestinal tract and neurons are traditionally considered regulators of metabolism, energy intake, and appetite. However, recent work has demonstrated that many of these peptides act on corticostriatal-limbic circuitry and, in turn, regulate addictive behaviors. Given that alcohol is a source of energy and an addictive substance, it is not surprising that increasing evidence supports a role for gut-brain peptides specifically in alcohol use disorders (AUD). In this review, we discuss the effects of several gut-brain peptides on alcohol-related behaviors and the potential mechanisms by which these gut-brain peptides may interfere with alcohol-induced changes in corticostriatal-limbic circuitry. This review provides a summary of current knowledge on gut-brain peptides focusing on five peptides: neurotensin, glucagon-like peptide 1, ghrelin, substance P, and neuropeptide Y. Our review will be helpful to develop novel therapeutic targets for AUD.
Collapse
Affiliation(s)
- Chelsea A Vadnie
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Jun Hyun Park
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry, Sanggye Paik Hospital, College of Medicine, InJe University Seoul, South Korea
| | - Noha Abdel Gawad
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Ada Man Choi Ho
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| | - David J Hinton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| |
Collapse
|
11
|
Wang M, Ma H, Huang YL, Zhu G, Zhao JP. Association of Neurotensin receptor 1 gene polymorphisms with processing speed in healthy Chinese-Han subjects. J Mol Neurosci 2014; 54:787-9. [PMID: 25159184 DOI: 10.1007/s12031-014-0404-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
Abstract
Neurotensin modulates dopamine and serotonin transmission in the brain. The study investigated whether genetic polymorphisms in the Neurotensin receptor 1 gene were associated with performance on processing speed and executive function. A total of 129 healthy Chinese-Han volunteers were recruited. Genotyping for three SNPs, including rs6090453, rs6011914, and rs2427422, was analyzed by using a PCR and a restriction fragment length polymorphism analysis. Performances of processing speed and executive function were assessed by using Trail Making Test-A (TMT-A), Wisconsin Card Sorting Test, and Stroop Color-Word Test. We found significant differences in the outcomes of TMT-A score among rs6090453C/G (F(2,126)=4.405, P=0.014) and rs2427422A/G (F(2,126)=7.498, P=0.001) genotypes. Neurotensin receptor 1 SNP polymorphisms were significantly associated with the variance in processing speed performance in a sample of Chinese college students.
Collapse
Affiliation(s)
- Man Wang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | | | | | | | | |
Collapse
|
12
|
Zhang Y, Zhu S, Yi L, Liu Y, Cui H. Neurotensin receptor1 antagonist SR48692 reduces proliferation by inducing apoptosis and cell cycle arrest in melanoma cells. Mol Cell Biochem 2013; 389:1-8. [DOI: 10.1007/s11010-013-1920-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 12/06/2013] [Indexed: 11/24/2022]
|
13
|
Association Between Neurotensin Receptor 1 (NTR1) Gene Polymorphisms and Schizophrenia in a Han Chinese Population. J Mol Neurosci 2013; 50:345-52. [DOI: 10.1007/s12031-013-9988-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/26/2013] [Indexed: 11/25/2022]
|
14
|
Li J, Chen C, Lei X, Wang Y, Chen C, He Q, Moyzis RK, Xue G, Zhu B, Cao Z, Dong Q. The NTSR1 gene modulates the association between hippocampal structure and working memory performance. Neuroimage 2012; 75:79-86. [PMID: 23110888 DOI: 10.1016/j.neuroimage.2012.09.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 09/28/2012] [Indexed: 12/29/2022] Open
Abstract
The genetic and neural basis of working memory (WM) has been extensively studied. Many dopamine (DA) related genes, including the NTSR1 gene (a DA modulator gene), have been reported to be associated with WM performance. The NTSR1 protein is predominantly expressed in the cerebral cortex and the hippocampus, the latter of which is closely involved in WM processing based on both lesion and fMRI studies. Thus far, however, no study has examined the joint effects of NTSR1 gene polymorphism and hippocampal morphology on WM performance. Participants of the current study were 330 healthy Chinese college students. WM performance was measured with a 2-back WM paradigm. Structural MRI data were acquired and then analyzed using an automated procedure with atlas-based FreeSurfer segmentation software (v 4.5.0) package. Linear regression analyses were conducted with a NTSR1 C/T polymorphism which was previously reported to be associated with WM (rs4334545), hippocampal volume, and their interaction as predictors of WM performance, with gender and intracranial volume (ICV) as covariates. Results showed a significant interaction between NTSR1 genotype and hippocampal volume (p<.05 for both the left and right hippocampi). Further analysis showed that the correlation between hippocampal volume and WM scores was significant for carriers of the NTSR1 T-allele (p<.05 for both hippocampi), but not for CC homozygotes. These results indicate that the association between hippocampal structure and WM performance was modulated by variation in the NTSR1 gene, and suggest that further studies of brain-behavior associations should take genetic background information into account.
Collapse
Affiliation(s)
- Jin Li
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California, Irvine, CA 92697, USA.
| | - Xuemei Lei
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China; Department of Psychology and Social Behavior, University of California, Irvine, CA 92697, USA
| | - Yunxin Wang
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China
| | - Chunhui Chen
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China
| | - Qinghua He
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Robert K Moyzis
- Department of Biological Chemistry and Institute of Genomics and Bioinformatics, University of California, Irvine, CA 92697, USA
| | - Gui Xue
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China; Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Bi Zhu
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China
| | - Zhongyu Cao
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China
| | - Qi Dong
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
15
|
Li J, Chen C, Chen C, He Q, Li H, Li J, Moyzis RK, Xue G, Dong Q. Neurotensin receptor 1 gene (NTSR1) polymorphism is associated with working memory. PLoS One 2011; 6:e17365. [PMID: 21394204 PMCID: PMC3048867 DOI: 10.1371/journal.pone.0017365] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 02/01/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Recent molecular genetics studies showed significant associations between dopamine-related genes (including genes for dopamine receptors, transporters, and degradation) and working memory, but little is known about the role of genes for dopamine modulation, such as those related to neurotensin (NT), in working memory. A recent animal study has suggested that NT antagonist administration impaired working memory in a learning task. The current study examined associations between NT genes and working memory among humans. METHODS Four hundred and sixty healthy undergraduate students were assessed with a 2-back working memory paradigm. 5 SNPs in the NTSR1 gene were genotyped. 5 ANOVA tests were conducted to examine whether and how working memory differed by NTSR1 genotype, with each SNP variant as the independent variable and the average accuracy on the working memory task as the dependent variable. RESULTS ANOVA results suggested that two SNPs in the NTSR1 gene (rs4334545 and rs6090453) were significantly associated with working memory. These results survived corrections for multiple comparisons. CONCLUSIONS Our results demonstrated that NTSR1 SNP polymorphisms were significantly associated with variance in working memory performance among healthy adults. This result extended previous rodent studies showing that the NT deficiency impairs the working memory function. Future research should replicate our findings and extend to an examination of other dopamine modulators.
Collapse
Affiliation(s)
- Jin Li
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
- Department of Psychology and Social Behavior, University of California Irvine, Irvine, California, United States of America
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California Irvine, Irvine, California, United States of America
| | - Chunhui Chen
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
| | - Qinghua He
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
- Department of Psychology, University of Southern California, Los Angeles, California, United States of America
| | - He Li
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
| | - Jun Li
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
| | - Robert K. Moyzis
- Department of Biological Chemistry, University of California Irvine, Irvine, California, United States of America
| | - Gui Xue
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
- Department of Psychology, University of Southern California, Los Angeles, California, United States of America
| | - Qi Dong
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
| |
Collapse
|
16
|
Sárvári M, Kalló I, Hrabovszky E, Solymosi N, Tóth K, Likó I, Molnár B, Tihanyi K, Liposits Z. Estradiol replacement alters expression of genes related to neurotransmission and immune surveillance in the frontal cortex of middle-aged, ovariectomized rats. Endocrinology 2010; 151:3847-62. [PMID: 20534718 DOI: 10.1210/en.2010-0375] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Estradiol (E2) modulates a wide range of functions of the frontal cerebral cortex. From the onset of menopause, declining levels of E2 can cause cognitive disturbances and changes in behavior that can be counterbalanced by hormone replacement. To study the effect of E2 replacement on the cortical transcriptome in a rodent model with low serum E2 level, we treated middle-aged, ovariectomized rats with E2 or vehicle using osmotic minipumps for 4 wk. Six animals for each group were selected, and samples of their frontal cortex were subjected to expression profiling using oligonucleotide microarrays. The explored E2-regulated genes were related to neurotransmission (Adora2a, Cartpt, Drd1a, Drd2, Gjb2, Nts, and Tac1), immunity (C3, C4b, Cd74, Fcgr2b, Mpeg1, and RT1-Aw2), signal transduction (Igf2, Igfbp2, Igfbp6, Rgs9, and Sncg), transport (Abca1, Hba-a2, Slc13a3, and Slc22a8), extracellular matrix (Col1a2, Col3a1, Fmod, and Lum), and transcription (Irf7 and Nupr1). Seventy-four percent of the transcriptional changes identified by microarray were confirmed by quantitative real-time PCR. The genes identified by expression profiling indicated that chronic E2 replacement significantly altered the transcriptome of the frontal cortex. The genomic effects of E2 influenced dopaminergic and peptidergic neurotransmission, immune surveillance, adenosine and insulin-like growth factor signaling and transport processes, among other functions. Identification of these novel E2-regulated mechanisms highlights the wide range of genomic responses of the aging female frontal cerebral cortex subjected to hormone replacement. Some of the genomic effects identified in this study may underlie the beneficial effects of E2 on cognition, behavior, and neuroprotection.
Collapse
Affiliation(s)
- Miklós Sárvári
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sárvári M, Hrabovszky E, Kalló I, Galamb O, Solymosi N, Likó I, Molnár B, Tihanyi K, Szombathelyi Z, Liposits Z. Gene expression profiling identifies key estradiol targets in the frontal cortex of the rat. Endocrinology 2010; 151:1161-76. [PMID: 20068009 DOI: 10.1210/en.2009-0911] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estradiol modulates a wide range of neural functions in the frontal cerebral cortex where subsets of neurons express estrogen receptor-alpha and -beta. Through these receptors, estradiol contributes to the maintenance of normal operation of the frontal cortex. During the decline of gonadal hormones, the frequency of neurological and psychiatric disorders increases. To shed light on the etiology of disorders related to declining levels of estrogens, we studied the genomic responses to estradiol. Ovariectomized rats were treated with a sc injection of estradiol. Twenty-four hours later, samples from the frontal cortices were dissected, and their mRNA content was analyzed. One hundred thirty-six estradiol-regulated transcripts were identified on Rat 230 2.0 Expression Array. Of the 136 estrogen-regulated genes, 26 and 36 genes encoded proteins involved in the regulation of transcription and signal transduction, respectively. Thirteen genes were related to the calcium signaling pathway. They comprised five genes coding for neurotransmitter receptors. Transcription of three neuropeptides, including cocaine- and amphetamine-regulated transcript, were up-regulated. Fifty-two genes were selected for validation, and 12 transcriptional changes were confirmed. These results provided evidence that estradiol evokes broad transcriptional response in the cortex. Modulation of key components of the calcium signaling pathway, dopaminergic, serotonergic, and glutamatergic neurotransmission, may explain the influence of estrogens on cognitive function and behavior. Up-regulation of cocaine- and amphetamine-regulated transcript contributes to the neuroprotective effects of estradiol. Identification of estradiol-regulated genes in the frontal cortex helps to understand the pathomechanism of neurological and psychiatric disorders associated with altered levels of estrogens.
Collapse
Affiliation(s)
- Miklós Sárvári
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony utca 43, Budapest H-1083, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|