1
|
Gambino G, Gallo D, Covelo A, Ferraro G, Sardo P, Giglia G. TRPV1 channels in nitric oxide-mediated signalling: insight on excitatory transmission in rat CA1 pyramidal neurons. Free Radic Biol Med 2022; 191:128-136. [PMID: 36029909 DOI: 10.1016/j.freeradbiomed.2022.08.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022]
Abstract
Nitric oxide (NO) is a fascinating signalling molecule implicated in a plethora of biological functions, especially at the synaptic level. Exploring neurotransmission in the hippocampus could be instrumental in the individuation of putative targets for nitric-oxide mediated neuromodulation, especially in terms of the potential repercussions on fundamental processes i.e. synaptic plasticity and excitability-related phenomena. Among these targets, endovanilloid signalling constitutes an object of study since Transient Receptors Vanilloid type 1 (TRPV1) channels possess a NO-sensitive gate modulating its activation. Also, NO has been referred to as a mediator for numerous endocannabinoid effects. Notwithstanding, the linkage between TRPV1 and NO systems in neuromodulation still remains elusive. To this end, we aim at investigating the involvement of TRPV1 in nitric oxide-mediated influence on hippocampal processes. Electrophysiological whole-cell recordings in CA1 pyramidal neurons were applied to evaluate excitatory neurotransmission in rat brain slices. Indeed, miniature excitatory postsynaptic currents (mEPSCs) were analysed upon pharmacological manipulation of TRPV1 and NO signalling pathways. In detail, only the administration of the specific TRPV1 exogenous agonist - capsaicin - reduced the frequency and amplitude of mEPSC similarly to the inhibitor of neuronal nitric oxide synthase (nNOS), 7-nitroindazole (7NI). In contrast, capsazepine, TRPV1 antagonist, does not influence excitatory transmission. The combined TRPV1 activation and nNOS blockade confirm the presence of a putative common mechanism. When we administered the endovanilloid-endocannabinoid ligand, i.e. anandamide, we unveiled a potentiation of neurotransmission that was selectively reverted by 7NI. Our data suggest that nitric oxide influences TRPV1 hippocampal signalling since these channels are not constitutively active, but can be "on-demand" activated to modulate excitation in CA1 pyramidal neurons, and that this effect is linked to nitric oxide production.
Collapse
Affiliation(s)
- Giuditta Gambino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Italy.
| | - Daniele Gallo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Italy
| | - Ana Covelo
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, Bordeaux, France
| | - Giuseppe Ferraro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Italy
| | - Pierangelo Sardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Italy
| | - Giuseppe Giglia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Italy
| |
Collapse
|
2
|
Winters BL, Vaughan CW. Mechanisms of endocannabinoid control of synaptic plasticity. Neuropharmacology 2021; 197:108736. [PMID: 34343612 DOI: 10.1016/j.neuropharm.2021.108736] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/13/2023]
Abstract
The endogenous cannabinoid transmitter system regulates synaptic transmission throughout the nervous system. Unlike conventional transmitters, specific stimuli induce synthesis of endocannabinoids (eCBs) in the postsynaptic neuron, and these travel backwards to modulate presynaptic inputs. In doing so, eCBs can induce short-term changes in synaptic strength and longer-term plasticity. While this eCB regulation is near ubiquitous, it displays major regional and synapse specific variations with different synapse specific forms of short-versus long-term plasticity throughout the brain. These differences are due to the plethora of pre- and postsynaptic mechanisms which have been implicated in eCB signalling, the intricacies of which are only just being realised. In this review, we shall describe the current understanding and highlight new advances in this area, with a focus on the retrograde action of eCBs at CB1 receptors (CB1Rs).
Collapse
Affiliation(s)
- Bryony Laura Winters
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia.
| | - Christopher Walter Vaughan
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia
| |
Collapse
|
3
|
Piette C, Cui Y, Gervasi N, Venance L. Lights on Endocannabinoid-Mediated Synaptic Potentiation. Front Mol Neurosci 2020; 13:132. [PMID: 32848597 PMCID: PMC7399367 DOI: 10.3389/fnmol.2020.00132] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid (eCB) system is a lipid-based neurotransmitter complex that plays crucial roles in the neural control of learning and memory. The current model of eCB-mediated retrograde signaling is that eCBs released from postsynaptic elements travel retrogradely to presynaptic axon terminals, where they activate cannabinoid type-1 receptors (CB1Rs) and ultimately decrease neurotransmitter release on a short- or long-term scale. An increasing body of evidence has enlarged this view and shows that eCBs, besides depressing synaptic transmission, are also able to increase neurotransmitter release at multiple synapses of the brain. This indicates that eCBs act as bidirectional regulators of synaptic transmission and plasticity. Recently, studies unveiled links between the expression of eCB-mediated long-term potentiation (eCB-LTP) and learning, and between its dysregulation and several pathologies. In this review article, we first distinguish the various forms of eCB-LTP based on their mechanisms, resulting from homosynaptically or heterosynaptically-mediated processes. Next, we consider the neuromodulation of eCB-LTP, its behavioral impact on learning and memory, and finally, eCB-LTP disruptions in various pathologies and its potential as a therapeutic target in disorders such as stress coping, addiction, Alzheimer’s and Parkinson’s disease, and pain. Cannabis is gaining popularity as a recreational substance as well as a medicine, and multiple eCB-based drugs are under development. In this context, it is critical to understand eCB-mediated signaling in its multi-faceted complexity. Indeed, the bidirectional nature of eCB-based neuromodulation may offer an important key to interpret the functions of the eCB system and how it is impacted by cannabis and other drugs.
Collapse
Affiliation(s)
- Charlotte Piette
- Center for Interdisciplinary Research in Biology, College de France, INSERM U1050, CNRS UMR7241, Labex Memolife, Paris, France
| | - Yihui Cui
- Department of Neurobiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nicolas Gervasi
- Center for Interdisciplinary Research in Biology, College de France, INSERM U1050, CNRS UMR7241, Labex Memolife, Paris, France
| | - Laurent Venance
- Center for Interdisciplinary Research in Biology, College de France, INSERM U1050, CNRS UMR7241, Labex Memolife, Paris, France
| |
Collapse
|
4
|
Stanslowsky N, Jahn K, Venneri A, Naujock M, Haase A, Martin U, Frieling H, Wegner F. Functional effects of cannabinoids during dopaminergic specification of human neural precursors derived from induced pluripotent stem cells. Addict Biol 2017; 22:1329-1342. [PMID: 27027565 DOI: 10.1111/adb.12394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/22/2016] [Accepted: 02/22/2016] [Indexed: 01/28/2023]
Abstract
Among adolescents cannabis is one of the most widely used illicit drugs. In adolescence brain development continues, characterized by neuronal maturation and synaptic plasticity. The endocannabinoid system plays an important role during brain development by modulating neuronal function and neurogenesis. Changes in endocannabinoid signaling by Δ9 -tetrahydrocannabinol (THC), the psychoactive component of cannabis, might therefore lead to neurobiological changes influencing brain function and behavior. We investigated the functional maturation and dopaminergic specification of human cord blood-derived induced pluripotent stem cell (hCBiPSC)-derived small molecule neural precursor cells (smNPCs) after cultivation with the endogenous cannabinoid anandamide (AEA) and the exogenous THC, both potent agonists at the cannabinoid 1 receptor (CB1 R). Higher dosages of 10-μM AEA or THC significantly decreased functionality of neurons, indicated by reduced ion currents and synaptic activity. A lower concentration of 1-μM THC had no marked effect on neuronal and dopaminergic maturation, while 1-μM AEA significantly enhanced the frequency of synaptic activity. As there were no significant effects on DNA methylation in promotor regions of genes important for neuronal function, these cannabinoid actions seem to be mediated by another than this epigenetic mechanism. Our data suggest that there are concentration-dependent actions of cannabinoids on neuronal function in vitro indicating neurotoxic, dysfunctional effects of 10-μM AEA and THC during human neurogenesis.
Collapse
Affiliation(s)
| | - Kirsten Jahn
- Center for Addiction Research, Department of Psychiatry, Social Psychiatry and Psychotherapy; Hannover Medical School; Hannover Germany
| | - Anna Venneri
- Department of Neurology; Hannover Medical School; Hannover Germany
| | - Maximilian Naujock
- Department of Neurology; Hannover Medical School; Hannover Germany
- Center for Systems Neuroscience; Hannover Germany
| | - Alexandra Haase
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiac, Thoracic, Transplantation and Vascular Surgery; Hannover Medical School; Hannover Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiac, Thoracic, Transplantation and Vascular Surgery; Hannover Medical School; Hannover Germany
- REBIRTH-Cluster of Excellence; Hannover Germany
| | - Helge Frieling
- Center for Addiction Research, Department of Psychiatry, Social Psychiatry and Psychotherapy; Hannover Medical School; Hannover Germany
- Center for Systems Neuroscience; Hannover Germany
| | - Florian Wegner
- Department of Neurology; Hannover Medical School; Hannover Germany
- Center for Systems Neuroscience; Hannover Germany
| |
Collapse
|
5
|
Yang K, Lei G, Xie YF, MacDonald JF, Jackson MF. Differential regulation of NMDAR and NMDAR-mediated metaplasticity by anandamide and 2-AG in the hippocampus. Hippocampus 2014; 24:1601-14. [DOI: 10.1002/hipo.22339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Kai Yang
- Robarts Research Institute; Molecular Brain Research Group, Western University; London ON Canada
| | - Gang Lei
- Robarts Research Institute; Molecular Brain Research Group, Western University; London ON Canada
| | - Yu-Feng Xie
- Department of Pharmacology & Therapeutics; University of Manitoba; Winnipeg MB Canada
- Neuroscience Research Program; Kleysen Institute for Advanced Medicine, Health Sciences Centre, University of Manitoba; Winnipeg MB Canada
| | - John F. MacDonald
- Robarts Research Institute; Molecular Brain Research Group, Western University; London ON Canada
- Department of Physiology and Pharmacology; Western University; London ON Canada
- Department of Anatomy and Cell Biology; Western University; London ON Canada
| | - Michael F. Jackson
- Robarts Research Institute; Molecular Brain Research Group, Western University; London ON Canada
- Department of Pharmacology & Therapeutics; University of Manitoba; Winnipeg MB Canada
- Neuroscience Research Program; Kleysen Institute for Advanced Medicine, Health Sciences Centre, University of Manitoba; Winnipeg MB Canada
- Department of Physiology and Pharmacology; Western University; London ON Canada
| |
Collapse
|
6
|
Du H, Chen X, Zhang J, Chen C. Inhibition of COX-2 expression by endocannabinoid 2-arachidonoylglycerol is mediated via PPAR-γ. Br J Pharmacol 2012; 163:1533-49. [PMID: 21501147 DOI: 10.1111/j.1476-5381.2011.01444.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Endocannabinoids have both anti-inflammatory and neuroprotective properties against harmful stimuli. We previously demonstrated that the endocannabinoid 2-arachidonoylglycerol (2-AG) protects hippocampal neurons by limiting the inflammatory response via a CB(1) receptor-dependent MAPK/NF-κB signalling pathway. The purpose of the present study was to determine whether PPARγ, an important nuclear receptor, mediates 2-AG-induced inhibition of NF-κB phosphorylation and COX-2 expression, and COX-2-enhanced miniature spontaneous excitatory postsynaptic currents (mEPSCs). EXPERIMENTAL APPROACH By using a whole-cell patch clamp electrophysiological recording technique and immunoblot analysis, we determined mEPSCs, expression of COX-2 and PPARγ, and phosphorylation of NF-kB in mouse hippocampal neurons in culture. KEY RESULTS Exogenous and endogenous 2-AG-produced suppressions of NF-κB-p65 phosphorylation, COX-2 expression and excitatory synaptic transmission in response to pro-inflammatory interleukin-1β (IL-1β) and LPS were inhibited by GW9662, a selective PPARγ antagonist, in hippocampal neurons in culture. PPARγ agonists 15-deoxy-Δ(12,14) -prostaglandin J(2) (15d-PGJ(2)) and rosiglitazone mimicked the effects of 2-AG on NF-κB-p65 phosphorylation, COX-2 expression and mEPSCs, and these effects were eliminated by antagonism of PPARγ. Moreover, exogenous application of 2-AG or elevation of endogenous 2-AG by inhibiting its hydrolysis with URB602 or JZL184, selective inhibitors of monoacylglycerol lipase (MAGL), prevented the IL-1β- and LPS-induced reduction of PPARγ expression. The 2-AG restoration of the reduced PPARγ expression was blocked or attenuated by pharmacological or genetic inhibition of the CB(1) receptor. CONCLUSIONS AND IMPLICATIONS Our results suggest that CB(1) receptor-dependent PPARγ expression is an important and novel signalling pathway in endocannabinoid 2-AG-produced resolution of neuroinflammation in response to pro-inflammatory insults.
Collapse
Affiliation(s)
- Huizhi Du
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
7
|
Hofmann ME, Frazier CJ. Marijuana, endocannabinoids, and epilepsy: potential and challenges for improved therapeutic intervention. Exp Neurol 2011; 244:43-50. [PMID: 22178327 DOI: 10.1016/j.expneurol.2011.11.047] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 11/25/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022]
Abstract
Phytocannabinoids isolated from the cannabis plant have broad potential in medicine that has been well recognized for many centuries. It is presumed that these lipid soluble signaling molecules exert their effects in both the central and peripheral nervous system in large part through direct interaction with metabotropic cannabinoid receptors. These same receptors are also targeted by a variety of endogenous cannabinoids including 2-arachidonoyl glycerol and anandamide. Significant effort over the last decade has produced an enormous advance in our understanding of both the cellular and the synaptic physiology of endogenous lipid signaling systems. This increase in knowledge has left us better prepared to carefully evaluate the potential for both natural and synthetic cannabinoids in the treatment of a variety of neurological disorders. In the case of epilepsy, long standing interest in therapeutic approaches that target endogenous cannabinoid signaling systems are, for the most part, not well justified by available clinical data from human epileptics. Nevertheless, basic science experiments have clearly indicated a key role for endogenous cannabinoid signaling systems in moment to moment regulation of neuronal excitability. Further it has become clear that these systems can both alter and be altered by epileptiform activity in a wide range of in vitro and in vivo models of epilepsy. Collectively these observations suggest clear potential for effective therapeutic modulation of endogenous cannabinoid signaling systems in the treatment of human epilepsy, and in fact, further highlight key obstacles that would need to be addressed to reach that goal.
Collapse
Affiliation(s)
- Mackenzie E Hofmann
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, USA
| | | |
Collapse
|
8
|
Kawahara H, Drew GM, Christie MJ, Vaughan CW. Inhibition of fatty acid amide hydrolase unmasks CB1 receptor and TRPV1 channel-mediated modulation of glutamatergic synaptic transmission in midbrain periaqueductal grey. Br J Pharmacol 2011; 163:1214-22. [PMID: 21175570 DOI: 10.1111/j.1476-5381.2010.01157.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE While arachidonyl ethanolamine (anandamide) produces pharmacological effects mediated by cannabinoid CB1 receptors, it is also an agonist at the transient receptor potential vanilloid type 1 (TRPV1) ion channel. This study examined the cellular actions of anandamide in the midbrain periaqueductal grey (PAG), a region implicated in the analgesic actions of cannabinoids, and which expresses both CB1 receptors and TRPV1. EXPERIMENTAL APPROACH In vitro whole cell patch clamp recordings of glutamatergic excitatory postsynaptic currents (EPSCs) were made from rat and mouse PAG slices. KEY RESULTS Capsaicin (1 µM) increased the rate, but not the amplitude of miniature EPSCs in subpopulations of neurons throughout the rat and mouse PAG. Capsaicin had no effect on miniature EPSCs in PAG neurons from TRPV1 knock-out mice. In mouse PAG neurons, anandamide (30 µM) had no effect on the rate of miniature EPSCs alone, or in the presence of either the CB1 antagonist AM251 (3 µM) or the TRPV1 antagonist iodoresiniferatoxin (300 nM). Anandamide produced a decrease in miniature EPSC rate in the presence of the fatty acid amide hydrolase (FAAH) inhibitor URB597 (1 µM). By contrast, anandamide produced an increase in miniature EPSC rate in the presence of both URB597 and AM251, which was absent in TRPV1 knock-out mice. CONCLUSIONS AND IMPLICATIONS These results suggest that the actions of anandamide within PAG are limited by enzymatic degradation by FAAH. FAAH blockade unmasks both presynaptic inhibition and excitation of glutamatergic synaptic transmission which are mediated via CB1 receptors and TRPV1 respectively.
Collapse
Affiliation(s)
- H Kawahara
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia.
| | | | | | | |
Collapse
|
9
|
Hofmann ME, Bhatia C, Frazier CJ. Cannabinoid receptor agonists potentiate action potential-independent release of GABA in the dentate gyrus through a CB1 receptor-independent mechanism. J Physiol 2011; 589:3801-21. [PMID: 21646412 DOI: 10.1113/jphysiol.2011.211482] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We report a novel excitatory effect of cannabinoid agonists on action potential-independent GABAergic transmission in the rat dentate gyrus. Specifically, we find that both WIN55,212-2 and anandamide increase the frequency of miniature IPSCs (mIPSCs)recorded from hilar mossy cells without altering event amplitude, area, rise time, or decay. The effect of WIN55,212-2 on mIPSCs is insensitive to AM251 and preserved in CB1 −/− animals,indicating that it does not depend on activation of CB1 receptors. It is also insensitive to AM630 and unaffected by capsazepine suggesting that neither CB2 nor TRPV1 receptors are involved. Further, it is blocked by pre-incubation in suramin and by a selective protein kinase A inhibitor (H-89), and is mimicked (and occluded) by bath application of forskolin. Similar CB1 receptor-independent facilitation of exocytosis is not apparent when recording evoked IPSCs in the presence of AM251, suggesting that the exocytotic mechanism that produces WIN55,212-2 sensitive mIPSCs is distinct from that which produces CB1 sensitive and action potential-dependent release. Despite clear independence from action potentials, WIN55,212-2 mediated facilitation of mIPSCs requires calcium, and yet is insensitive to chelation of calcium in the postsynaptic cell. Finally, we demonstrate that both bath application of 2-arachidonoylglycerol(2-AG) and depolarization-induced release of endogenous cannabinoids have minimal effect on mIPSC frequency. Cumulatively, our results indicate that cannabinoid ligands can selectively facilitate action potential-independent exocytosis of GABA in the rat dentate gyrus, and further emphasize that this new cannabinoid sensitive signalling system is distinct from previously described CB1 receptor-dependent systems in numerous respects.
Collapse
Affiliation(s)
- Mackenzie E Hofmann
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
10
|
Alger BE, Kim J. Supply and demand for endocannabinoids. Trends Neurosci 2011; 34:304-15. [PMID: 21507493 DOI: 10.1016/j.tins.2011.03.003] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 02/21/2011] [Accepted: 03/11/2011] [Indexed: 10/18/2022]
Abstract
The endocannabinoid system consists of G-protein-coupled cannabinoid receptors that can be activated by cannabis-derived drugs and small lipids termed endocannabinoids (eCBs) plus associated biochemical machinery (precursors, synthetic and degradative enzymes, transporters). The eCB system in the brain primarily influences neuronal synaptic communication, and affects biological functions - including eating, anxiety, learning and memory, growth and development - via an array of actions throughout the nervous system. Although many aspects of synaptic regulation by eCBs are becoming clear, details of the subcellular organization and regulation of the eCB system are less well understood. This review focuses on recent investigations that illuminate fundamental issues of eCB storage, release, and functional roles.
Collapse
Affiliation(s)
- Bradley E Alger
- Department of Physiology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA.
| | | |
Collapse
|
11
|
Wang W, Zhang K, Yan S, Li A, Hu X, Zhang L, Liu C. Enhancement of apamin-sensitive medium afterhyperpolarization current by anandamide and its role in excitability control in cultured hippocampal neurons. Neuropharmacology 2011; 60:901-9. [PMID: 21272594 DOI: 10.1016/j.neuropharm.2011.01.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 01/03/2011] [Accepted: 01/17/2011] [Indexed: 12/30/2022]
Abstract
Although endocannabinoid anandamide (AEA) plays an important role in synaptic signaling and neuronal survival, the underlying mechanism is not fully understood. Afterhyperpolarization (AHP) is the critical modulator of cell excitability and in turn shapes the neuronal output. Here, we examined the effects of AEA on AHP current and action potential firing in cultured rat hippocampal neurons. In whole-cell patch-clamp recording, AEA applied in the extracellular medium at nanomolar concentration enhanced medium AHP (mAHP) current and spike-frequency adaptation. Activation of apamin-sensitive, small conductance Ca(2+)-activated K(+) (SK) channels, probably SK2 and SK3 as the immunofluorescence analysis indicated, attributed largely to the AEA action on mAHP. Interestingly, AEA-induced potentiation of mAHP current was abolished by inositol 1,4,5-trisphosphate receptors (IP(3)Rs) blockade. However, the potentiation was not affected by inhibiting Ca(2+) influx or Ca(2+) release from internal store through ryanodine receptors. In addition, blockade of CB1, TRPV1 or Gi/o-protein did not attenuate the potentiation. Thus, AEA might enhance the SK mAHP currents mainly in a non-CB1/TRPV1 receptor way. Our study provides the first evidence that a functional cascade might lie among AEA, IP(3)Rs and SK channels, which may keep the membrane excitability stable in a negative-feedback manner.
Collapse
Affiliation(s)
- Wei Wang
- Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, Hubei Province 430030, PR China
| | | | | | | | | | | | | |
Collapse
|
12
|
Chen X, Zhang J, Chen C. Endocannabinoid 2-arachidonoylglycerol protects neurons against β-amyloid insults. Neuroscience 2011; 178:159-68. [PMID: 21256197 DOI: 10.1016/j.neuroscience.2011.01.024] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 01/06/2011] [Accepted: 01/12/2011] [Indexed: 01/31/2023]
Abstract
While endocannabinoid modulation of both GABAergic and glutamatergic synaptic transmission and plasticity has been extensively investigated, our understanding of the role of endocannabinoids in protecting neurons from harmful insults remains limited. 2-Arachidonoylglycerol (2-AG), the most abundant endogenous ligand and a full agonist for cannabinoid receptors, exhibits anti-inflammatory and neuroprotective effects via a CB1 receptor (CB1R)-mediated mechanism. However, it is still not clear whether 2-AG is also able to protect neurons from β-amyloid (Aβ)-induced neurodegeneration. Here, we demonstrate that exogenous application of 2-AG significantly protected hippocampal neurons in culture against Aβ-induced neurodegeneration and apoptosis. This neuroprotective effect was blocked by SR141716 (SR-1), a selective CB1R antagonist, but not by SR144528 (SR-2), a selective CB2R antagonist, or capsazepine (CAP), a selective transient receptor potential cation channels, subfamily V, member 1 (TRPV1) receptor antagonist. To determine whether endogenous 2-AG is capable of protecting neurons from Aβ insults, hippocampal neurons in culture were treated with URB602 or JZL184, selective inhibitors of monoacylglycerol lipase (MAGL), the enzyme hydrolyzing 2-AG. MAGL inhibition that elevates endogenous levels of 2-AG also significantly reduced Aβ-induced neurodegeneration and apoptosis. The 2-AG-produced neuroprotective effects appear to be mediated via CB1R-dependent suppression of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and nuclear factor-κB (NF-κB) phosphorylation and cyclooxygenase-2 (COX-2) expression. Our results suggest that elevation of endogenous 2-AG by inhibiting its hydrolysis has potential as a novel efficacious therapeutic approach for preventing, ameliorating or treating Alzheimer's disease.
Collapse
Affiliation(s)
- X Chen
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | |
Collapse
|