1
|
Delcourte S, Etievant A, Haddjeri N. Role of central serotonin and noradrenaline interactions in the antidepressants' action: Electrophysiological and neurochemical evidence. PROGRESS IN BRAIN RESEARCH 2021; 259:7-81. [PMID: 33541681 DOI: 10.1016/bs.pbr.2021.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of antidepressant drugs, in the last 6 decades, has been associated with theories based on a deficiency of serotonin (5-HT) and/or noradrenaline (NA) systems. Although the pathophysiology of major depression (MD) is not fully understood, numerous investigations have suggested that treatments with various classes of antidepressant drugs may lead to an enhanced 5-HT and/or adapted NA neurotransmissions. In this review, particular morpho-physiological aspects of these systems are first considered. Second, principal features of central 5-HT/NA interactions are examined. In this regard, the effects of the acute and sustained antidepressant administrations on these systems are discussed. Finally, future directions including novel therapeutic strategies are proposed.
Collapse
Affiliation(s)
- Sarah Delcourte
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Adeline Etievant
- Integrative and Clinical Neurosciences EA481, University of Bourgogne Franche-Comté, Besançon, France
| | - Nasser Haddjeri
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.
| |
Collapse
|
2
|
Zaccarelli-Magalhães J, Sandini TM, de Abreu GR, Petrocelli BM, Moreira N, Reis-Silva TM, Lebrun I, Flório JC, Ricci EL, Fukushima AR, Faria Waziry PA, de Souza Spinosa H. Prolonged exposure of rats to varenicline increases anxiety and alters serotonergic system, but has no effect on memory. Pharmacol Biochem Behav 2019; 181:1-8. [PMID: 30946884 DOI: 10.1016/j.pbb.2019.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 10/27/2022]
Abstract
Varenicline is a drug used for smoking addiction cessation treatment and acts as a partial agonist of nicotinic cholinergic receptors. Recent clinical trial data support use of varenicline for treatment of conditions/addictions that are not related to smoking cessation. Considering the importance of this issue and the need for new studies on its effects, especially on behavior, more studies using animal models are necessary. Thus, the aim of this study was to evaluate the effects of prolonged exposure to varenicline in anxiety-like behavior and memory, as well as in cerebral neurochemistry of rats. Male rats received three different doses of varenicline: 0.03 (therapeutic dose for humans), 0.1 and 0.3 mg/kg orally (gavage) for 30 days. Animal behavior was analyzed through open field, elevated plus maze, light/dark box, social interaction, Barnes maze and novel object recognition tests. Neurotransmitter levels and their metabolites in different brain structures (hippocampus, striatum and frontal cortex) were measured. Results showed that prolonged exposure of rats to varenicline: 1) did not interfere in motor activity, but caused an anxiogenic effect on elevated plus maze, light/dark box and social interaction testes; 2) did not alter memory; and 3) promoted alterations on serotoninergic system in the striatum and frontal cortex. In conclusion, compilation of the data indicates that prolonged exposure of rats to varenicline promoted anxiogenic effects and alteration in serotonergic system, which corroborated behavioral findings.
Collapse
Affiliation(s)
- Julia Zaccarelli-Magalhães
- Graduate Program of Experimental and Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil.
| | - Thaisa Meira Sandini
- Graduate Program of Toxicology and Toxicological Analysis, School of Pharmaceutical Science, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 580, 05508-000 São Paulo, Brazil.
| | - Gabriel Ramos de Abreu
- Graduate Program of Experimental and Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil; Health Science Institute, Presbiterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - Bianca Maria Petrocelli
- Health Science Institute, Presbiterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - Natalia Moreira
- Graduate Program of Experimental and Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil.
| | - Thiago Moirinho Reis-Silva
- Department of Neuroscience, Institute of Psychology, University of São Paulo, Av. Prof. Dr. Melo de Morais, 1721, 05508-030 São Paulo, Brazil.
| | - Ivo Lebrun
- Laboratory of Biochemistry and Biophysics, Butantan Institute, 05503-900 São Paulo, Brazil.
| | - Jorge Camilo Flório
- Graduate Program of Experimental and Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil.
| | - Esther Lopes Ricci
- Health Science Institute, Presbiterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - André Rinaldi Fukushima
- Graduate Program of Experimental and Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil; São Bento's College, Largo de São Bento s/no, 01029-010 São Paulo, Brazil.
| | - Paula A Faria Waziry
- Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3200 S. University Drive, Fort Lauderdale, Florida 33328, United States of America.
| | - Helenice de Souza Spinosa
- Graduate Program of Experimental and Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil.
| |
Collapse
|
3
|
Ponzoni L, Braida D, Pucci L, Andrea D, Fasoli F, Manfredi I, Papke RL, Stokes C, Cannazza G, Clementi F, Gotti C, Sala M. The cytisine derivatives, CC4 and CC26, reduce nicotine-induced conditioned place preference in zebrafish by acting on heteromeric neuronal nicotinic acetylcholine receptors. Psychopharmacology (Berl) 2014; 231:4681-93. [PMID: 24862365 DOI: 10.1007/s00213-014-3619-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 05/12/2014] [Indexed: 12/22/2022]
Abstract
RATIONALE Cigarette smoking is one of the most serious health problems worldwide and people trying to stop smoking have high rates of relapse. Zebrafish (Danio rerio), by combining pharmacological and behavioral assays, is a promising animal model for rapidly screening new compounds to induce smoking cessation. OBJECTIVES This study aims to identify possible acetylcholine nicotinic receptors (nAChRs) involved in mediating nicotine (NIC)-induced conditioned place preference (CPP) in zebrafish and investigate the effect of the CC4 and CC26 cytisine derivatives in reducing NIC-induced CPP. METHODS CPP was evaluated using a two-compartment chamber, and the zebrafish were given CC4 (0.001-5 mg/kg), CC26 (0.001-1 mg/kg), cytisine (0.1-2.5 mg/kg), and varenicline (1-10 mg/kg) alone or with NIC (0.001 mg/kg). Swimming activity was evaluated using a square observational chamber. The affinity of the nicotinic ligands for native zebrafish brain nAChRs was evaluated by binding studies using [(3)H]-Epibatidine (Epi) and [(125)I]-αBungarotoxin (αBgtx) radioligands, and their subtype specificity was determined by means of electrophysiological assay of oocyte-expressed α4β2 and α7 subtypes. RESULTS CC4 and CC26 induced CPP with an inverted U-shaped dose-response curve similar to that of NIC. However, when co-administered with NIC, they blocked its reinforcing or slightly aversive effect. Binding and electrophysiological studies showed that this effect was due to binding to high-affinity heteromeric but not α7-containing receptors. CONCLUSIONS We have further characterized CC4 and identified a new compound (CC26) that may be active in inducing smoking cessation. Zebrafish is a very useful model for screening new compounds that can affect the rewarding properties of NIC.
Collapse
Affiliation(s)
- Luisa Ponzoni
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Batsikadze G, Paulus W, Grundey J, Kuo MF, Nitsche MA. Effect of the Nicotinic α4β2-receptor Partial Agonist Varenicline on Non-invasive Brain Stimulation-Induced Neuroplasticity in the Human Motor Cortex. Cereb Cortex 2014; 25:3249-59. [PMID: 24917274 DOI: 10.1093/cercor/bhu126] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nicotine alters cognitive functions in animals and humans most likely by modification of brain plasticity. In the human brain, it alters plasticity induced by transcranial direct current stimulation (tDCS) and paired associative stimulation (PAS), probably by interference with calcium-dependent modulation of the glutamatergic system. We aimed to test this hypothesis further by exploring the impact of the α4β2-nicotinic receptor partial agonist varenicline on focal and non-focal plasticity, induced by PAS and tDCS, respectively. We administered low (0.1 mg), medium (0.3 mg), and high (1.0 mg) single doses of varenicline or placebo medication before PAS or tDCS on the left motor cortex of 25 healthy non-smokers. Corticospinal excitability was monitored by single-pulse transcranial magnetic stimulation-induced motor evoked potential amplitudes up to 36 h after plasticity induction. Whereas low-dose varenicline had no impact on stimulation-induced neuroplasticity, medium-dose abolished tDCS-induced facilitatory after-effects, favoring focal excitatory plasticity. High-dose application preserved cathodal tDCS-induced excitability diminution and focal excitatory PAS-induced facilitatory plasticity. These results are comparable to the impact of nicotine receptor activation and might help to further explain the involvement of specific receptor subtypes in the nicotinic impact on neuroplasticity and cognitive functions in healthy subjects and patients with neuropsychiatric diseases.
Collapse
Affiliation(s)
- Giorgi Batsikadze
- Department of Clinical Neurophysiology, Georg-August-University of Göttingen, Göttingen 37075, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, Georg-August-University of Göttingen, Göttingen 37075, Germany
| | - Jessica Grundey
- Department of Clinical Neurophysiology, Georg-August-University of Göttingen, Göttingen 37075, Germany
| | - Min-Fang Kuo
- Department of Clinical Neurophysiology, Georg-August-University of Göttingen, Göttingen 37075, Germany
| | - Michael A Nitsche
- Department of Clinical Neurophysiology, Georg-August-University of Göttingen, Göttingen 37075, Germany
| |
Collapse
|
5
|
DuBois DW, Damborsky JC, Fincher AS, Frye GD, Winzer-Serhan UH. Varenicline and nicotine enhance GABAergic synaptic transmission in rat CA1 hippocampal and medial septum/diagonal band neurons. Life Sci 2013; 92:337-44. [PMID: 23352971 DOI: 10.1016/j.lfs.2012.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/18/2012] [Accepted: 12/26/2012] [Indexed: 11/16/2022]
Abstract
AIMS The FDA approved smoking cessation aid varenicline can effectively attenuate nicotine-stimulated dopamine release. Varenicline may also exert important actions on other transmitter systems that also influence nicotine reinforcement or contribute to the drug's cognitive and affective side effects. In this study, we determined if varenicline, like nicotine, can stimulate presynaptic GABA release. MAIN METHODS Using whole-cell patch-clamp techniques, we measured GABA(A)R-mediated asynchronous, spontaneous miniature inhibitory postsynaptic currents (mIPSCs) in acute brain slices from two brain regions important for learning and memory, the hippocampus and basal forebrain. KEY FINDINGS Both varenicline (10 μM) and nicotine (10 μM) applications alone resulted in small but significant increases in amplitude, as well as robustly enhanced frequency of mIPSCs in hippocampal CA1 pyramidal neurons and medial septum/diagonal band (MS/DB) neurons. A unique subpopulation of MS/DB neurons showed decreases in frequency. In the presence of nicotine, varenicline effectively attenuated the expected enhancement of hippocampal mIPSC frequency like a competitive antagonist. However, in the MS/DB, varenicline only partially attenuated nicotine's effects. Reversing the order of drug application by adding nicotine to varenicline-exposed slices had little effect. SIGNIFICANCE Varenicline, like nicotine, stimulates presynaptic GABA release, and also exerts a partial agonist action by attenuating nicotine-stimulated release in both the hippocampus and basal forebrain. These effects could potentially affect cognitive functions.
Collapse
Affiliation(s)
- Dustin W DuBois
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M System Health Science Center, Bryan, TX 77807, USA
| | | | | | | | | |
Collapse
|
6
|
Brierley DI, Davidson C. Harmine augments electrically evoked dopamine efflux in the nucleus accumbens shell. J Psychopharmacol 2013; 27:98-108. [PMID: 23076833 DOI: 10.1177/0269881112463125] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Harmine is a β-carboline alkaloid and major component of ayahuasca, a traditional South American psychoactive tea with anecdotal efficacy for treatment of cocaine dependence. Harmine is an inhibitor of monoamine oxidase A (MAO-A) and interacts in vitro with several pharmacological targets which modulate dopamine (DA) neurotransmission. In vivo studies have demonstrated dopaminergic effects of harmine, attributed to monoamine oxidase inhibitor (MAOI) activity, however none have directly demonstrated a pharmacological mechanism. This study investigated the acute effects, and pharmacological mechanism(s), of harmine on electrically evoked DA efflux parameters in the nucleus accumbens both in the absence and presence of cocaine. Fast cyclic voltammetry in rat brain slices was used to measure electrically evoked DA efflux in accumbens core and shell. Harmine (300 nM) significantly augmented DA efflux (148±8% of baseline) in the accumbens shell. Cocaine augmented efflux in shell additive to harmine (260±35%). Harmine had no effect on efflux in the accumbens core or on reuptake in either sub-region. The effect of harmine in the shell was attenuated by the 5-HT(2A/2C) antagonist ketanserin. The MAOI moclobemide (10 µM) had no effect on DA efflux. These data suggest that harmine augments DA efflux via a novel, shell-specific, presynaptic 5-HT(2A) receptor-dependent mechanism, independent of MAOI activity. A DA-releasing 'agonist therapy' mechanism may thus contribute to the putative therapeutic efficacy of ayahuasca for cocaine dependence.
Collapse
Affiliation(s)
- Daniel I Brierley
- Division of Biomedical Sciences, St George's, University of London, UK
| | | |
Collapse
|
7
|
Brierley DI, Davidson C. Developments in harmine pharmacology--implications for ayahuasca use and drug-dependence treatment. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:263-72. [PMID: 22691716 DOI: 10.1016/j.pnpbp.2012.06.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/16/2012] [Accepted: 06/03/2012] [Indexed: 12/14/2022]
Abstract
Ayahuasca is a hallucinogenic botanical mixture originating in the Amazon area where it is used ritually, but is now being taken globally. The 2 main constituents of ayahuasca are N,N-dimethyltryptamine (DMT), a hallucinogen, and harmine, a monoamine oxidase inhibitor (MAOI) which attenuates the breakdown of DMT, which would otherwise be broken down very quickly after oral consumption. Recent developments in ayahuasca use include the sale of these compounds on the internet and the substitution of related botanical (anahuasca) or synthetic (pharmahuasca) compounds to achieve the same desired hallucinogenic effects. One intriguing result of ayahuasca use appears to be improved mental health and a reduction in recidivism to alternate (alcohol, cocaine) drug use. In this review we discuss the pharmacology of ayahuasca, with a focus on harmine, and suggest pharmacological mechanisms for the putative reduction in recidivism to alcohol and cocaine misuse. These pharmacological mechanisms include MAOI, effects at 5-HT(2A) and imidazoline receptors and inhibition of dual-specificity tyrosine-phosphorylation regulated kinase 1A (DYRK1A) and the dopamine transporter. We also speculate on the therapeutic potential of harmine in other CNS conditions.
Collapse
Affiliation(s)
- Daniel I Brierley
- Pharmacology & Cell Physiology, Division of Biomedical Science, St George's, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom
| | | |
Collapse
|