1
|
Nito C, Suda S, Nitahara-Kasahara Y, Okada T, Kimura K. Dental-Pulp Stem Cells as a Therapeutic Strategy for Ischemic Stroke. Biomedicines 2022; 10:biomedicines10040737. [PMID: 35453487 PMCID: PMC9032844 DOI: 10.3390/biomedicines10040737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Regenerative medicine aims to restore human functions by regenerating organs and tissues using stem cells or living tissues for the treatment of organ and tissue defects or dysfunction. Clinical trials investigating the treatment of cerebral infarction using mesenchymal stem cells, a type of somatic stem cell therapy, are underway. The development and production of regenerative medicines using somatic stem cells is expected to contribute to the treatment of cerebral infarction, a central nervous system disease for which there is no effective treatment. Numerous experimental studies have shown that cellular therapy, including the use of human dental pulp stem cells, is an attractive strategy for patients with ischemic brain injury. This review describes the basic research, therapeutic mechanism, clinical trials, and future prospects for dental pulp stem cell therapy, which is being investigated in Japan in first-in-human clinical trials for the treatment of patients with acute cerebral ischemia.
Collapse
Affiliation(s)
- Chikako Nito
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (S.S.); (K.K.)
- Collaborative Research Center, Laboratory for Clinical Research, Nippon Medical School, Tokyo 113-8603, Japan
- Correspondence: ; Tel.: +81-3-3822-2131; Fax: +81-3-5814-6176
| | - Satoshi Suda
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (S.S.); (K.K.)
| | - Yuko Nitahara-Kasahara
- Division of Molecular and Medical Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.N.-K.); (T.O.)
| | - Takashi Okada
- Division of Molecular and Medical Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.N.-K.); (T.O.)
| | - Kazumi Kimura
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (S.S.); (K.K.)
| |
Collapse
|
2
|
Suda S, Nito C, Yokobori S, Sakamoto Y, Nakajima M, Sowa K, Obinata H, Sasaki K, Savitz SI, Kimura K. Recent Advances in Cell-Based Therapies for Ischemic Stroke. Int J Mol Sci 2020; 21:ijms21186718. [PMID: 32937754 PMCID: PMC7555943 DOI: 10.3390/ijms21186718] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Stroke is the most prevalent cardiovascular disease worldwide, and is still one of the leading causes of death and disability. Stem cell-based therapy is actively being investigated as a new potential treatment for certain neurological disorders, including stroke. Various types of cells, including bone marrow mononuclear cells, bone marrow mesenchymal stem cells, dental pulp stem cells, neural stem cells, inducible pluripotent stem cells, and genetically modified stem cells have been found to improve neurological outcomes in animal models of stroke, and there are some ongoing clinical trials assessing their efficacy in humans. In this review, we aim to summarize the recent advances in cell-based therapies to treat stroke.
Collapse
Affiliation(s)
- Satoshi Suda
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
- Correspondence: ; Tel.: +81-3-3822-2131; Fax: +81-3-3822-4865
| | - Chikako Nito
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
| | - Shoji Yokobori
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan; (S.Y.); (H.O.); (K.S.)
| | - Yuki Sakamoto
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
| | - Masataka Nakajima
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
| | - Kota Sowa
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
| | - Hirofumi Obinata
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan; (S.Y.); (H.O.); (K.S.)
| | - Kazuma Sasaki
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan; (S.Y.); (H.O.); (K.S.)
| | - Sean I. Savitz
- Institute for Stroke and Cerebrovascular Disease, UTHealth, Houston, TX 77030, USA;
| | - Kazumi Kimura
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
| |
Collapse
|
3
|
Nito C, Sowa K, Nakajima M, Sakamoto Y, Suda S, Nishiyama Y, Nakamura-Takahashi A, Nitahara-Kasahara Y, Ueda M, Okada T, Kimura K. Transplantation of human dental pulp stem cells ameliorates brain damage following acute cerebral ischemia. Biomed Pharmacother 2018; 108:1005-1014. [PMID: 30372800 DOI: 10.1016/j.biopha.2018.09.084] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 09/15/2018] [Accepted: 09/15/2018] [Indexed: 02/06/2023] Open
Abstract
AIMS Numerous experimental studies have shown that cellular therapy, including human dental pulp stem cells (DPSCs), is an attractive strategy for ischemic brain injury. Herein, we examined the effects of intravenous DPSC administration after transient middle cerebral artery occlusion in rats. METHODS Male Sprague-Dawley rats received a transient 90 min middle cerebral artery occlusion. DPSCs (1 × 106 cells) or vehicle were administered via the femoral vein at 0 h or 3 h after ischemia-reperfusion. PKH26, a red fluorescent cell linker, was used to track the transplanted cells in the brain. Infarct volume, neurological deficits, and immunological analyses were performed at 24 h and 72 h after reperfusion. RESULTS PKH26-positive cells were observed more frequently in the ipsilateral than the contralateral hemisphere. DPSCs transplanted at 0 h after reperfusion significantly reduced infarct volume and reversed motor deficits at 24 h and 72 h recovery. DPSCs transplanted at 3 h after reperfusion also significantly reduced infarct volume and improved motor function compared with vehicle groups at 24 h and 72 h recovery. Further, DPSC transplantation significantly inhibited microglial activation and pro-inflammatory cytokine expression compared with controls at 72 h after reperfusion. Moreover, DPSCs attenuated neuronal degeneration in the cortical ischemic boundary area. CONCLUSIONS Systemic delivery of human DPSCs after reperfusion reduced ischemic damage and improved functional recovery in a rodent ischemia model, with a clinically relevant therapeutic window. The neuroprotective action of DPSCs may relate to the modulation of neuroinflammation during the acute phase of stroke.
Collapse
Affiliation(s)
- Chikako Nito
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan.
| | - Kota Sowa
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan; Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan
| | - Masataka Nakajima
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan; Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan
| | - Yuki Sakamoto
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan; Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan
| | - Satoshi Suda
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan
| | - Yasuhiro Nishiyama
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan
| | - Aki Nakamura-Takahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan; Department of Pharmacology, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Yuko Nitahara-Kasahara
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan; Department of Cell and Gene Therapy, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan
| | - Masayuki Ueda
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan
| | - Takashi Okada
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan; Department of Cell and Gene Therapy, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan
| | - Kazumi Kimura
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8603, Japan
| |
Collapse
|
4
|
Cell Therapy in Stroke-Cautious Steps Towards a Clinical Treatment. Transl Stroke Res 2017; 9:321-332. [PMID: 29150739 DOI: 10.1007/s12975-017-0587-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 11/01/2017] [Accepted: 11/07/2017] [Indexed: 01/01/2023]
Abstract
In the future, stroke patients may receive stem cell therapy as this has the potential to restore lost functions. However, the development of clinically deliverable therapy has been slower and more challenging than expected. Despite recommendations by STAIR and STEPS consortiums, there remain flaws in experimental studies such as lack of animals with comorbidities, inconsistent approaches to experimental design, and concurrent rehabilitation that might lead to a bias towards positive results. Clinical studies have typically been small, lacking control groups as well as often without clear biological hypotheses to guide patient selection. Furthermore, they have used a wide range of cell types, doses, and delivery methods, and outcome measures. Although some ongoing and recent trial programs offer hints that these obstacles are now being tackled, the Horizon2020 funded RESSTORE trial will be given as an example of inconsistent regulatory requirements and challenges in harmonized cell production, logistic, and clinical criteria in an international multicenter study. The PISCES trials highlight the complex issues around intracerebral cell transplantation. Therefore, a better understanding of translational challenges is expected to pave the way to more successful help for stroke patients.
Collapse
|
5
|
Muir KW. Clinical trial design for stem cell therapies in stroke: What have we learned? Neurochem Int 2016; 106:108-113. [PMID: 27623094 DOI: 10.1016/j.neuint.2016.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 01/01/2023]
Abstract
Stem cells of various sources have been investigated in a series of small, safety and feasibility-focused studies over the past 15 years. Understanding of mechanisms of action has evolved and the trial paradigms have become focused on two different approaches - one being an early subacute delivery of cells to reduce acute tissue injury and modify the tissue environment in a direction favourable to reparative processes (for example by being anti-inflammatory, anti-apoptotic, and encouraging endogenous stem cell mobilisation); the other exploring later delivery of cells during the recovery phase after stroke to modulate the local environment in favour of angiogenesis and neurogenesis. The former approach has generally investigated intravenous or intra-arterial delivery of cells with an expected paracrine mode of action and no expected engraftment within the brain. The latter has explored direct intracerebral implantation adjacent to the infarct. Several relevant trials have been conducted, including two controlled trials of intravenously delivered bone marrow-derived cells in the early subacute stage, and two small single-arm phase 1 trials of intracerebrally implanted cells. The findings of these studies and their implications for future trial design are considered.
Collapse
Affiliation(s)
- Keith W Muir
- Institute of Neuroscience and Psychology, University of Glasgow, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK.
| |
Collapse
|
6
|
Reparative Therapy for Acute Ischemic Stroke with Allogeneic Mesenchymal Stem Cells from Adipose Tissue: A Safety Assessment. J Stroke Cerebrovasc Dis 2014; 23:2694-2700. [DOI: 10.1016/j.jstrokecerebrovasdis.2014.06.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/12/2014] [Accepted: 06/15/2014] [Indexed: 12/16/2022] Open
|
7
|
Wang LQ, Lin ZZ, Zhang HX, Shao B, Xiao L, Jiang HG, Zhuge QC, Xie LK, Wang B, Su DM, Jin KL. Timing and dose regimens of marrow mesenchymal stem cell transplantation affect the outcomes and neuroinflammatory response after ischemic stroke. CNS Neurosci Ther 2014; 20:317-26. [PMID: 24393245 DOI: 10.1111/cns.12216] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/14/2013] [Accepted: 11/14/2013] [Indexed: 12/15/2022] Open
Abstract
AIMS Intravenous transplantation of bone marrow mesenchymal stem cells (BMSCs) had been documented to improve functional outcome after ischemic stroke. However, the timing and appropriate cell number of transplantation to achieve better outcome after an episode of stroke remain further to be optimized. METHODS To determine the optimal conditions, we transplanted different concentrations of BMSCs at different time points in a rat model of ischemic stroke. Infarction volume and neurological behavioral tests were performed after ischemia. RESULTS We found that transplantation of BMSCs at 3 and 24 h, but not 7 days after focal ischemia, significantly reduced the lesion volume and improved motor deficits. We also found that transplanted cells at 1 × 10(6) to 10(7) , but not at 1 × 10(4) to 10(5) , significantly improved functional outcome after stroke. In addition to inhibiting macrophages/microglia activation in the ischemic brain, BMSC transplantation profoundly reduced infiltration of gamma delta T (γδT) cells, which are detrimental to the ischemic brain, and significantly increased regulatory T cells (Tregs), along with altered Treg-associated cytokines in the ischemic brain. CONCLUSIONS Our data suggest that timing and cell dose of transplantation determine the therapeutic effects after focal ischemia by modulating poststroke neuroinflammation.
Collapse
Affiliation(s)
- Liu-Qing Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chen L, Xi H, Huang H, Zhang F, Liu Y, Chen D, Xiao J. Multiple cell transplantation based on an intraparenchymal approach for patients with chronic phase stroke. Cell Transplant 2013; 22 Suppl 1:S83-91. [PMID: 23992950 DOI: 10.3727/096368913x672154] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Stroke is the third leading cause of death worldwide and a huge perpetrator in adult disability. This pilot clinical study investigates the possible benefits of transplanting multiple cells in chronic stroke. A total of 10 consecutive stroke patients were treated by combination cell transplantation on the basis of an intraparenchymal approach from November 2003 to April 2011. There were six males and four females. Their age ranged from 42 to 87 years, and the course of disease varied from 6 months to 20 years. Six patients suffered cerebral infarction, and four patients suffered a brain hemorrhage. The olfactory ensheathing cells, neural progenitor cells, umbilical cord mesenchymal cells, and Schwann cells were injected through selected routes including intracranial parenchymal implantation, intrathecal implantation, and intravenous administration, respectively. The clinical neurological function was assessed carefully and independently before treatment and during a long-term follow-up using the Clinic Neurologic Impairment Scale and the Barthel index. All patients were followed up successfully from 6 months to 2 years after cell transplantation. Every subject achieved neurological function amelioration including improved speech, muscle strength, muscular tension, balance, pain, and breathing; most patients had an increased Barthel index score and Clinic Neurologic Impairment Scale score. These preliminary results demonstrate the novel strategy of combined multiple cell therapy based on intraparenchymal delivery: it appears to be relatively clinically safe and at least initially beneficial for chronic stroke patients. This manuscript is published as part of the International Association of Neurorestoratology (IANR) supplement issue of Cell Transplantation.
Collapse
|
9
|
Lobsien D, Dreyer AY, Stroh A, Boltze J, Hoffmann KT. Imaging of VSOP labeled stem cells in agarose phantoms with susceptibility weighted and T2* weighted MR Imaging at 3T: determination of the detection limit. PLoS One 2013; 8:e62644. [PMID: 23667503 PMCID: PMC3648551 DOI: 10.1371/journal.pone.0062644] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 03/22/2013] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVES This study aimed to evaluate the detectability of stem cells labeled with very small iron oxide particles (VSOP) at 3T with susceptibility weighted (SWI) and T2* weighted imaging as a methodological basis for subsequent examinations in a large animal stroke model (sheep). MATERIALS AND METHODS We examined ovine mesenchymal stem cells labeled with VSOP in agarose layer phantoms. The experiments were performed in 2 different groups, with quantities of 0-100,000 labeled cells per layer. 15 different SWI- and T2*-weighted sequences and 3 RF coils were used. All measurements were carried out on a clinical 3T MRI. Images of Group A were analyzed by four radiologists blinded for the number of cells, and rated for detectability according to a four-step scale. Images of Group B were subject to a ROI-based analysis of signal intensities. Signal deviations of more than the 0.95 confidence interval in cell containing layers as compared to the mean of the signal intensity of non cell bearing layers were considered significant. RESULTS GROUP A 500 or more labeled cells were judged as confidently visible when examined with a SWI-sequence with 0.15 mm slice thickness. Group B: 500 or more labeled cells showed a significant signal reduction in SWI sequences with a slice thickness of 0.25 mm. Slice thickness and cell number per layer had a significant influence on the amount of detected signal reduction. CONCLUSION 500 VSOP labeled stem cells could be detected with SWI imaging at 3 Tesla using an experimental design suitable for large animal models.
Collapse
Affiliation(s)
- Donald Lobsien
- Department of Neuroradiology, University Hospital Leipzig, Leipzig, Germany.
| | | | | | | | | |
Collapse
|
10
|
Albertazzi L, Gherardini L, Brondi M, Sulis Sato S, Bifone A, Pizzorusso T, Ratto GM, Bardi G. In Vivo Distribution and Toxicity of PAMAM Dendrimers in the Central Nervous System Depend on Their Surface Chemistry. Mol Pharm 2012; 10:249-60. [DOI: 10.1021/mp300391v] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lorenzo Albertazzi
- Center for Nanotechnology Innovation
@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127
Pisa, Italy
- Laboratorio
NEST, Scuola Normale
Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Lisa Gherardini
- Institute of Neuroscience—CNR,
Via Moruzzi 1, 56124 Pisa, Italy
- Institute of Clinical Physiology—CNR,
Via Fiorentina 1, 53100 Siena, Italy
| | - Marco Brondi
- Center for Nanotechnology Innovation
@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127
Pisa, Italy
- Laboratorio
NEST, Scuola Normale
Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Sebastian Sulis Sato
- Center for Nanotechnology Innovation
@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127
Pisa, Italy
- Laboratorio
NEST, Scuola Normale
Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Angelo Bifone
- Center for Nanotechnology Innovation
@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127
Pisa, Italy
| | - Tommaso Pizzorusso
- Institute of Neuroscience—CNR,
Via Moruzzi 1, 56124 Pisa, Italy
- Department of Psychology, University
of Florence, Via di San Niccolò, 89a-95 50125 Florence, Italy
| | - Gian Michele Ratto
- Laboratorio
NEST, Scuola Normale
Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- Institute of Nanoscience—CNR,
Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Giuseppe Bardi
- Center for Nanotechnology Innovation
@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127
Pisa, Italy
| |
Collapse
|
11
|
Gutiérrez-Fernández M, Fuentes B, Rodríguez-Frutos B, Ramos-Cejudo J, Vallejo-Cremades MT, Díez-Tejedor E. Trophic factors and cell therapy to stimulate brain repair after ischaemic stroke. J Cell Mol Med 2012; 16:2280-90. [PMID: 22452968 PMCID: PMC3823421 DOI: 10.1111/j.1582-4934.2012.01575.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/21/2012] [Indexed: 12/11/2022] Open
Abstract
Brain repair involves a compendium of natural mechanisms that are activated following stroke. From a therapeutic viewpoint, reparative therapies that encourage cerebral plasticity are needed. In the last years, it has been demonstrated that modulatory treatments for brain repair such as trophic factor- and stem cell-based therapies can promote neurogenesis, gliogenesis, oligodendrogenesis, synaptogenesis and angiogenesis, all of which having a beneficial impact on infarct volume, cell death and, finally, and most importantly, on the functional recovery. However, even when promising results have been obtained in a wide range of experimental animal models and conditions these preliminary results have not yet demonstrated their clinical efficacy. Here, we focus on brain repair modulatory treatments for ischaemic stroke, that use trophic factors, drugs with trophic effects and stem cell therapy. Important and still unanswered questions for translational research ranging from experimental animal models to recent and ongoing clinical trials are reviewed here.
Collapse
Affiliation(s)
- María Gutiérrez-Fernández
- Department of Neurology and Stroke Centre, La Paz University Hospital Neuroscience Area of IdiPAZ (Health Research Institute) Autónoma University of MadridMadrid, Spain
| | - Blanca Fuentes
- Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital Neuroscience Area of IdiPAZ (Health Research Institute) Autónoma University of MadridMadrid, Spain
| | - Berta Rodríguez-Frutos
- Department of Neurology and Stroke Centre, La Paz University Hospital Neuroscience Area of IdiPAZ (Health Research Institute) Autónoma University of MadridMadrid, Spain
| | - Jaime Ramos-Cejudo
- Department of Neurology and Stroke Centre, La Paz University Hospital Neuroscience Area of IdiPAZ (Health Research Institute) Autónoma University of MadridMadrid, Spain
| | - María Teresa Vallejo-Cremades
- Department of Neurology and Stroke Centre, La Paz University Hospital Neuroscience Area of IdiPAZ (Health Research Institute) Autónoma University of MadridMadrid, Spain
| | - Exuperio Díez-Tejedor
- Department of Neurology and Stroke Centre, La Paz University Hospital Neuroscience Area of IdiPAZ (Health Research Institute) Autónoma University of MadridMadrid, Spain
- Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital Neuroscience Area of IdiPAZ (Health Research Institute) Autónoma University of MadridMadrid, Spain
| |
Collapse
|
12
|
Abstract
Stroke, for some years now the neglected major indication in the pharmaceutical development cupboard, has recently become one of the hot areas for stem cell therapy development. This is driven by better understanding of potential therapeutic opportunities both in the acute and chronic phases and the launch of a series of new early phase clinical trials in a number of countries, driven by positive data in relevant animal models. In addition, the impetus for stem cell product development is motivated by patient demand, with thousands of victims seeking unproven treatments abroad. This article looks at the many challenges facing the development of a stem cell therapy for stroke. These range from product characterization and banking, through nonclinical safety and efficacy to the regulatory requirements for starting patient trials and beyond to maximizing value from carefully designed efficacy trials.
Collapse
Affiliation(s)
| | - Keith W. Muir
- Institute of Neuroscience and Psychology, University of Glasgow, Scotland, UK
| |
Collapse
|
13
|
Smith EJ, Stroemer RP, Gorenkova N, Nakajima M, Crum WR, Tang E, Stevanato L, Sinden JD, Modo M. Implantation Site and Lesion Topology Determine Efficacy of a Human Neural Stem Cell Line in a Rat Model of Chronic Stroke. Stem Cells 2012; 30:785-96. [DOI: 10.1002/stem.1024] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Ghita A, Pascut FC, Mather M, Sottile V, Notingher I. Cytoplasmic RNA in Undifferentiated Neural Stem Cells: A Potential Label-Free Raman Spectral Marker for Assessing the Undifferentiated Status. Anal Chem 2012; 84:3155-62. [DOI: 10.1021/ac202994e] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adrian Ghita
- School of
Physics and Astronomy, ‡School of Electrical and Electronic Engineering, and §School of Clinical Sciences, University of Nottingham, University
Park, Nottingham NG7 2RD, U.K
| | - Flavius C. Pascut
- School of
Physics and Astronomy, ‡School of Electrical and Electronic Engineering, and §School of Clinical Sciences, University of Nottingham, University
Park, Nottingham NG7 2RD, U.K
| | - Melissa Mather
- School of
Physics and Astronomy, ‡School of Electrical and Electronic Engineering, and §School of Clinical Sciences, University of Nottingham, University
Park, Nottingham NG7 2RD, U.K
| | - Virginie Sottile
- School of
Physics and Astronomy, ‡School of Electrical and Electronic Engineering, and §School of Clinical Sciences, University of Nottingham, University
Park, Nottingham NG7 2RD, U.K
| | - Ioan Notingher
- School of
Physics and Astronomy, ‡School of Electrical and Electronic Engineering, and §School of Clinical Sciences, University of Nottingham, University
Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
15
|
Abstract
The prospects for stem cell-derived therapy in stroke look promising, with a myriad of cell therapy products developed from brain, blood, bone marrow, and adipose tissue in early clinical development. Eight clinical trials have now reported final results, and several are currently registered recruiting patients or pending to start. Products passing the safety hurdle are recruiting patients for large efficacy studies. Besides identifying the most appropriate cell type, other issues to resolve include optimal timing for intervention, optimal delivery route, cell dose, patient selection, relevant clinical endpoints, and monitoring for effectiveness, to advance cell therapy through the hurdles of clinical research. In this chapter, we present the products and strategies used in the current cell therapy trials in ischemic stroke, provide an update on relevant preclinical research, and discuss the vital developments still needed to advance their clinical application as a future therapeutic option.
Collapse
Affiliation(s)
- John D Sinden
- ReNeuron Limited, Surrey Research Park, Guildford, Surrey, UK.
| | | | | |
Collapse
|