1
|
Ratan RR. The Chemical Biology of Ferroptosis in the Central Nervous System. Cell Chem Biol 2020; 27:479-498. [PMID: 32243811 DOI: 10.1016/j.chembiol.2020.03.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/04/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
Over the past five decades, thanatology has come to include the study of how individual cells in our bodies die appropriately and inappropriately in response to physiological and pathological stimuli. Morphological and biochemical criteria have been painstakingly established to create clarity around definitions of distinct types of cell death and mechanisms for their activation. Among these, ferroptosis has emerged as a unique, oxidative stress-induced cell death pathway with implications for diseases as diverse as traumatic brain injury, hemorrhagic stroke, Alzheimer's disease, cancer, renal ischemia, and heat stress in plants. In this review, I highlight some of the formative studies that fostered its recognition in the nervous system and describe how chemical biological tools have been essential in defining events necessary for its execution. Finally, I discuss emerging opportunities for antiferroptotic agents as therapeutic agents in neurological diseases.
Collapse
Affiliation(s)
- Rajiv R Ratan
- Burke Neurological Institute at Weill Cornell Medicine, 785 Mamaroneck Avenue, White Plains, NY 10605, USA.
| |
Collapse
|
2
|
Early activation of Egr-1 promotes neuroinflammation and dopaminergic neurodegeneration in an experimental model of Parkinson's disease. Exp Neurol 2018; 302:145-154. [DOI: 10.1016/j.expneurol.2018.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/26/2017] [Accepted: 01/08/2018] [Indexed: 01/10/2023]
|
3
|
Kosuge Y, Saito H, Haraguchi T, Ichimaru Y, Ohashi S, Miyagishi H, Kobayashi S, Ishige K, Miyairi S, Ito Y. Indirubin derivatives protect against endoplasmic reticulum stress-induced cytotoxicity and down-regulate CHOP levels in HT22 cells. Bioorg Med Chem Lett 2017; 27:5122-5125. [DOI: 10.1016/j.bmcl.2017.10.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/12/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
|
4
|
Lee JY, Choi HY, Park CS, Ju BG, Yune TY. Mithramycin A Improves Functional Recovery by Inhibiting BSCB Disruption and Hemorrhage after Spinal Cord Injury. J Neurotrauma 2017; 35:508-520. [PMID: 29048243 DOI: 10.1089/neu.2017.5235] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
After spinal cord injury (SCI), blood-spinal cord barrier (BSCB) disruption and progressive hemorrhage lead to secondary injury, subsequent apoptosis and/or necrosis of neurons and glia, causing permanent neurological deficits. Growing evidence indicates that mithramycin A (MA), an anti-cancer drug, has neuroprotective effects in ischemic brain injury and Huntington's disease (HD). However, the precise mechanism underlying its protective effects is largely unknown. Here, we examined the effect of MA on BSCB breakdown and hemorrhage as well as subsequent inflammation after SCI. After moderate spinal cord contusion injury at T9, MA (150 μg/kg) was immediately injected intraperitoneally (i.p.) and further injected once a day for 5 days. Our data show that MA attenuated BSCB disruption and hemorrhage, and inhibited the infiltration of neutrophils and macrophages after SCI. Consistent with these findings, the expression of inflammatory mediators was significantly alleviated by MA. MA also inhibited the expression and activation of matrix metalloprotease-9 (MMP-9) after injury, which is known to disrupt BSCB and the degradation of tight junction (TJ) proteins. In addition, the expression of sulfonylurea receptor 1 (SUR1) and transient receptor potential melastatin 4 (TRPM4), which are known to mediate hemorrhage at an early stage after SCI, was significantly blocked by MA treatment. Finally, MA inhibited apoptotic cell death and improved functional recovery after injury. Thus, our results demonstrated that MA improves functional recovery by attenuating BSCB disruption and hemorrhage through the downregulation of SUR1/TRPM4 and MMP-9 after SCI.
Collapse
Affiliation(s)
- Jee Y Lee
- 1 Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Kyung Hee University , Seoul, Republic of Korea
| | - Hae Y Choi
- 1 Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Kyung Hee University , Seoul, Republic of Korea
| | - Chan S Park
- 2 KHU-KIST Department of Converging Science and Technology, School of Medicine, Kyung Kyung Hee University , Seoul, Republic of Korea
| | - Bong G Ju
- 3 Department of Life Science, Sogang University , Seoul, Republic of Korea
| | - Tae Y Yune
- 1 Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Kyung Hee University , Seoul, Republic of Korea
- 2 KHU-KIST Department of Converging Science and Technology, School of Medicine, Kyung Kyung Hee University , Seoul, Republic of Korea
- 4 Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Kyung Hee University , Seoul, Republic of Korea
| |
Collapse
|
5
|
Bakthavachalam P, Shanmugam PST. Mitochondrial dysfunction - Silent killer in cerebral ischemia. J Neurol Sci 2017; 375:417-423. [PMID: 28320180 DOI: 10.1016/j.jns.2017.02.043] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/27/2017] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
Abstract
Mitochondrial dysfunction aggravates ischemic neuronal injury through activation of various pathophysiological and molecular mechanisms. Ischemic neuronal injury is particularly intensified during reperfusion due to impairment of mitochondrial function. Mitochondrial mutilation instigates alterations in calcium homeostasis in neurons, which plays a pivotal role in the maintenance of normal neuronal function. Increase in intracellular calcium level in mitochondria triggers the opening of mitochondrial transition pore and over production of reactive oxygen species (ROS). Several investigations have concluded that ROS not only contribute to lipids and proteins damage, but also transduce apoptotic signals leading to neuronal death. In addition to the above mentioned reasons, endoplasmic reticulum (ER) stress due to excitotoxicity also leads to neuronal death. Recently, some newer proteins have been claimed to induce "mitophagy" by triggering the receptors on autophagic membranes leading to neurodegeneration. This review summarizes the mechanisms underlying neuronal death involving mitochondrial dysfunction and mitophagy.
Collapse
Affiliation(s)
- Pramila Bakthavachalam
- Sri Ramachandra University, No. 1, Ramachandra Nagar, Porur, Chennai, Tamil Nadu, India.
| | | |
Collapse
|
6
|
Wei C, Zhang W, Zhou Q, Zhao C, Du Y, Yan Q, Li Z, Miao J. Mithramycin A Alleviates Cognitive Deficits and Reduces Neuropathology in a Transgenic Mouse Model of Alzheimer's Disease. Neurochem Res 2016; 41:1924-38. [PMID: 27072684 DOI: 10.1007/s11064-016-1903-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/24/2016] [Accepted: 03/24/2016] [Indexed: 01/13/2023]
Abstract
Increasing evidence has shown that specificity protein 1 (Sp1) is abnormally increased in the brains of subjects with Alzheimer's disease (AD) and transgenic AD models. However, whether the Sp1 activation plays a critical role in the AD pathogenesis and selective inhibition of Sp1 activation may have a disease-modifying effect on the AD-like phenotypes remain elusive. In this study, we reported that Sp1 mRNA and protein expression were markedly increased in the brain of APPswe/PS1dE9 transgenic mice, whereas chronic administration of mithramycin A (MTM), a selective Sp1 inhibitor, potently inhibited Sp1 activation in the APPswe/PS1dE9 mice down to the levels of wild-type mice. Specifically, we found that MTM treatment resulted in a significant improvement of learning and memory deficits, a dramatic reduction in cerebral Aβ levels and plaque burden, a profound reduction in tau hyperphosphorylation, and a marked increase in synaptic marker in the APPswe/PS1dE9 mice. In addition, MTM treatment was powerfully effective in inhibiting amyloid precursor protein (APP) processing via suppressing APP, beta-site APP cleaving enzyme 1 (BACE1), and presenilin-1 (PS1) mRNA and protein expression to preclude Aβ production in the APPswe/PS1dE9 mice. Furthermore, MTM treatment strongly inhibited phosphorylated CDK5 and GSK3β signal pathways to reduce tau hyperphosphorylation in the APPswe/PS1dE9 mice. Collectively, our findings provide evidence that Sp1 activation may contribute to the AD pathogenesis and may serve as a novel therapeutic target in the treatment of AD. The present study highlights that selective Sp1 inhibitors may be considered as disease-modifying therapeutic agents for AD.
Collapse
Affiliation(s)
- Chao Wei
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China
| | - Wei Zhang
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China.,Institute of Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China
| | - Qiong Zhou
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China
| | - Chao Zhao
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China.,Institute of Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China
| | - Ying Du
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China.,Institute of Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China
| | - Qi Yan
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China.,Institute of Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China
| | - Zhuyi Li
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China. .,Institute of Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China.
| | - Jianting Miao
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China.
| |
Collapse
|
7
|
Abstract
Postcardiac arrest syndrome yields poor neurological outcomes, but the mechanisms underlying this condition remain poorly understood. This study investigated whether endoplasmic reticulum (ER) stress-mediated apoptosis is induced in injured brain after resuscitation. Sprague-Dawley rats were subjected to 6 min of cardiac arrest (CA) and then resuscitated successfully. In the first experiment, animals were sacrificed 1, 3, 6, 12, or 24 h (n = 3 per group) after successful cardiopulmonary resuscitation. Brain tissues were analyzed by real-time polymerase chain reaction and Western blotting. In the second experiment, either dimethyl sulfoxide or salubrinal (Sal; 1 mg/kg), an ER stress inhibitor, was injected 30 min before the induction of CA (n = 10 per group). Neurological deficits were evaluated 24 h after CA. Brain specimens were analyzed using electron microscopy, terminal deoxynucleotidyl transferase dUTP nick end labeling assays and immunohistochemistry. We found that the messenger RNA and protein levels of glucose-regulated protein 78, X-box binding protein 1, C/EBP homologous protein, and caspase 12 were significantly elevated after resuscitation. We also observed that rats treated with Sal exhibited an improved neurological deficit score (32.3 ± 15.5 in the Sal group vs. 49.8 ± 20.9 in controls, P < 0.05). In addition, morphological improvements in the hippocampal ER were observed in the Sal group compared with the dimethyl sulfoxide group 24 h after reperfusion. Furthermore, in situ immunostaining revealed that markers of ER stress were significantly inhibited by Sal pretreatment. Our findings suggested that ER stress and the associated apoptotic pathways were activated in the hippocampus after resuscitation. Administration of Sal 30 min before cardiopulmonary resuscitation ameliorated neurological dysfunction 24 h after CA, possibly through the inhibition of ER stress after postresuscitation brain injury.
Collapse
|
8
|
Signaling molecules regulating phenotypic conversions of astrocytes and glial scar formation in damaged nerve tissues. Neurochem Int 2014; 78:35-42. [DOI: 10.1016/j.neuint.2014.08.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/17/2014] [Accepted: 08/22/2014] [Indexed: 12/21/2022]
|
9
|
Valor LM. Transcription, epigenetics and ameliorative strategies in Huntington's Disease: a genome-wide perspective. Mol Neurobiol 2014; 51:406-23. [PMID: 24788684 PMCID: PMC4309905 DOI: 10.1007/s12035-014-8715-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/11/2014] [Indexed: 12/18/2022]
Abstract
Transcriptional dysregulation in Huntington’s disease (HD) is an early event that shapes the brain transcriptome by both the depletion and ectopic activation of gene products that eventually affect survival and neuronal functions. Disruption in the activity of gene expression regulators, such as transcription factors, chromatin-remodeling proteins, and noncoding RNAs, accounts for the expression changes observed in multiple animal and cellular models of HD and in samples from patients. Here, I review the recent advances in the study of HD transcriptional dysregulation and its causes to finally discuss the possible implications in ameliorative strategies from a genome-wide perspective. To date, the use of genome-wide approaches, predominantly based on microarray platforms, has been successful in providing an extensive catalog of differentially regulated genes, including biomarkers aimed at monitoring the progress of the pathology. Although still incipient, the introduction of combined next-generation sequencing techniques is enhancing our comprehension of the mechanisms underlying altered transcriptional dysregulation in HD by providing the first genomic landscapes associated with epigenetics and the occupancy of transcription factors. In addition, the use of genome-wide approaches is becoming more and more necessary to evaluate the efficacy and safety of ameliorative strategies and to identify novel mechanisms of amelioration that may help in the improvement of current preclinical therapeutics. Finally, the major conclusions obtained from HD transcriptomics studies have the potential to be extrapolated to other neurodegenerative disorders.
Collapse
Affiliation(s)
- Luis M Valor
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550, Alicante, Spain,
| |
Collapse
|
10
|
Endoplasmic reticulum stress in cerebral ischemia. Neurochem Int 2014; 68:18-27. [DOI: 10.1016/j.neuint.2014.02.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/27/2013] [Accepted: 02/03/2014] [Indexed: 12/20/2022]
|
11
|
Osada N, Kosuge Y, Ishige K, Ito Y. Mithramycin, an agent for developing new therapeutic drugs for neurodegenerative diseases. J Pharmacol Sci 2013; 122:251-6. [PMID: 23902990 DOI: 10.1254/jphs.13r02cp] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Mithramycin A (MTM) has been shown to inhibit cancer growth by blocking the binding of Sp-family transcription factors to gene regulatory elements and is used for the treatment of leukemia and testicular cancer in the United States. In contrast, MTM has also been shown to exert neuroprotective effects in normal cells. An earlier study showed that MTM protected primary cortical neurons against oxidative stress-induced cell death. Recently, we demonstrated that MTM suppressed endoplasmic reticulum (ER) stress-induced neuronal death in organotypic hippocampal slice cultures and cultured hippocampal cells through attenuation of ER stress-associated signal proteins. We also found that MTM decreased neuronal death in area CA1 of the hippocampus after transient global ischemia/reperfusion in mice and restored the ischemia/reperfusion-induced impairment of long-term potentiation in this area. MTM has been shown to prolong the survival of Huntington's disease model mice and to attenuate dopaminergic neurotoxicity in mice after repeated administration of methamphetamine. In this review, we provide an up to date overview of neuroprotective effects of MTM and less toxic MTM analogs, MTM SK and MTM SDK, on some of the neurodegenerative diseases and discuss the promise of MTM as an agent for developing new therapeutic drugs for such diseases.
Collapse
Affiliation(s)
- Nobuhiro Osada
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, Japan
| | | | | | | |
Collapse
|
12
|
Ishige K, Osada N, Kosuge Y, Ito Y. [Involvement of endoplasmic reticulum stress in neurodegeneration after transient global ischemia-reperfusion]. Nihon Yakurigaku Zasshi 2013; 142:9-12. [PMID: 23842221 DOI: 10.1254/fpj.142.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
13
|
Michinaga S, Ishida A, Takeuchi R, Koyama Y. Endothelin-1 stimulates cyclin D1 expression in rat cultured astrocytes via activation of Sp1. Neurochem Int 2013; 63:25-34. [PMID: 23619396 DOI: 10.1016/j.neuint.2013.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/25/2013] [Accepted: 04/08/2013] [Indexed: 11/16/2022]
Abstract
Endothelins (ETs), a family of vasoconstrictor peptides, are up-regulated in several pathological conditions in the brain, and induce astrocytic proliferation. We previously observed that ET-1 increased the expression of cyclin D1 protein. Thus, we confirmed the intracellular up-regulation of cyclin D1 by ET-1 in rat cultured astrocytes. Real-time PCR analysis indicated that ET-1 (100 nM) and Ala(1,3,11,15)-ET-1 (100 nM), a selective agonist of the ETB receptor, induced a time-dependent and transient increase in cyclin D1 mRNA. The effect of ET-1 was diminished by an ETB antagonist (1 μM BQ788) or inhibitors of Sp1 (500 nM mithramycin), ERK (50 μM PD98059), p38 (20 μM SB203580) and JNK (1 μM SP600125), but not inhibitors of NF-κB (10 μM SN50 and 100 μM pyrrolidine dithiocarbamate). The binding assay for Sp1 indicated that ET-1 increased the binding activity of Sp1 to consensus sequences, and two oligonucleotides of the cyclin D1 promoter including the Sp1-binding sites diminished the effect of ET-1. Western blot analysis showed that ET-1 induced time-dependent and transient phosphorylation of Sp1 on Thr453 and Thr739 via the ETB receptor. ET-1-induced phosphorylation of Sp1 was attenuated by PD98059 and SP600125. Additionally, ET-1 increased the incorporation of bromodeoxyuridine (BrdU) in cultured astrocytes and the number of BrdU-positive cells decreased in the presence of PD98059, SP600125 and mithramycin. These results suggest that ET-1 increases the expression of cyclin D1 via activation of Sp1 and induces astrocytic proliferation.
Collapse
Affiliation(s)
- Shotaro Michinaga
- Faculty of Pharmacy, Laboratory of Pharmacology, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tonda-bayashi, Osaka 584-8540, Japan
| | | | | | | |
Collapse
|
14
|
González-Sabín J, Núñez LE, Braña AF, Méndez C, Salas JA, Gotor V, Morís F. Regioselective Enzymatic Acylation of Aureolic Acids to Obtain Novel Analogues with Improved Antitumor Activity. Adv Synth Catal 2012. [DOI: 10.1002/adsc.201100944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|