1
|
Ishiguro M, Nakayama K, Nakamura S, Mochizuki A, Dantsuji M, Ihara Y, Inoue T. Involvement of ghrelin in the regulation of swallowing motor activity in an arterially perfused rat preparation. Brain Res Bull 2023; 192:62-69. [PMID: 36370899 DOI: 10.1016/j.brainresbull.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Ghrelin, a peripheral peptide produced in the stomach, is involved in the neural networks that control food intake. Alterations in motor components, such as swallowing, are believed to be significant in the regulation food intake by orexigenic signals. However, there has been no detailed investigation of the relationship between ghrelin and swallowing activities induced in motor nerves innervating the pharyngeal and laryngeal muscles. In this study, we examined the effects of ghrelin administration on swallowing motor activity in arterially perfused rats. Injection of distilled water (0.5 ml) into the oral cavity or electrical stimulation of the superior laryngeal nerve evoked swallowing motor activity in the cervical vagus nerve. Administration of ghrelin (6 nM), but not des-acylated ghrelin (6 nM), into the perfusate increased the peak burst amplitude and burst duration, and shortened the first burst interval of water injection-induced swallowing. These ghrelin-induced changes in swallowing motor activity were blocked by the administration of JMV2959 (6 µM), a growth hormone secretagogue receptor antagonist. In preparations in which the hypothalamus was removed, ghrelin had no effect on swallowing motor activity. Furthermore, ghrelin-induced changes were counteracted by the administration of BIBO3304 (1 µM) or L-152,804 (1 µM), antagonists of neuropeptide Y Y1 and Y5 receptors, respectively, which are essential for ghrelin-induced enhancement of food intake. Ghrelin also increased the peak burst amplitude and burst duration of the swallowing motor activity evoked by electrical stimulation of the superior laryngeal nerve, although the effects of ghrelin on the number of swallowing bursts and burst intervals varied with stimulus intensity. These results suggest that ghrelin enhances the magnitude and frequency of bursts of swallowing motor activity by acting via the hypothalamic neural network, and that neuropeptide Y Y1 and Y5 receptors are involved in this enhancement.
Collapse
Affiliation(s)
- Mitsunori Ishiguro
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Department of Special Needs Dentistry, Division of Oral Rehabilitation Medicine, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan.
| | - Kiyomi Nakayama
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Shiro Nakamura
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Ayako Mochizuki
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Masanori Dantsuji
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Yoshiaki Ihara
- Department of Special Needs Dentistry, Division of Oral Rehabilitation Medicine, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan.
| | - Tomio Inoue
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| |
Collapse
|
2
|
Puri S, Kenyon BM, Hamrah P. Immunomodulatory Role of Neuropeptides in the Cornea. Biomedicines 2022; 10:1985. [PMID: 36009532 PMCID: PMC9406019 DOI: 10.3390/biomedicines10081985] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/21/2022] Open
Abstract
The transparency of the cornea along with its dense sensory innervation and resident leukocyte populations make it an ideal tissue to study interactions between the nervous and immune systems. The cornea is the most densely innervated tissue of the body and possesses both immune and vascular privilege, in part due to its unique repertoire of resident immune cells. Corneal nerves produce various neuropeptides that have a wide range of functions on immune cells. As research in this area expands, further insights are made into the role of neuropeptides and their immunomodulatory functions in the healthy and diseased cornea. Much remains to be known regarding the details of neuropeptide signaling and how it contributes to pathophysiology, which is likely due to complex interactions among neuropeptides, receptor isoform-specific signaling events, and the inflammatory microenvironment in disease. However, progress in this area has led to an increase in studies that have begun modulating neuropeptide activity for the treatment of corneal diseases with promising results, necessitating the need for a comprehensive review of the literature. This review focuses on the role of neuropeptides in maintaining the homeostasis of the ocular surface, alterations in disease settings, and the possible therapeutic potential of targeting these systems.
Collapse
Affiliation(s)
- Sudan Puri
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Brendan M. Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Departments of Immunology and Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
- Cornea Service, Tufts New England Eye Center, Boston, MA 02111, USA
| |
Collapse
|
3
|
Young CE, Tong Q. Corticotropin Releasing Hormone Signaling in the Bed Nuclei of the Stria Terminalis as a Link to Maladaptive Behaviors. Front Neurosci 2021; 15:642379. [PMID: 33867924 PMCID: PMC8044981 DOI: 10.3389/fnins.2021.642379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/01/2021] [Indexed: 11/30/2022] Open
Abstract
The bed nuclei of the stria terminalis (BST) is a limbic region in the extended amygdala that is heavily implicated in anxiety processing and hypothalamic-adrenal-pituitary (HPA) axis activation. The BST is complex, with many nuclei expressing different neurotransmitters and receptors involved in a variety of signaling pathways. One neurotransmitter that helps link its functions is corticotropin releasing hormone (CRH). BST CRH neuron activation may cause both anxiogenic and anxiolytic effects in rodents, and CRH neurons interact with other neuron types to influence anxiety-like responses as well as alcohol and drug–seeking behavior. This review covers the link between BST CRH neurons and thirteen other neurotransmitters and receptors and analyzes their effect on rodent behavior. Additionally, it covers the translational potential of targeting CRH signaling pathways for the treatment of human mental health disorders. Given the massive impact of anxiety, mood, and substance use disorders on our society, further research into BST CRH signaling is critical to alleviate the social and economic burdens of those disorders.
Collapse
Affiliation(s)
- Claire Emily Young
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Qingchun Tong
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Department of Neurobiology and Anatomy of McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,MD Anderson Cancer Center & UTHealth Graduate School of Biological Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
4
|
Guo F, Gao S, Xu L, Sun X, Zhang N, Gong Y, Luan X. Arcuate Nucleus Orexin-A Signaling Alleviates Cisplatin-Induced Nausea and Vomiting Through the Paraventricular Nucleus of the Hypothalamus in Rats. Front Physiol 2018; 9:1811. [PMID: 30618823 PMCID: PMC6304364 DOI: 10.3389/fphys.2018.01811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 12/04/2018] [Indexed: 01/06/2023] Open
Abstract
The most common side effects of cisplatin chemotherapy are nausea and vomiting, and the overwhelming majority of research studies on the mechanism of cisplatin-induced nausea have been focused on the “vomiting center.” As a modulatory center of gastric motility, the roles of the hypothalamus in nausea and vomiting remain unclear. In the present study, we investigated the effects of exogenous orexin-A injected into the arcuate nucleus (ARC) on cisplatin-induced nausea and vomiting, and the possible underlying mechanism. Kaolin intake was calculated daily in cisplatin-treated and saline-treated rats. Gastric motility recording, injections into the ARC, and lesions of the paraventricular nucleus (PVN) were used to study the effects of orexin-A and the hypothalamic nucleus on disorders of gastrointestinal function in cisplatin-treated rats. The pathway from the ARC to the PVN was observed through Fluoro-Gold retrograde tracing. Furthermore, an NPY Y1 receptor antagonist was administered to explore the possible mechanisms involved in the effects of orexin-A in the ARC. We illustrated that exogenous orexin-A injected into the ARC reduced kaolin intake and promoted gastric motility in cisplatin-treated rats, and these effects could have been blocked by an ipsilateral PVN lesion or co-injected antagonist of orexin-A-SB334867. Additional results showed that orexin-A-activated neurons in the ARC communicated directly with other neurons in the PVN that express neuropeptide Y (NPY). Furthermore, activation of the downstream NPY pathway was required for the observed effects of orexin in the ARC on cisplatin-induced nausea and vomiting. These findings reveal a novel neurobiological circuit from the ARC to the PVN that might provide a potential target for the prevention and treatment of cisplatin-induced nausea and vomiting.
Collapse
Affiliation(s)
- Feifei Guo
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shengli Gao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Luo Xu
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiangrong Sun
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Nana Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanling Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xiao Luan
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Murase SI, Shiiya T, Higuchi H. Neuropeptide Y Y 5 receptor localization in mouse central nervous system. Brain Res 2017; 1655:216-232. [PMID: 27984021 DOI: 10.1016/j.brainres.2016.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 10/12/2016] [Accepted: 10/27/2016] [Indexed: 10/20/2022]
Abstract
Neuropeptide Y (NPY) and its receptors affect blood pressure, feeding behavior, and neurogenesis. In this study, the distribution of neurons expressing NPY Y5 receptor (Y5) was examined in adult mouse central nervous system by immunohistochemistry. Y5 protein localization was investigated using polyclonal anti-Y5 antibody, which was successfully preabsorbed with Y5 knockout brain tissues. The preabsorbed anti-Y5 antibody did not react with Y5 knockout brain tissues, thus meeting the "hard specificity criterion," which is the absence of staining in tissues genetically deficient for the antigen (Pradidarcheep et al., 2008). Y5-positive neurons were found in most brain areas. Most Y5 immunoreactivities were observed as dot-like structures adjacent to the plasma membrane, as expected for a cell membrane receptor. In situ hybridization showed that the Y5 mRNA expression was correlated with the Y5 protein level in each case and that it was probably controlled by the transcriptional regulation of the Y5 gene. In the nuclei where Y5 was expressed, Y5 immunoreactivities were found mainly in the somatic and dendritic areas. The distribution patterns of the Y5-positive cells that were broader than previously expected suggest important biological activities of the Y5 in many brain areas.
Collapse
Affiliation(s)
- Shin-Ichi Murase
- Division of Pharmacology, Niigata University, Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan.
| | - Tomohiro Shiiya
- Division of Pharmacology, Niigata University, Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Hiroshi Higuchi
- Division of Pharmacology, Niigata University, Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan.
| |
Collapse
|
6
|
Varlamov O, Kievit P, Phu K, Reddy AP, Roberts CT, Bethea CL. Preliminary Examination of Olanzapine and Diet Interactions On Metabolism in a Female Macaque. JOURNAL OF ENDOCRINOLOGY AND DIABETES 2015; 1. [PMID: 25621305 DOI: 10.15226/2374-6890/1/2/00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Clinical data suggest that atypical antipsychotics such as olanzapine (OLZ) induce significant metabolic changes that are serious side effects of their primary use. Since controlled human studies are problematic and rodent data may be poorly translatable, we have initiated development of a macaque model of OLZ-induced metabolic disease. In this preliminary feasibility study, we examined some metabolic effects of OLZ in a female macaque in the context of a standard low-calorie/fat monkey chow diet followed by a high-fat/sugar Western-style diet (WSD). A female Japanese macaque was administered OLZ (1.25 mg/day) for 6 months, with dietary changes at 2-month intervals as follows: OLZ+Restricted chow, OLZ+Unrestricted chow, OLZ+WSD, and placebo+WSD. Weight was assessed weekly. Glucose tolerance tests (GTT) and Dexascans were performed at baseline and every 2 months. Omental (OM) and subcutaneous (SQ) adipose tissue biopsies were obtained at baseline, after OLZ+Unrestricted chow and after OLZ+WSD to evaluate adipocyte size, lipolysis and insulin-stimulated free fatty acid uptake (FFA). A separate trial was conducted on 2 monkeys with 5 days of OLZ- or no-treatment followed by RT-PCR on rostral and medial basal hypothalamus. Weight increased on OLZ+Restricted chow and stabilized on OLZ+Unrestricted chow. OLZ+WSD did not significantly change the weight plateau. Weight declined upon withdrawal of OLZ with continued WSD. Body fat increased from 14% at baseline to 22%, 30%, 28% and 19% at 2, 4, 6 and 8 mo, respectively, indicating that body fat was elevated on OLZ regardless of diet and declined upon OLZ removal. Glucose tolerance and the insulin response during GTT were normal with OLZ+Restricted chow or OLZ+Unrestricted chow. Addition of WSD with OLZ impaired glucose clearance during GTT. Insulin remained in the normal range, but first phase insulin secretion was reduced. After removal of OLZ, but continued WSD, glucose clearance returned to normal, but this was associated with hyperinsulinemia. Adipocyte diameter was increased in OM and SQ fat by OLZ+chow and OLZ+WSD to a similar extent. (p<0.01, 2-way ANOVA). In OM, isoproterenol-stimulated lipolysis occurred at baseline. In both depots, isoproterenol-stimulated lipolysis occurred with OLZ+chow, but it was significantly blunted by addition of WSD (ANOVA p<0.0001; posthoc p<0.05). Insulin increased FFA uptake at baseline. OLZ +chow or OLZ+WSD increased basal FFA uptake and insulin-induced FFA uptake was blunted in both depots (posthoc p<0.05). There was a marked decrease in POMC gene expression, and increased AgRP and NPY expression in the hypothalamus. There was also a clear increase in serotonin (5HT) 2C, melanocortin (MCR4), and Leptin (LepR) receptor gene expression. These data support the hypotheses that OLZ acts on peripheral tissues as well as in the CNS; that changes in hypothalamic gene expression occur very rapidly and precede increased fat accumulation; that adipose tissue exhibits insulin resistance prior to alterations in GTT; that addition of WSD to OLZ precipitates hyperglycemia without an obvious insulin response; and that removal of OLZ and continued WSD resulted in normalized glucose clearance and elevated insulin. These data suggest complex and early responses to OLZ that may be exacerbated by WSD.
Collapse
Affiliation(s)
- Oleg Varlamov
- Divisions of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006 ; Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Paul Kievit
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Kenny Phu
- Divisions of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Arubala P Reddy
- Divisions of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Charles T Roberts
- Divisions of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006 ; Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Cynthia L Bethea
- Divisions of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006 ; Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97201
| |
Collapse
|
7
|
Wang F, Chen W, Lin H, Li W. Cloning, expression, and ligand-binding characterization of two neuropeptide Y receptor subtypes in orange-spotted grouper, Epinephelus coioides. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1693-1707. [PMID: 25007879 DOI: 10.1007/s10695-014-9960-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 06/24/2014] [Indexed: 06/03/2023]
Abstract
As one of the most important multifunctional peptides, neuropeptide Y (NPY) performs its physiological functions through different subtype receptors. In this study, full-length cDNAs of two NPY receptors (YRs) in orange-spotted grouper (Epinephelus coioides) were cloned and named npy8br (y8b) and npy2r (y2). Phylogenetic analysis indicated that the Y8b receptor is an ortholog of the teleostean Y8b receptor, which belongs to the Y1 subfamily, and the Y2 receptor is an ortholog of the teleostean Y2 receptor, which belongs to the Y2 subfamily. Both of the YRs have G protein-coupled receptor family profiles. Multiple alignments demonstrate that the extracellular loop regions of YRs have distinctive residues of each species. Expression profile analysis revealed that the grouper Y8b receptor mRNA is primarily expressed in the brain, stomach and intestine, while the grouper Y2 receptor mRNA is primarily expressed in the brain, ovary, liver and heart. Double immunofluorescence analysis determined that the grouper YRs interact with the grouper NPY around the human embryonic kidney 293T cell surface. Furthermore, site-directed mutagenesis in a phage display system revealed that Asp(6.59) might be a common NPY-binding site, while Asp(2.68) of the Y8b receptor and Glu(5.24) of the Y2 receptor could be likely involved in subtype-specific binding. Combining the expression profile and ligand-binding feature, the grouper Y8b receptor could be involved in regulating food intake via the brain-gut axis and the grouper Y2 receptor might play a role in balancing the regulatory activity of the Y8b receptor and participate in metabolism in the liver and ovary.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | | | | | | |
Collapse
|
8
|
Liu L, Xu Q, Cheng L, Ma C, Xiao L, Xu D, Gao Y, Wang J, Song H. NPY1R is a novel peripheral blood marker predictive of metastasis and prognosis in breast cancer patients. Oncol Lett 2014; 9:891-896. [PMID: 25624911 PMCID: PMC4301529 DOI: 10.3892/ol.2014.2721] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 11/12/2014] [Indexed: 12/13/2022] Open
Abstract
The aim of the current study was to evaluate a novel tumor marker, neuropeptide Y receptor Y1 (NPY1R), for the detection of circulating cancer cells and to investigate its clinical significance in breast cancer patients. The Digital Gene Expression Displayer tool of the Cancer Genome Anatomy Project was used to identify the marker gene NPY1R, which is able to detect circulating cancer cells. Nested quantitative polymerase chain reaction was performed to correlate the NPY1R expression levels with the clinicopathological features of 142 breast cancer patients. A follow-up study of 131 of the breast cancer patients was conducted for 38 months. Compared with the 60 normal control individuals, NPY1R was highly expressed in the cancer patients (P<0.01). These high levels of NPY1R expression were positively correlated with the clinical stage and lymph node metastasis status of the disease, as well as with the status of the estrogen and progesterone receptors (P<0.05). Breast cancer patients with circulating cancer cells that expressed NPY1R exhibited shorter tumor-specific survival when compared with those with no NPY1R expression (P<0.01). Additionally, the mortality rate was associated with HER2 expression in the NPY1R positive and negative groups. These results indicate that NPY1R may serve as a useful marker to predict breast cancer metastasis and to evaluate the prognosis of breast cancer patients.
Collapse
Affiliation(s)
- Lei Liu
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Qian Xu
- Department of Central Laboratory, Basic Medical Institute, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Luyang Cheng
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Chunhu Ma
- Clinical Skills Center, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Lijun Xiao
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Dawei Xu
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Yaxian Gao
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Jianping Wang
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Hongru Song
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
9
|
Mass spectrometric analysis of spatio-temporal dynamics of crustacean neuropeptides. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:798-811. [PMID: 25448012 DOI: 10.1016/j.bbapap.2014.10.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 12/13/2022]
Abstract
Neuropeptides represent one of the largest classes of signaling molecules used by nervous systems to regulate a wide range of physiological processes. Over the past several years, mass spectrometry (MS)-based strategies have revolutionized the discovery of neuropeptides in numerous model organisms, especially in decapod crustaceans. Here, we focus our discussion on recent advances in the use of MS-based techniques to map neuropeptides in the spatial domain and monitoring their dynamic changes in the temporal domain. These MS-enabled investigations provide valuable information about the distribution, secretion and potential function of neuropeptides with high molecular specificity and sensitivity. In situ MS imaging and in vivo microdialysis are highlighted as key technologies for probing spatio-temporal dynamics of neuropeptides in the crustacean nervous system. This review summarizes the latest advancement in MS-based methodologies for neuropeptide analysis including typical workflow and sample preparation strategies as well as major neuropeptide families discovered in decapod crustaceans. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.
Collapse
|
10
|
Pérez-Fernández J, Megías M, Pombal MA. Cloning, phylogeny, and regional expression of a Y5 receptor mRNA in the brain of the sea lamprey (Petromyzon marinus). J Comp Neurol 2014; 522:1132-54. [PMID: 24127055 DOI: 10.1002/cne.23481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 09/27/2013] [Accepted: 09/27/2013] [Indexed: 12/12/2022]
Abstract
The NPY receptors known as Y receptors are classified into three subfamilies, Y1, Y2, and Y5, and are involved in different physiological functions. The Y5 receptor is the only member of the Y5 subfamily, and it is present in all vertebrate groups, except for teleosts. Both molecular and pharmacological studies show that Y5 receptor is highly conserved during vertebrate evolution. Furthermore, this receptor is widely expressed in the mammalian brain, including the hypothalamus, where it is thought to take part in feeding and homeostasis regulation. Lampreys belong to the agnathan lineage, and they are thought to have branched out between the two whole-genome duplications that occurred in vertebrates. Therefore, they are in a key position for studies on the evolution of gene families in vertebrates. Here we report the cloning, phylogeny, and brain expression pattern of the sea lamprey Y5 receptor. In phylogenetic studies, the lamprey Y5 receptor clusters in a basal position, together with Y5 receptors of other vertebrates. The mRNA of this receptor is broadly expressed in the lamprey brain, being especially abundant in hypothalamic areas. Its expression pattern is roughly similar to that reported for other vertebrates and parallels the expression pattern of the Y1 receptor subtype previously described by our group, as it occurs in mammals. Altogether, these results confirm that a Y5 receptor is present in lampreys, thus being highly conserved during the evolution of vertebrates, and suggest that it is involved in many brain functions, the only known exception being teleosts.
Collapse
Affiliation(s)
- Juan Pérez-Fernández
- Neurolam Group, Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, 36310-Vigo, Spain
| | | | | |
Collapse
|
11
|
Kormos V, Gaszner B. Role of neuropeptides in anxiety, stress, and depression: from animals to humans. Neuropeptides 2013; 47:401-19. [PMID: 24210138 DOI: 10.1016/j.npep.2013.10.014] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 12/11/2022]
Abstract
Major depression, with its strikingly high prevalence, is the most common cause of disability in communities of Western type, according to data of the World Health Organization. Stress-related mood disorders, besides their deleterious effects on the patient itself, also challenge the healthcare systems with their great social and economic impact. Our knowledge on the neurobiology of these conditions is less than sufficient as exemplified by the high proportion of patients who do not respond to currently available medications targeting monoaminergic systems. The search for new therapeutical strategies became therefore a "hot topic" in neuroscience, and there is a large body of evidence suggesting that brain neuropeptides not only participate is stress physiology, but they may also have clinical relevance. Based on data obtained in animal studies, neuropeptides and their receptors might be targeted by new candidate neuropharmacons with the hope that they will become important and effective tools in the management of stress related mood disorders. In this review, we attempt to summarize the latest evidence obtained using animal models for mood disorders, genetically modified rodent models for anxiety and depression, and we will pay some attention to previously published clinical data on corticotropin releasing factor, urocortin 1, urocortin 2, urocortin 3, arginine-vasopressin, neuropeptide Y, pituitary adenylate-cyclase activating polypeptide, neuropeptide S, oxytocin, substance P and galanin fields of stress research.
Collapse
Affiliation(s)
- Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary; Molecular Pharmacology Research Group, János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary; Department of Anatomy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary
| | | |
Collapse
|