1
|
Tarjányi O, Haerer J, Vecsernyés M, Berta G, Stayer-Harci A, Balogh B, Farkas K, Boldizsár F, Szeberényi J, Sétáló G. Prolonged treatment with the proteasome inhibitor MG-132 induces apoptosis in PC12 rat pheochromocytoma cells. Sci Rep 2022; 12:5808. [PMID: 35388084 PMCID: PMC8987075 DOI: 10.1038/s41598-022-09763-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/29/2022] [Indexed: 11/09/2022] Open
Abstract
Rat pheochromocytoma (PC12) cells were treated with the proteasome inhibitor MG-132 and morphological changes were recorded. Initially, neuronal differentiation was induced but after 24 h signs of morphological deterioration became apparent. We performed nuclear staining, flow cytometry and WST-1 assay then analyzed signal transduction pathways involving Akt, p38 MAPK (Mitogen-Activated Protein Kinase), JNK (c-Jun N-terminal Kinase), c-Jun and caspase-3. Stress signaling via p38, JNK and c-Jun was active even after 24 h of MG-132 treatment, while the survival-mediating Akt phosphorylation declined and the executor of apoptosis (caspase-3) was activated by that time and apoptosis was also observable. We examined subcellular localization of stress signaling components, applied kinase inhibitors and dominant negative H-Ras mutant-expressing PC12 cells in order to decipher connections of stress-mediating pathways. Our results are suggestive of that treatment with the proteasome inhibitor MG-132 has a biphasic nature in PC12 cells. Initially, it induces neuronal differentiation but prolonged treatments lead to apoptosis.
Collapse
Affiliation(s)
- Oktávia Tarjányi
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs, Medical School, Szigeti út 12., Pecs, 7624, Hungary.,Signal Transduction Research Group, János Szentágothai Research Centre, Ifjúság útja 20., Pecs, 7624, Hungary
| | - Julian Haerer
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs, Medical School, Szigeti út 12., Pecs, 7624, Hungary
| | - Mónika Vecsernyés
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs, Medical School, Szigeti út 12., Pecs, 7624, Hungary.,Signal Transduction Research Group, János Szentágothai Research Centre, Ifjúság útja 20., Pecs, 7624, Hungary
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs, Medical School, Szigeti út 12., Pecs, 7624, Hungary.,Signal Transduction Research Group, János Szentágothai Research Centre, Ifjúság útja 20., Pecs, 7624, Hungary
| | - Alexandra Stayer-Harci
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs, Medical School, Szigeti út 12., Pecs, 7624, Hungary.,Signal Transduction Research Group, János Szentágothai Research Centre, Ifjúság útja 20., Pecs, 7624, Hungary
| | - Bálint Balogh
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs, Medical School, Szigeti út 12., Pecs, 7624, Hungary
| | - Kornélia Farkas
- Institute of Bioanalysis, University of Pécs, Medical School, Szigeti út 12., Pecs, 7624, Hungary
| | - Ferenc Boldizsár
- Department of Immunology and Biotechnology, University of Pécs, Medical School, Szigeti út 12., Pecs, 7624, Hungary
| | - József Szeberényi
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs, Medical School, Szigeti út 12., Pecs, 7624, Hungary.,Signal Transduction Research Group, János Szentágothai Research Centre, Ifjúság útja 20., Pecs, 7624, Hungary
| | - György Sétáló
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs, Medical School, Szigeti út 12., Pecs, 7624, Hungary. .,Signal Transduction Research Group, János Szentágothai Research Centre, Ifjúság útja 20., Pecs, 7624, Hungary.
| |
Collapse
|
2
|
Czigler A, Toth L, Szarka N, Szilágyi K, Kellermayer Z, Harci A, Vecsernyes M, Ungvari Z, Szolics A, Koller A, Buki A, Toth P. Prostaglandin E 2, a postulated mediator of neurovascular coupling, at low concentrations dilates whereas at higher concentrations constricts human cerebral parenchymal arterioles. Prostaglandins Other Lipid Mediat 2019; 146:106389. [PMID: 31689497 DOI: 10.1016/j.prostaglandins.2019.106389] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 02/04/2023]
Abstract
There is considerable controversy regarding the vasoactive action of prostaglandin E2 (PGE2). On the one hand, indirect evidence implicates that astrocytic release of PGE2 contributes to neurovascular coupling responses mediating functional hyperemia in the brain. On the other hand, overproduction of PGE2 was also reported to contribute to cerebral vasospasm associated with subarachnoid hemorrhage. The present study was conducted to resolve this controversy by determining the direct vasoactive effects of PGE2 in resistance-sized human cerebral parenchymal arterioles. To achieve this goal PGE2-induced isotonic vasomotor responses were assessed in parenchymal arterioles isolated from fronto-temporo-parietal cortical tissues surgically removed from patients and expression of PGE2 receptors were examined. In functionally intact parenchymal arterioles lower concentrations of PGE2 (from 10-8 to 10-6 mol/l) caused significant, endothelium-independent vasorelaxation, which was inhibited by the EP4 receptor blocker BGC201531. In contrast, higher concentrations of PGE2 evoked significant EP1-dependent vasoconstriction, which could not be reversed by the EP4 receptor agonist CAY10598. We also confirmed previous observations that PGE2 primarily evokes constriction in intracerebral arterioles isolated from R. norvegicus. Importantly, vascular mRNA and protein expression of vasodilator EP4 receptors was significantly higher than that of vasoconstrictor EP1 receptors in human cerebral arterioles. PGE2 at low concentrations dilates whereas at higher concentrations constricts human cerebral parenchymal arterioles. This bimodal vasomotor response is consistent with both the proposed vasodilator role of PGE2 during functional hyperemia and its putative role in cerebral vasospasm associated with subarachnoid hemorrhage in human patients.
Collapse
Affiliation(s)
- Andras Czigler
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Pecs, Hungary; Institute for Translational Medicine, University of Pecs, Medical School, Pecs, Hungary
| | - Luca Toth
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Pecs, Hungary; Institute for Translational Medicine, University of Pecs, Medical School, Pecs, Hungary
| | - Nikolett Szarka
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Pecs, Hungary; Institute for Translational Medicine, University of Pecs, Medical School, Pecs, Hungary
| | - Krisztina Szilágyi
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Pecs, Hungary; Institute for Translational Medicine, University of Pecs, Medical School, Pecs, Hungary
| | - Zoltan Kellermayer
- Department of Immunology and Biotechnology, University of Pecs, Medical School, Pecs, Hungary
| | - Alexandra Harci
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pecs, Medical School, Pecs, Hungary
| | - Monika Vecsernyes
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pecs, Medical School, Pecs, Hungary
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Alex Szolics
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Pecs, Hungary
| | - Akos Koller
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Pecs, Hungary; Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary; Department of Physiology, New York Medical College, Valhalla, NY USA
| | - Andras Buki
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Pecs, Hungary
| | - Peter Toth
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Pecs, Hungary; Institute for Translational Medicine, University of Pecs, Medical School, Pecs, Hungary; Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA; MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary.
| |
Collapse
|
3
|
Szarka N, Toth L, Czigler A, Kellermayer Z, Ungvari Z, Amrein K, Czeiter E, Bali ZK, Tadepalli SA, Wahr M, Hernadi I, Koller A, Buki A, Toth P. Single Mild Traumatic Brain Injury Induces Persistent Disruption of the Blood-Brain Barrier, Neuroinflammation and Cognitive Decline in Hypertensive Rats. Int J Mol Sci 2019; 20:E3223. [PMID: 31262044 PMCID: PMC6651357 DOI: 10.3390/ijms20133223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/19/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) induces blood-brain barrier (BBB) disruption, which contributes to secondary injury of brain tissue and development of chronic cognitive decline. However, single mild (m)TBI, the most frequent form of brain trauma disrupts the BBB only transiently. We hypothesized, that co-morbid conditions exacerbate persistent BBB disruption after mTBI leading to long term cognitive dysfunction. Since hypertension is the most important cerebrovascular risk factor in populations prone to mild brain trauma, we induced mTBI in normotensive Wistar and spontaneously hypertensive rats (SHR) and we assessed BBB permeability, extravasation of blood-borne substances, neuroinflammation and cognitive function two weeks after trauma. We found that mTBI induced a significant BBB disruption two weeks after trauma in SHRs but not in normotensive Wistar rats, which was associated with a significant accumulation of fibrin and increased neuronal expression of inflammatory cytokines TNFα, IL-1β and IL-6 in the cortex and hippocampus. SHRs showed impaired learning and memory two weeks after mild TBI, whereas cognitive function of normotensive Wistar rats remained intact. Future studies should establish the mechanisms through which hypertension and mild TBI interact to promote persistent BBB disruption, neuroinflammation and cognitive decline to provide neuroprotection and improve cognitive function in patients with mTBI.
Collapse
Affiliation(s)
- Nikolett Szarka
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Ret u. 2, H-7623 Pecs, Hungary
- Institute for Translational Medicine, Medical School, University of Pecs, Szigeti ut 12, H-7624 Pecs, Hungary
- Clinical Medicine Doctoral School, University of Szeged, Tisza Lajos krt. 109., H-6725 Szeged, Hungary
| | - Luca Toth
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Ret u. 2, H-7623 Pecs, Hungary
- Institute for Translational Medicine, Medical School, University of Pecs, Szigeti ut 12, H-7624 Pecs, Hungary
| | - Andras Czigler
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Ret u. 2, H-7623 Pecs, Hungary
- Institute for Translational Medicine, Medical School, University of Pecs, Szigeti ut 12, H-7624 Pecs, Hungary
| | - Zoltan Kellermayer
- Department of Immunology and Biotechnology, University of Pecs, Medical School, Szigeti ut 12, H-7624 Pecs, Hungary
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Krisztina Amrein
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Ret u. 2, H-7623 Pecs, Hungary
| | - Endre Czeiter
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Ret u. 2, H-7623 Pecs, Hungary
- MTA-PTE Clinical Neuroscience MR Research Group, Ret u. 2, H-7623 Pecs, Hungary
| | - Zsolt Kristof Bali
- Translational Neuroscience Research Group, Szentagothai Research Center, University of Pecs, Ifjusag utja 20, H-7624 Pecs, Hungary
- Grastyan Translational Research Center, University of Pecs, Ifjusag utja 6, H-7624 Pecs, Hungary
| | - Sai Ambika Tadepalli
- Translational Neuroscience Research Group, Szentagothai Research Center, University of Pecs, Ifjusag utja 20, H-7624 Pecs, Hungary
| | - Matyas Wahr
- Cellular Neurobiology, Institute of Physiology, Medical School, University of Pecs, Szigeti ut 12, H-7624 Pecs, Hungary
| | - Istvan Hernadi
- Translational Neuroscience Research Group, Szentagothai Research Center, University of Pecs, Ifjusag utja 20, H-7624 Pecs, Hungary
- Grastyan Translational Research Center, University of Pecs, Ifjusag utja 6, H-7624 Pecs, Hungary
- Department of Experimental Neurobiology, Faculty of Sciences, University of Pecs, Ifjusag utja 6, H-7624 Pecs, Hungary
| | - Akos Koller
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Ret u. 2, H-7623 Pecs, Hungary
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Ulloi ut 26, H-1085 Budapest, Hungary
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | - Andras Buki
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Ret u. 2, H-7623 Pecs, Hungary
| | - Peter Toth
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Ret u. 2, H-7623 Pecs, Hungary.
- Institute for Translational Medicine, Medical School, University of Pecs, Szigeti ut 12, H-7624 Pecs, Hungary.
- Clinical Medicine Doctoral School, University of Szeged, Tisza Lajos krt. 109., H-6725 Szeged, Hungary.
- MTA-PTE Clinical Neuroscience MR Research Group, Ret u. 2, H-7623 Pecs, Hungary.
| |
Collapse
|
4
|
Ding XF, Wu Y, Qu WR, Fan M, Zhao YQ. Quinacrine pretreatment reduces microwave-induced neuronal damage by stabilizing the cell membrane. Neural Regen Res 2018; 13:449-455. [PMID: 29623929 PMCID: PMC5900507 DOI: 10.4103/1673-5374.228727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Quinacrine, widely used to treat parasitic diseases, binds to cell membranes. We previously found that quinacrine pretreatment reduced microwave radiation damage in rat hippocampal neurons, but the molecular mechanism remains poorly understood. Considering the thermal effects of microwave radiation and the protective effects of quinacrine on heat damage in cells, we hypothesized that quinacrine would prevent microwave radiation damage to cells in a mechanism associated with cell membrane stability. To test this, we used retinoic acid to induce PC12 cells to differentiate into neuron-like cells. We then pretreated the neurons with quinacrine (20 and 40 mM) and irradiated them with 50 mW/cm2 microwaves for 3 or 6 hours. Flow cytometry, atomic force microscopy and western blot assays revealed that irradiated cells pretreated with quinacrine showed markedly less apoptosis, necrosis, and membrane damage, and greater expression of heat shock protein 70, than cells exposed to microwave irradiation alone. These results suggest that quinacrine stabilizes the neuronal membrane structure by upregulating the expression of heat shock protein 70, thus reducing neuronal injury caused by microwave radiation.
Collapse
Affiliation(s)
- Xue-Feng Ding
- Department of Cognitive Sciences, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yan Wu
- Department of Cognitive Sciences, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wen-Rui Qu
- Hand & Foot Surgery and Reparative & Reconstructive Surgery Center, Orthopedic Hospital of the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ming Fan
- Department of Cognitive Sciences, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yong-Qi Zhao
- Department of Cognitive Sciences, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Hjørnevik LV, Frøyset AK, Grønset TA, Rungruangsak-Torrissen K, Fladmark KE. Algal Toxin Azaspiracid-1 Induces Early Neuronal Differentiation and Alters Peripherin Isoform Stoichiometry. Mar Drugs 2015; 13:7390-402. [PMID: 26694421 PMCID: PMC4699245 DOI: 10.3390/md13127072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/23/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022] Open
Abstract
Azaspiracid-1 is an algal toxin that accumulates in edible mussels, and ingestion may result in human illness as manifested by vomiting and diarrhoea. When injected into mice, it causes neurotoxicological symptoms and death. Although it is well known that azaspiracid-1 is toxic to most cells and cell lines, little is known about its biological target(s). A rat PC12 cell line, commonly used as a model for the peripheral nervous system, was used to study the neurotoxicological effects of azaspiracid-1. Azaspiracid-1 induced differentiation-related morphological changes followed by a latter cell death. The differentiated phenotype showed peripherin-labelled neurite-like processes simultaneously as a specific isoform of peripherin was down-regulated. The precise mechanism behind this down-regulation remains uncertain. However, this study provides new insights into the neurological effects of azaspiracid-1 and into the biological significance of specific isoforms of peripherin.
Collapse
Affiliation(s)
- Linda V Hjørnevik
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway.
| | - Ann K Frøyset
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway.
| | - Toril A Grønset
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway.
| | | | - Kari E Fladmark
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway.
| |
Collapse
|