1
|
Guo B, Zheng C, Cao J, Luo F, Li H, Hu S, Mingyuan Lee S, Yang X, Zhang G, Zhang Z, Sun Y, Wang Y. Tetramethylpyrazine nitrone exerts neuroprotection via activation of PGC-1α/Nrf2 pathway in Parkinson's disease models. J Adv Res 2024; 64:195-211. [PMID: 37989471 PMCID: PMC11464467 DOI: 10.1016/j.jare.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
INTRODUCTION Parkinson's disease (PD) is common neurodegenerative disease where oxidative stress and mitochondrial dysfunction play important roles in its progression. Tetramethylpyrazine nitrone (TBN), a potent free radical scavenger, has shown protective effects in various neurological conditions. However, the neuroprotective mechanisms of TBN in PD models remain unclear. OBJECTIVES We aimed to investigate TBN's neuroprotective effects and mechanisms in PD models. METHODS TBN's neuroprotection was initially measured in MPP+/MPTP-induced PD models. Subsequently, a luciferase reporter assay was used to detect peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) promoter activity. Effects of TBN on antioxidant damage and the PGC-1α/Nuclear factor erythroid-2-related factor 2 (Nrf2) pathway were thoroughly investigated. RESULTS In MPP+-induced cell model, TBN (30-300 μM) increased cell survival by 9.95 % (P < 0.05), 16.63 % (P < 0.001), and 24.09 % (P < 0.001), respectively. TBN enhanced oxidative phosphorylation (P < 0.05) and restored PGC-1α transcriptional activity suppressed by MPP+ (84.30 % vs 59.03 %, P < 0.01). In MPTP-treated mice, TBN (30 mg/kg) ameliorated motor impairment, increased striatal dopamine levels (16.75 %, P < 0.001), dopaminergic neurons survival (27.12 %, P < 0.001), and tyrosine hydroxylase expression (28.07 %, P < 0.01). Selegiline, a positive control, increased dopamine levels (15.35 %, P < 0.001) and dopaminergic neurons survival (25.34 %, P < 0.001). Additionally, TBN reduced oxidative products and activated the PGC-1α/Nrf2 pathway. PGC-1α knockdown diminished TBN's neuroprotective effects, decreasing cell viability from 73.65 % to 56.87 % (P < 0.001). CONCLUSION TBN has demonstrated consistent effectiveness in MPP+-induced midbrain neurons and MPTP-induced mice. Notably, the therapeutic effect of TBN in mitigating motor deficits and neurodegeneration is superior to selegiline. The neuroprotective mechanisms of TBN are associated with activation of the PGC-1α/Nrf2 pathway, thereby reducing oxidative stress and maintaining mitochondrial function. These findings suggest that TBN may be a promising therapeutic candidate for PD, warranting further development and investigation.
Collapse
Affiliation(s)
- Baojian Guo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Chengyou Zheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China; School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Jie Cao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Fangcheng Luo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Haitao Li
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Shengquan Hu
- Shenzhen Institute of Translational Medicine/Shenzhen Institute of Gerontology, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Simon Mingyuan Lee
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macao
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Gaoxiao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China.
| | - Yewei Sun
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China.
| | - Yuqiang Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China
| |
Collapse
|
2
|
Guo B, Zheng C, Cao J, Qiu X, Luo F, Li H, Lee SM, Yang X, Zhang G, Sun Y, Zhang Z, Wang Y. Tetramethylpyrazine Nitrone Promotes the Clearance of Alpha-Synuclein via Nrf2-Mediated Ubiquitin-Proteasome System Activation. Neuromolecular Med 2024; 26:9. [PMID: 38568291 DOI: 10.1007/s12017-024-08775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
Aggregation of α-synuclein (α-syn) and α-syn cytotoxicity are hallmarks of sporadic and familial Parkinson's disease (PD). Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-dependent enhancement of the expression of the 20S proteasome core particles (20S CPs) and regulatory particles (RPs) increases proteasome activity, which can promote α-syn clearance in PD. Activation of peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) may reduce oxidative stress by strongly inducing Nrf2 gene expression. In the present study, tetramethylpyrazine nitrone (TBN), a potent-free radical scavenger, promoted α-syn clearance by the ubiquitin-proteasome system (UPS) in cell models overexpressing the human A53T mutant α-syn. In the α-syn transgenic mice model, TBN improved motor impairment, decreased the products of oxidative damage, and down-regulated the α-syn level in the serum. TBN consistently up-regulated PGC-1α and Nrf2 expression in tested models of PD. Additionally, TBN similarly enhanced the proteasome 20S subunit beta 8 (Psmb8) expression, which is linked to chymotrypsin-like proteasome activity. Furthermore, TBN increased the mRNA levels of both the 11S RPs subunits Pa28αβ and a proteasome chaperone, known as the proteasome maturation protein (Pomp). Interestingly, specific siRNA targeting of Nrf2 blocked TBN's effects on Psmb8, Pa28αβ, Pomp expression, and α-syn clearance. In conclusion, TBN promotes the clearance of α-syn via Nrf2-mediated UPS activation, and it may serve as a potentially disease-modifying therapeutic agent for PD.
Collapse
Affiliation(s)
- Baojian Guo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China
| | - Chengyou Zheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China
| | - Jie Cao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China
| | - Xiaoling Qiu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China
| | - Fangcheng Luo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China
| | - Haitao Li
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Simon Mingyuan Lee
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, 999078, Macao SAR, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Gaoxiao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China
| | - Yewei Sun
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China.
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China.
| | - Yuqiang Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China
| |
Collapse
|
3
|
Rosso I, Jones-Weinert C, Rossiello F, Cabrini M, Brambillasca S, Munoz-Sagredo L, Lavagnino Z, Martini E, Tedone E, Garre' M, Aguado J, Parazzoli D, Mione M, Shay JW, Mercurio C, d'Adda di Fagagna F. Alternative lengthening of telomeres (ALT) cells viability is dependent on C-rich telomeric RNAs. Nat Commun 2023; 14:7086. [PMID: 37925537 PMCID: PMC10625592 DOI: 10.1038/s41467-023-42831-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
Alternative lengthening of telomeres (ALT) is a telomere maintenance mechanism activated in ~10-15% of cancers, characterized by telomeric damage. Telomeric damage-induced long non-coding RNAs (dilncRNAs) are transcribed at dysfunctional telomeres and contribute to telomeric DNA damage response (DDR) activation and repair. Here we observed that telomeric dilncRNAs are preferentially elevated in ALT cells. Inhibition of C-rich (teloC) dilncRNAs with antisense oligonucleotides leads to DNA replication stress responses, increased genomic instability, and apoptosis induction selectively in ALT cells. Cell death is dependent on DNA replication and is increased by DNA replication stress. Mechanistically, teloC dilncRNA inhibition reduces RAD51 and 53BP1 recruitment to telomeres, boosts the engagement of BIR machinery, and increases C-circles and telomeric sister chromatid exchanges, without increasing telomeric non-S phase synthesis. These results indicate that teloC dilncRNA is necessary for a coordinated recruitment of DDR factors to ALT telomeres and it is essential for ALT cancer cells survival.
Collapse
Affiliation(s)
- Ilaria Rosso
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Corey Jones-Weinert
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Matteo Cabrini
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Silvia Brambillasca
- IFOM ETS - The AIRC Institute of Molecular Oncology (Experimental Therapeutics Program), Milan, Italy
| | - Leonel Munoz-Sagredo
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- School of Medicine, Universidad de Valparaiso, Valparaiso, Chile
| | - Zeno Lavagnino
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Emanuele Martini
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
- Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Milan, Italy
| | - Enzo Tedone
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Massimiliano Garre'
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
- RCSI, Royal College of Surgeons in Ireland, Department of Chemistry, Dublin, Ireland
| | - Julio Aguado
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Dario Parazzoli
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Marina Mione
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ciro Mercurio
- IFOM ETS - The AIRC Institute of Molecular Oncology (Experimental Therapeutics Program), Milan, Italy
| | - Fabrizio d'Adda di Fagagna
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy.
- Institute of Molecular Genetics IGM-CNR "Luigi Luca Cavalli-Sforza", Pavia, Italy.
| |
Collapse
|
4
|
Briñez-Gallego P, da Costa Silva DG, Cordeiro MF, Horn AP, Hort MA. Experimental models of chemically induced Parkinson's disease in zebrafish at the embryonic larval stage: a systematic review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:201-237. [PMID: 36859813 DOI: 10.1080/10937404.2023.2182390] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra that results in a decrease in dopamine levels, resulting in motor-type disturbances. Different vertebrate models, such as rodents and fish, have been used to study PD. In recent decades, Danio rerio (zebrafish) has emerged as a potential model for the investigation of neurodegenerative diseases due to its homology to the nervous system of humans. In this context, this systematic review aimed to identify publications that reported the utilization of neurotoxins as an experimental model of parkinsonism in zebrafish embryos and larvae. Ultimately, 56 articles were identified by searching three databases (PubMed, Web of Science, and Google Scholar). Seventeen studies using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 4 1-methyl-4-phenylpyridinium (MPP+), 24 6-hydroxydopamine (6-OHDA), 6 paraquat/diquat, 2 rotenone, and 6 articles using other types of unusual neurotoxins to induce PD were selected. Neurobehavioral function, such as motor activity, dopaminergic neuron markers, oxidative stress biomarkers, and other relevant parameters in the zebrafish embryo-larval model were examined. In summary, this review provides information to help researchers determine which chemical model is suitable to study experimental parkinsonism, according to the effects induced by neurotoxins in zebrafish embryos and larvae.
Collapse
Affiliation(s)
- Paola Briñez-Gallego
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Dennis Guilherme da Costa Silva
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Marcos Freitas Cordeiro
- Programa de Pós-graduação em Biociências e Saúde, Universidade do Oeste de Santa Catarina - UNOESC, Joaçaba, SC, Brasil
| | - Ana Paula Horn
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Mariana Appel Hort
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| |
Collapse
|
5
|
Bukhari SNA, Yogesh R. An Overview of Tetramethylpyrazine (Ligustrazine) and its Derivatives as
Potent Anti-Alzheimer’s Disease Agents. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220405232333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Tetramethylpyrazine (TMP), or ligustrazine, is an alkaloid isolated from the Chinese herb
Ligusticum wallichii. It is known for its broad-spectrum medicinal properties against several diseases, and
various studies have shown that it can modulate diverse biological targets and signaling pathways to produce
neuroprotective effects, especially against Alzheimer’s disease (AD). This has attracted significant
research attention evaluating TMP as a potent multitarget anti-AD agent. This review compiles the results
of studies assessing the neuroprotective mechanisms exerted by TMP as well as its derivatives prepared
using a multi-target-directed ligand strategy to explore its multitarget modulating properties. The present
review also highlights the work done on the design, synthesis, structure-activity relationships, and mechanisms
of some potent TMP derivatives that have shown promising anti-AD activities. These derivatives
were designed, synthesized, and evaluated to develop anti-AD molecules with enhanced biological and
pharmacokinetic activities compared to TMP. This review article paves the way for the exploration and
development of TMP and TMP derivatives as an effective treatment for AD.
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 2014, Saudi Arabia
| | - Ruchika Yogesh
- 22 A3, DS Tower 1, Sukhumvit Soi 33, Khlong Tan Nuea, Wattana, Bangkok 10110, Thailand
| |
Collapse
|
6
|
Lu D, Ma R, Xie Q, Xu Z, Yuan J, Ren M, Li J, Li Y, Wang J. Application and advantages of zebrafish model in the study of neurovascular unit. Eur J Pharmacol 2021; 910:174483. [PMID: 34481878 DOI: 10.1016/j.ejphar.2021.174483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 11/15/2022]
Abstract
The concept of "Neurovascular Unit" (NVU) was put forward, so that the research goal of Central Nervous System (CNS) diseases gradually transitioned from a single neuron to the structural and functional integrity of the NVU. Zebrafish has the advantages of high homology with human genes, strong reproductive capacity and visualization of neural circuits, so it has become an emerging model organism for NVU research and has been applied to a variety of CNS diseases. Based on CNKI (https://www.cnki.net/) and PubMed (https://pubmed.ncbi.nlm.nih.gov/about/) databases, the author of this article sorted out the relevant literature, analyzed the construction of a zebrafish model of various CNS diseases,and the use of diagrams showed the application of zebrafish in the NVU, revealed its relationship, which would provide new methods and references for the treatment and research of CNS diseases.
Collapse
Affiliation(s)
- Danni Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhuo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jianmei Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jinxiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
7
|
de F Cesário HPS, Silva FCO, Ferreira MKA, de Menezes JESA, Dos Santos HS, Nogueira CES, de L Silva KSB, Hajdu E, Silveira ER, Pessoa ODL. Anxiolytic-like effect of brominated compounds from the marine sponge Aplysina fulva on adult zebrafish (Danio rerio): Involvement of the GABAergic system. Neurochem Int 2021; 146:105021. [PMID: 33741413 DOI: 10.1016/j.neuint.2021.105021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/04/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022]
Abstract
Benzodiazepines are commonly used to treat disorders of the central nervous system, including anxiety. However, due to their adverse effects, there is a continuing interest in discovering new safe and effective drugs. Marine natural products have emerged as a prolific source of bioactive nitrogenated compounds. Aiming to discover new biologically active natural compounds, the marine sponge Aplysina fulva, a nitrogen-bearing heterocyst producer, was investigated. The main isolated compounds (4, 6, and 9) were evaluated on adult zebrafish (Danio rerio). A group of fishes (n = 6) was preliminarily subjected to acute toxicity, and open field tests using 0.1, 0.5, and 1.0 mg/mL (v. o.) of those compounds was performed. The anxiolytic effect was further investigated in the light/dark assay based on the locomotor response at zebrafish. Interactions through the GABAergic system were investigated using flumazenil, a silent modulator of GABA receptors. To improve the results, a study of molecular docking using the GABAA receptor also was performed. Based on the results, the bromotyrosine derivative compounds 4, 6, and 9 exhibited anxiolytic-like effects mediated by the GABAergic system.
Collapse
Affiliation(s)
- Hozana Patrícia S de F Cesário
- Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE, 60455-760, Brazil
| | | | | | - Jane Eire S A de Menezes
- Laboratory of Chemistry of Natural Products, Ceará State University, Fortaleza, CE, 60174-903, Brazil
| | - Hélcio S Dos Santos
- Laboratory of Chemistry of Natural Products, Synthesis and Biocatalysis of Organic Compounds, Vale do Acaraú University, Sobral, CE, 62040-370, Brazil
| | - Carlos E S Nogueira
- Department of Physics, Regional University of Cariri, Crato, CE, 63041-145, Brazil
| | - Karísia S B de L Silva
- Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE, 60455-760, Brazil
| | - Eduardo Hajdu
- Department of Invertebrates, National Museum, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 20940-040, Brazil
| | - Edilberto R Silveira
- Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE, 60455-760, Brazil
| | - Otília Deusdênia L Pessoa
- Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE, 60455-760, Brazil.
| |
Collapse
|
8
|
Chamorro B, García-Vieira D, Diez-Iriepa D, Garagarza E, Chioua M, Hadjipavlou-Litina D, López-Muñoz F, Marco-Contelles J, Oset-Gasque MJ. Synthesis, Neuroprotection, and Antioxidant Activity of 1,1'-Biphenylnitrones as α-Phenyl- N-tert-butylnitrone Analogues in In Vitro Ischemia Models. Molecules 2021; 26:1127. [PMID: 33672652 PMCID: PMC7926640 DOI: 10.3390/molecules26041127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Herein, we report the neuroprotective and antioxidant activity of 1,1'-biphenyl nitrones (BPNs) 1-5 as α-phenyl-N-tert-butylnitrone analogues prepared from commercially available [1,1'-biphenyl]-4-carbaldehyde and [1,1'-biphenyl]-4,4'-dicarbaldehyde. The neuroprotection of BPNs1-5 has been measured against oligomycin A/rotenone and in an oxygen-glucose deprivation in vitro ischemia model in human neuroblastoma SH-SY5Y cells. Our results indicate that BPNs 1-5 have better neuroprotective and antioxidant properties than α-phenyl-N-tert-butylnitrone (PBN), and they are quite similar to N-acetyl-L-cysteine (NAC), which is a well-known antioxidant agent. Among the nitrones studied, homo-bis-nitrone BPHBN5, bearing two N-tert-Bu radicals at the nitrone motif, has the best neuroprotective capacity (EC50 = 13.16 ± 1.65 and 25.5 ± 3.93 μM, against the reduction in metabolic activity induced by respiratory chain blockers and oxygen-glucose deprivation in an in vitro ischemia model, respectively) as well as anti-necrotic, anti-apoptotic, and antioxidant activities (EC50 = 11.2 ± 3.94 μM), which were measured by its capacity to reduce superoxide production in human neuroblastoma SH-SY5Y cell cultures, followed by mononitrone BPMN3, with one N-Bn radical, and BPMN2, with only one N-tert-Bu substituent. The antioxidant activity of BPNs1-5 has also been analyzed for their capacity to scavenge hydroxyl free radicals (82% at 100 μM), lipoxygenase inhibition, and the inhibition of lipid peroxidation (68% at 100 μM). Results showed that although the number of nitrone groups improves the neuroprotection profile of these BPNs, the final effect is also dependent on the substitutent that is being incorporated. Thus, BPNs bearing N-tert-Bu and N-Bn groups show better neuroprotective and antioxidant properties than those substituted with Me. All these results led us to propose homo-bis-nitrone BPHBN5 as the most balanced and interesting nitrone based on its neuroprotective capacity in different neuronal models of oxidative stress and in vitro ischemia as well as its antioxidant activity.
Collapse
Affiliation(s)
- Beatriz Chamorro
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (B.C.); (E.G.)
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (D.G.-V.); (D.D.-I.); (M.C.)
- Faculty of Health, Camilo José Cela University of Madrid (UCJC), Castillo de Alarcón 49, 28692 Villanueva de la Cañada, Spain;
| | - David García-Vieira
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (D.G.-V.); (D.D.-I.); (M.C.)
| | - Daniel Diez-Iriepa
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (D.G.-V.); (D.D.-I.); (M.C.)
- Department of Organic Chemistry and Inorganic Chemistry, Alcalá University, 28805 Alcalá de Henares, Spain
| | - Estíbaliz Garagarza
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (B.C.); (E.G.)
| | - Mourad Chioua
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (D.G.-V.); (D.D.-I.); (M.C.)
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Francisco López-Muñoz
- Faculty of Health, Camilo José Cela University of Madrid (UCJC), Castillo de Alarcón 49, 28692 Villanueva de la Cañada, Spain;
- Neuropsychopharmacology Unit, “Hospital 12 de Octubre” Research Institute, Av. de Córdoba s/n, 28041 Madrid, Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (D.G.-V.); (D.D.-I.); (M.C.)
| | - María Jesús Oset-Gasque
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (B.C.); (E.G.)
- Instituto Universitario de Investigación en Neuroquímica (IUIN), Universidad Complutense de Madrid. Ciudad Universitaria, 28040 Madrid, Spain
| |
Collapse
|
9
|
Homo-Tris-Nitrones Derived from α-Phenyl- N-tert-butylnitrone: Synthesis, Neuroprotection and Antioxidant Properties. Int J Mol Sci 2020; 21:ijms21217949. [PMID: 33114714 PMCID: PMC7663103 DOI: 10.3390/ijms21217949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Herein we report the synthesis, antioxidant and neuroprotective power of homo-tris-nitrones (HTN) 1-3, designed on the hypothesis that the incorporation of a third nitrone motif into our previously identified homo-bis-nitrone 6 (HBN6) would result in an improved and stronger neuroprotection. The neuroprotection of HTNs 1-3, measured against oligomycin A/rotenone, showed that HTN2 was the best neuroprotective agent at a lower dose (EC50 = 51.63 ± 4.32 μM), being similar in EC50 and maximal activity to α-phenyl-N-tert-butylnitrone (PBN) and less potent than any of HBNs 4-6. The results of neuroprotection in an in vitro oxygen glucose deprivation model showed that HTN2 was the most powerful (EC50 = 87.57 ± 3.87 μM), at lower dose, but 50-fold higher than its analogous HBN5, and ≈1.7-fold less potent than PBN. HTN3 had a very good antinecrotic (IC50 = 3.47 ± 0.57 μM), antiapoptotic, and antioxidant (EC50 = 6.77 ± 1.35 μM) profile, very similar to that of its analogous HBN6. In spite of these results, and still being attractive neuroprotective agents, HTNs 2 and 3 do not have better neuroprotective properties than HBN6, but clearly exceed that of PBN.
Collapse
|
10
|
Abstract
The recent advances of tetramethylpyrazine nitrones and quinolylnitrones for the treatment of stroke have been reviewed and compared with other agents, showing promising therapeutic applications. As a result of a functional transformation of natural product ligustrazine, (Z)-N-tert-butyl-1-(3,5,6-trimethylpyrazin-2-yl)methanimine oxide (6) is a multitarget small nitrone showing potent thrombolytic activity and free radicals scavenging power, in addition to nontoxicity and blood-brain barrier permeability. Similarly, antioxidant (Z)-N-tert-butyl-1-(2-chloro-6-methoxyquinolin-3-yl)methanimine oxide (17) is a novel agent for cerebral ischemia therapy as it is able to scavenge different types of free radical species, showing strong neuroprotection and reduced infarct size.
Collapse
Affiliation(s)
- José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry, CSIC; Juan de la Cierva, 3, 28006 Madrid, Spain
| |
Collapse
|
11
|
Synthesis, antioxidant properties and neuroprotection of α-phenyl-tert-butylnitrone derived HomoBisNitrones in in vitro and in vivo ischemia models. Sci Rep 2020; 10:14150. [PMID: 32843666 PMCID: PMC7447640 DOI: 10.1038/s41598-020-70690-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022] Open
Abstract
We herein report the synthesis, antioxidant power and neuroprotective properties of nine homo-bis-nitrones HBNs1–9 as alpha-phenyl-N-tert-butylnitrone (PBN) analogues for stroke therapy. In vitro neuroprotection studies of HBNs1–9 against Oligomycin A/Rotenone and in an oxygen-glucose-deprivation model of ischemia in human neuroblastoma cell cultures, indicate that (1Z,1′Z)-1,1′-(1,3-phenylene)bis(N-benzylmethanimine oxide) (HBN6) is a potent neuroprotective agent that prevents the decrease in neuronal metabolic activity (EC50 = 1.24 ± 0.39 μM) as well as necrotic and apoptotic cell death. HBN6 shows strong hydroxyl radical scavenger power (81%), and capacity to decrease superoxide production in human neuroblastoma cell cultures (maximal activity = 95.8 ± 3.6%), values significantly superior to the neuroprotective and antioxidant properties of the parent PBN. The higher neuroprotective ability of HBN6 has been rationalized by means of Density Functional Theory calculations. Calculated physicochemical and ADME properties confirmed HBN6 as a hit-agent showing suitable drug-like properties. Finally, the contribution of HBN6 to brain damage prevention was confirmed in a permanent MCAO setting by assessing infarct volume outcome 48 h after stroke in drug administered experimental animals, which provides evidence of a significant reduction of the brain lesion size and strongly suggests that HBN6 is a potential neuroprotective agent against stroke.
Collapse
|
12
|
Kalhor M, Samiei S, Mirshokraei SA. Facile one-pot synthesis of novel N-benzimidazolyl-α-arylnitrones catalyzed by salts of transition metals. RSC Adv 2019; 9:41851-41860. [PMID: 35541607 PMCID: PMC9076553 DOI: 10.1039/c9ra08570j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 11/25/2019] [Indexed: 11/21/2022] Open
Abstract
A novel series of N-benzimidazol-2-yl-α-aryl nitrones 3a–j is synthesized via simple one-pot condensation/oxidation of 2-aminobenzimidazole, an aromatic aldehyde and m-chloro perbenzoic acid (m-CPBA) as an effective oxidant using Mn(NO3)2·6H2O as an efficient catalyst at room temperature. All synthesized N-benzimidazolyl nitrones were identified using FTIR, NMR and mass spectroscopy. Also, stability energy theory calculations were performed and 1H NMR computational spectra were generated for the isomeric structures of 3a; the results show that the stability order is oxaziridine (4) followed by the nitrones 3aE and 3aZ. Also, comparing the computational spectroscopy results with the experimental data shows great accordance with nitrone 3aE. Among the remarkable points of this protocol, stable N-heterocyclic nitrones were prepared for the first time from raw materials under mild oxidative conditions. Therefore, they can easily be applied as high-potential intermediates for synthesizing valuable heterocycles in mild conditions. Due to benefits such as the use of inexpensive and available catalysts, short reaction times, high yields, facile workup to obtain pure product, and facile separation of the side product (m-chlorobenzoic acid), this simple protocol complies greatly with the principles of green chemistry. A novel series of N-benzimidazol-2-yl-α-aryl nitrones 3a–j is synthesized via one-pot condensation/oxidation of 2-aminobenzimidazole, an aromatic aldehyde and m-CPBA as an effective oxidant using Mn(NO3)2·6H2O as an efficient catalyst.![]()
Collapse
Affiliation(s)
- Mehdi Kalhor
- Department of Chemistry
- University of Payame Noor
- Tehran
- Iran
| | - Sima Samiei
- Department of Chemistry
- University of Payame Noor
- Tehran
- Iran
| | | |
Collapse
|
13
|
Zeng BY. Effect and Mechanism of Chinese Herbal Medicine on Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 135:57-76. [PMID: 28807165 DOI: 10.1016/bs.irn.2017.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder. Although both genetic and environmental factors are implicated in the development of Parkinson's disease, the cause of the disease is still unclear. So far conventional treatments to Parkinson's are symptomatic relief and focused mainly on motor symptoms. Chinese herbal medicine has been used to treat many conditions in China, Korea, Japan, and many Southeast Asian countries for 1000 years. During past a few decades, Chinese herbal medicine has gained wider and increasing acceptance within both public and medical profession due to its effectiveness on many conditions in western countries. In this chapter, mechanisms of action of many Chinese herbal compounds/extracts and Chinese herb formulas on the models of Parkinson's were reviewed. Further, reports of effectiveness of Chinese herb formulas on patients with Parkinson's were summarized. It was shown that both Chinese herbal compounds/extracts and herb formulas have either specific target mechanisms of action or multitargets mechanisms of action, as antioxidant, antiinflammatory, and antiapoptosis agents. Clinical studies showed that Chinese herb formulas as an adjunct improved both motor and nonmotor symptoms, and reduced dose of dopaminergic drugs and occurrence of dyskinesia. The evidence from the studies suggests that Chinese herb medicine has potential, acting as neuroprotective to slow down the progression of Parkinson's, and it is able to simultaneously treat both motor and nonmotor symptoms of Parkinson's. More studies are needed to explore the new compounds/extracts derived from Chinese herbs, in particular, their mechanisms of action. It is hopeful that new drugs developed from Chinese herb compounds/extracts and Chinese herb formulas will lead to better and complimentary therapy to PD.
Collapse
Affiliation(s)
- Bai-Yun Zeng
- Neurodegenerative Disease Research Group, Institute of Pharmaceutical Science, Faculty of Life Science & Medicine, King's College, London, United Kingdom.
| |
Collapse
|
14
|
Vascular Contributions to Cognitive Impairment and Treatments with Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:9627258. [PMID: 28042305 PMCID: PMC5141557 DOI: 10.1155/2016/9627258] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/12/2016] [Accepted: 10/18/2016] [Indexed: 12/21/2022]
Abstract
The prevalence of cognitive impairment and dementia caused by cerebrovascular disease is likely to increase with the global aging population. Vascular contributions to cognitive impairment and dementia (VCID) is a wide spectrum term used to include a diverse heterogeneous group of cognitive syndromes with vascular factors regardless of the cause of pathogenesis. VCID ranges from mild cognitive impairment to full-blown dementia with vascular dementia (VaD) as the most severe stage. It is further complexed by the coexistence of other forms of dementia such as Alzheimer's disease (AD). Recent researches in the functions of the neurovascular unit (NVU) suggest that dysfunction of the NVU might be the cause of primary vascular events in the brain that leads to further neurodegeneration. In this review, we have briefly summarized various forms of VCID. There is currently no standard therapy for VCID or dementia. Given the fact that Traditional Chinese Medicine (TCM) has gained popularity worldwide, we also reviewed recent scientific and clinical findings on various antidementia TCM for the treatment of VCID, including Salvia miltiorrhiza, Huperzia serrata, Ligusticum chuanxiong, Ginkgo biloba, Panax ginseng, and also TCM formula Sailuotong capsule (SLT) and Fufangdanshen tablets (FFDS).
Collapse
|
15
|
Cui G, Shan L, Chen Y, Zhou H, Wang Y, Lee SMY. A New Danshensu Derivative Protects Against 6-Hydroxydopamine-Induced NeurotoxicityIn VitroandIn Vivo. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1349-1361. [DOI: 10.1142/s0192415x16500750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We previously reported a novel danshensu derivative ([Formula: see text])-(3,5,6-Trimethylpyrazinyl) methyl-2-acetoxy-3-(3,4-diacetoxyphenyl) propanoate (ADTM), which conferred cardioprotective and anti-thrombotic effects in vitro and in vivo. Here, we examined the neuroprotective actions of ADTM on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in PC12 cells 1 in vitro and zebrafish in vivo. Pretreatment with ADTM significantly inhibited 6-OHDA-induced cytotoxicity and production of reactive oxygen species (ROS) in PC12 cells through Akt signaling. Moreover, treatment with ADTM also inhibited expression of inducible nitric oxide synthase (iNOS) and production of intracellular nitric oxide (NO), which are associated with inflammation. In addition, ADTM exhibited significant protection against 6-OHDA-induced loss of tyrosine hydroxylase-positive dopaminergic neurons in a zebrafish model. Taken together, our findings suggest that ADTM is also a potential effective therapeutic agent for neurodegenerative conditions such as Parkinson’s disease (PD) through anti-oxidant cytoprotective and anti-inflammatory actions.
Collapse
Affiliation(s)
- Guozhen Cui
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, P.R. China
- Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, Department of Bioengineering, Zhuhai Campus of Zunyi Medical College, Zhuhai, P.R. China
| | - Luchen Shan
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, P.R. China
| | - Yang Chen
- Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, Department of Bioengineering, Zhuhai Campus of Zunyi Medical College, Zhuhai, P.R. China
| | - Hefeng Zhou
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, P.R. China
| | - Yuqiang Wang
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, P.R. China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, P.R. China
| |
Collapse
|
16
|
Jiang MC, Chen XH, Zhao X, Zhang XJ, Chen WF. Involvement of IGF-1 receptor signaling pathway in the neuroprotective effects of Icaritin against MPP(+)-induced toxicity in MES23.5 cells. Eur J Pharmacol 2016; 786:53-59. [PMID: 27238975 DOI: 10.1016/j.ejphar.2016.05.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 12/22/2022]
Abstract
Icaritin, a natural derivative of Icariin, is the major bioactive component of Epimedium Genus. The present study tested the hypothesis that the neuroprotective effects of Icaritin against 1-Methyl-4-phenylpyridinium ion (MPP(+))-induced toxicity involved activation of the insulin-like growth factor-1 receptor (IGF-1R) signaling pathway in MES23.5 cells. Our results revealed that Icaritin pretreatment attenuated the MPP(+)-induced decrease of cell viability in a dose-dependent fashion. Co-pretreatment with phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002, mitogen-activated protein kinase (MEK) inhibitor PD98059 or IGF-1 receptor antagonist JB-1 could completely block the protective effects of Icaritin. Moreover, Icaritin pretreatment down-regulated MPP(+)-induced increase of Bax/Bcl-2 ratio transcriptionally and post-transcriptionally. Further study revealed that Icaritin pretreatment could restore the decreased protein expression of Akt and extracellular signal-regulated kinase 1/2 (ERK1/2) induced by MPP(+) and these effects could be completely abolished by LY294002, PD98059 or JB-1. Additionally, Icaritin treatment alone time-dependently enhanced the phosphorylation of Akt and ERK1/2 in MES23.5 cells. The activation of Akt and ERK1/2 by Icaritin could be completely blocked by JB-1, LY294002 or PD98059. Taken together, our data demonstrate that IGF-1 receptor mediated activation of PI3K/Akt and MEK/ERK1/2 signaling pathways are involved in the protective effects of Icaritin against MPP(+)-induced toxicity in MES23.5 cells.
Collapse
Affiliation(s)
- Ming-Chun Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Medical College of Qingdao University, Qingdao 266071, People's Republic of China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, People's Republic of China; Department of Special Medicine, Medical College of Qingdao University, Qingdao, People's Republic of China; Department of Physiology, Medical College of Taishan, Taian, People's Republic of China
| | - Xiao-Han Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Medical College of Qingdao University, Qingdao 266071, People's Republic of China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, People's Republic of China
| | - Xia Zhao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Medical College of Qingdao University, Qingdao 266071, People's Republic of China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, People's Republic of China
| | - Xue-Jie Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Medical College of Qingdao University, Qingdao 266071, People's Republic of China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, People's Republic of China
| | - Wen-Fang Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Medical College of Qingdao University, Qingdao 266071, People's Republic of China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, People's Republic of China.
| |
Collapse
|
17
|
Zou XD, Guo SQ, Hu ZW, Li WL. NAMPT protects against 6-hydroxydopamine-induced neurotoxicity in PC12 cells through modulating SIRT1 activity. Mol Med Rep 2016; 13:4058-64. [PMID: 27035562 DOI: 10.3892/mmr.2016.5034] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/25/2016] [Indexed: 11/06/2022] Open
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative movement disorder. Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the first rate‑limiting step in the nicotinamide adenine dinucleotide (NAD+) biosynthetic pathway in mammals, is a substrate for NAD+‑dependent enzymes, such as sirtuin 1 (SIRT1), and contributes to cell fate decisions. However, the role of NAMPT in PD has remained to be fully elucidated. In the present study, PC12 cells were treated with the neurotoxin 6-hydroxydopamine (6‑OHDA) to establish an in vitro model of PD, following which an obvious inhibitory effect on the levels of NAMPT and NAD+ as well as the NAD+/NADH ratio was detected. In addition, pre‑incubation with FK866, a highly specific NAMPT inhibitor, enhanced the inhibitory effects of 6‑OHDA on the viability of PC12, while pre‑incubation with nicotinamide mononucleotide (NMN), am enzymatic product of NAMPT, had the opposite effect. Furthermore, it was revealed that NMN markedly attenuated 6‑OHDA‑induced decreases in superoxide dismutase activity and glutathione levels, as well as 6‑OHDA‑induced increases in malondialdehyde and lactate dehydrogenase in PC12 cells. Furthermore, 6‑OHDA significantly reduced SIRT1 activity in PC12 cells, which was inhibited by NMN. The pharmacological activator resveratrol also significantly inhibited 6‑OHDA‑mediated decreases in PC12 cell viability while reversing 6‑OHDA‑induced decreases in SIRT1 levels. The results of the present study suggested that NMT protected against 6‑OHDA‑induced decreases in PC12 cell viability, and that SIRT1 activation had a role in this process. Treatment with NMN to activate SIRT1 may represent a novel therapeutic strategy for treating PD.
Collapse
Affiliation(s)
- Xiao-Dong Zou
- Department of Neurology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Shao-Qing Guo
- Department of Massage, The Third Affiliated Hospital of Zhejiang Province Traditional Chinese Medical University, Hangzhou, Zhejiang 310012, P.R. China
| | - Zhi-Wei Hu
- Department of Neurology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Wei-Lang Li
- Department of Neurology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
18
|
A Novel Ligustrazine Derivative T-VA Prevents Neurotoxicity in Differentiated PC12 Cells and Protects the Brain against Ischemia Injury in MCAO Rats. Int J Mol Sci 2015; 16:21759-74. [PMID: 26370988 PMCID: PMC4613278 DOI: 10.3390/ijms160921759] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/24/2015] [Accepted: 08/31/2015] [Indexed: 01/01/2023] Open
Abstract
Broad-spectrum drugs appear to be more promising for the treatment of acute ischemic stroke. In our previous work, a new ligustrazine derivative (3,5,6-trimethylpyrazin-2-yl) methyl 3-methoxy-4-[(3,5,6-trimethylpyrazin-2-yl)methoxy]benzoate (T-VA) showed neuroprotective effect on injured PC12 cells (EC50 = 4.249 µM). In the current study, we show that this beneficial effect was due to the modulation of nuclear transcription factor-κB/p65 (NF-κB/p65) and cyclooxygenase-2 (COX-2) expressions. We also show that T-VA exhibited neuroprotective effect in a rat model of ischemic stroke with concomitant improvement of motor functions. We propose that the protective effect observed in vivo is owing to increased vascular endothelial growth factor (VEGF) expression, decreased oxidative stress, and up-regulation of Ca2+–Mg2+ ATP enzyme activity. Altogether, our results warrant further studies on the utility of T-VA for the potential treatment of ischemic brain injuries, such as stroke.
Collapse
|
19
|
Teng X, Wei N, Chen H, Zhai K. RETRACTED ARTICLE: TN-2 Exerts Anti-Inflammatory Effects on LPS-Induced Rat Dorsal Root Ganglion Neurons by Inhibiting TLR4-Mediated NF-κB and MAPK Pathways. J Mol Neurosci 2015. [DOI: 10.1007/s12031-015-0624-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
RETRACTED ARTICLE: TN-2 modulates LPS-induced inflammatory response in human renal tubular epithelial cells by blocking TLR4-mediated NF-κB activation via MyD88- and TRIF-dependent mechanism. Inflamm Res 2015. [DOI: 10.1007/s00011-015-0853-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
21
|
Zhang Z, Li G, Szeto SSW, Chong CM, Quan Q, Huang C, Cui W, Guo B, Wang Y, Han Y, Michael Siu KW, Yuen Lee SM, Chu IK. Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of Parkinson disease. Free Radic Biol Med 2015; 84:331-343. [PMID: 25769424 DOI: 10.1016/j.freeradbiomed.2015.02.030] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/18/2015] [Accepted: 02/23/2015] [Indexed: 12/22/2022]
Abstract
Polypharmacology-based strategies using drug combinations with different mechanisms of action are gaining increasing attention as a novel methodology to discover potentially innovative medicines for neurodegenerative disorders. We used this approach to examine the combined neuroprotective effects of two polyphenols, protocatechuic acid (PCA) and chrysin, identified from the fruits of Alpinia oxyphylla. Our results demonstrated synergistic neuroprotective effects, with chrysin enhancing the protective effects of PCA, resulting in greater cell viability and decreased lactate dehydrogenase release from 6-hydroxydopamine-treated PC12 cells. Their combination also significantly attenuated chemically induced dopaminergic neuron loss in both zebrafish and mice. We examined the molecular mechanisms underlying these collective cytoprotective effects through proteomic analysis of treated PC12 cells, resulting in the identification of 12 regulated proteins. Two were further characterized, leading to the determination that pretreatment with PCA and chrysin resulted in (i) increased nuclear factor-erythroid 2-related factor 2 protein expression and transcriptional activity; (ii) modulation of cellular redox status with the upregulated expression of hallmark antioxidant enzymes, including heme oxygenase-1, superoxide dismutase, and catalase; and (iii) decreased levels of malondialdehyde, a known lipid peroxidation product. Treatment with PCA and chrysin also inhibited activation of nuclear factor-κB and expression of inducible nitric oxide synthase. Our findings suggest that natural products, when used in combination, can be effective potential therapeutic agents for treating diseases such as Parkinson disease. A therapy involving both PCA and chrysin exhibits its enhanced neuroprotective effects through a combination of cellular mechanisms: antioxidant cytoprotection and anti-inflammation.
Collapse
Affiliation(s)
- Zaijun Zhang
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, College of Pharmacy, Jinan University, Guangdong, China; State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Guohui Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Samuel S W Szeto
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Cheong Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Quan Quan
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Chen Huang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Wei Cui
- Department of Applied Biology and Chemical Technology, Institute of Modern Medicine, The Hong Kong Polytechnic University, Hong Kong, China
| | - Baojian Guo
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, College of Pharmacy, Jinan University, Guangdong, China
| | - Yuqiang Wang
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, College of Pharmacy, Jinan University, Guangdong, China
| | - Yifan Han
- Department of Applied Biology and Chemical Technology, Institute of Modern Medicine, The Hong Kong Polytechnic University, Hong Kong, China
| | - K W Michael Siu
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Simon Ming Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Ivan K Chu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
22
|
RETRACTED ARTICLE: TN-2 Ameliorates Tunicamycin-Induced Mitochondria and Endoplasmic Reticulum Stress-Associated Apoptosis in Rat Dorsal Root Ganglion Neurons. J Mol Neurosci 2015; 57:314. [DOI: 10.1007/s12031-015-0599-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/03/2015] [Indexed: 11/27/2022]
|
23
|
Segura-Aguilar J, Kostrzewa RM. Neurotoxin mechanisms and processes relevant to Parkinson's disease: an update. Neurotox Res 2015; 27:328-54. [PMID: 25631236 DOI: 10.1007/s12640-015-9519-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 12/14/2022]
Abstract
The molecular mechanism responsible for degenerative process in the nigrostriatal dopaminergic system in Parkinson's disease (PD) remains unknown. One major advance in this field has been the discovery of several genes associated to familial PD, including alpha synuclein, parkin, LRRK2, etc., thereby providing important insight toward basic research approaches. There is an consensus in neurodegenerative research that mitochon dria dysfunction, protein degradation dysfunction, aggregation of alpha synuclein to neurotoxic oligomers, oxidative and endoplasmic reticulum stress, and neuroinflammation are involved in degeneration of the neuromelanin-containing dopaminergic neurons that are lost in the disease. An update of the mechanisms relating to neurotoxins that are used to produce preclinical models of Parkinson´s disease is presented. 6-Hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and rotenone have been the most wisely used neurotoxins to delve into mechanisms involved in the loss of dopaminergic neurons containing neuromelanin. Neurotoxins generated from dopamine oxidation during neuromelanin formation are likewise reviewed, as this pathway replicates neurotoxin-induced cellular oxidative stress, inactivation of key proteins related to mitochondria and protein degradation dysfunction, and formation of neurotoxic aggregates of alpha synuclein. This survey of neurotoxin modeling-highlighting newer technologies and implicating a variety of processes and pathways related to mechanisms attending PD-is focused on research studies from 2012 to 2014.
Collapse
Affiliation(s)
- Juan Segura-Aguilar
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, 70000, Santiago 7, Chile,
| | | |
Collapse
|
24
|
Synthesis and Application of Phenyl Nitrone Derivatives as Acidic and Microbial Corrosion Inhibitors. J CHEM-NY 2015. [DOI: 10.1155/2015/201259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nitrone has drawn great attention due to its wide applications as a 1,3-dipole in heterocyclic compounds synthesis and the bioactivities. With the special structure, nitrone can also be used as ligand in inorganic chemistry. Based on the current research, the nitrones are anticipated to be effective inhibitors against acidic and microbial corrosion. The aim of this work is to investigate the inhibitory action of nitrones. In this work, a series of phenyl nitrone derivatives (PN) was synthesized and used as acidic and microbial corrosion inhibitors. The results indicate that several compounds show moderate to high inhibition efficiency (IE) in 3% HCl. Accompanied with HMTA or BOZ, the IEs greatly increase, and the highest efficiency of 98.5% was obtained by using PN4 + BOZ. Investigation of the antibacterial activity against oilfield microorganism shows that the nitrone derivatives can inhibit SRB, IB, and TGB with moderate to high efficiency under 1,000 mg/L, which makes them potential to be used as bifunctional oilfield chemicals.
Collapse
|