1
|
Butkeraitis CB, Falla MVA, Lebrun I. Thermoregulation Effects of Phoneutria nigriventer Isolated Toxins in Rats. Toxins (Basel) 2024; 16:398. [PMID: 39330856 PMCID: PMC11435823 DOI: 10.3390/toxins16090398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/28/2024] Open
Abstract
Body temperature is primarily regulated by the hypothalamus, ensuring proper metabolic function. Envenomation by Phoneutria nigriventer can cause symptoms such as hypothermia, hyperthermia, sweating, and shivering, all related to thermoregulation. This study aims to analyze and identify components of the venom that affect thermoregulation and to evaluate possible mechanisms. Rats were used for thermoregulation analysis, venom fractionation by gel filtration and reverse-phase chromatography (C18), and sequencing by Edman degradation. The venom exhibited hypothermic effects in rats, while its fractions demonstrated both hypothermic (pool II) and hyperthermic (pool III) effects. Further separations of the pools with C18 identified specific peaks responsible for these effects. However, as the peaks were further purified, their effects became less significant. Tests on U87 human glioblastoma cells showed no toxicity. Sequencing of the most active peaks revealed masses similar to those of the Tachykinin and Ctenotoxin families, both known to act on the nervous system. The study concludes that molecules derived from venom can act synergistically or antagonistically. Additionally, toxins that affect thermoregulation are poorly studied and require further characterization. These toxins could potentially serve as sources for the development of new thermoregulatory drugs.
Collapse
Affiliation(s)
| | | | - Ivo Lebrun
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Avenida Vital Brazil 1500, Butantã, São Paulo 05503-900, SP, Brazil (M.V.A.F.)
| |
Collapse
|
2
|
Chary PS, Shaikh S, Rajana N, Bhavana V, Mehra NK. Unlocking nature's arsenal: Nanotechnology for targeted delivery of venom toxins in cancer therapy. BIOMATERIALS ADVANCES 2024; 162:213903. [PMID: 38824828 DOI: 10.1016/j.bioadv.2024.213903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/24/2024] [Accepted: 05/19/2024] [Indexed: 06/04/2024]
Abstract
AIM The aim of the present review is to shed light on the nanotechnological approaches adopted to overcome the shortcomings associated with the delivery of venom peptides which possess inherent anti-cancer properties. BACKGROUND Venom peptides although have been reported to demonstrate anti-cancer effects, they suffer from several disadvantages such as in vivo instability, off-target adverse effects, limited drug loading and low bioavailability. This review presents a comprehensive compilation of different classes of nanocarriers while underscoring their advantages, disadvantages and potential to carry such peptide molecules for in vivo delivery. It also discusses various nanotechnological aspects such as methods of fabrication, analytical tools to assess these nanoparticulate formulations, modulation of nanocarrier polymer properties to enhance loading capacity, stability and improve their suitability to carry toxic peptide drugs. CONCLUSION Nanotechnological approaches bear great potential in delivering venom peptide-based molecules as anticancer agents by enhancing their bioavailability, stability, efficacy as well as offering a spatiotemporal delivery approach. However, the challenges associated with toxicity and biocompatibility of nanocarriers must be duly addressed. PERSPECTIVES The everlasting quest for new breakthroughs for safer delivery of venom peptides in human subjects is fuelled by unmet clinical needs in the current landscape of chemotherapy. In addition, exhaustive efforts are required in obtaining and purifying the venom peptides followed by designing and optimizing scale up technologies.
Collapse
Affiliation(s)
- Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Samia Shaikh
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
3
|
Castro PHC, Paiva ALB, Peixoto GVM, Oliveira-Mendes BBR, Calaça P, Matavel A. Epidemiology of arthropods envenomation in Brazil: a public health issue. AN ACAD BRAS CIENC 2023; 95:e20220850. [PMID: 37466539 DOI: 10.1590/0001-3765202320220850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/04/2023] [Indexed: 07/20/2023] Open
Abstract
Brazil is located between the Equator and Tropic of Capricorn, which allows diverse climates, reliefs, and habitats for arthropods, which sting represents a risk to human health and a public health issue. This manuscript updates the epidemiological data of cases of human envenoming by spiders, scorpions, and insects with medical relevance in Brazil from 2010 to 2021. Epidemiological data were taken using the Brazilian Notifiable Diseases Information System. Statistics of non-parametric data used the Kruskal-Wallis followed by the Nemenyi test. On average, more than 145,000 envenomation and 145 deaths are recorded annually, and more than 60% of deaths are caused by scorpion bites. When the number of deaths was pondered by the number of cases with each arthropod, bees kill the most. Most stings cause mild symptoms and affect men of working age. The incidence decreases during the colder months, which is better noticeable in regions with well-defined seasons. The distribution is distinct among the regions: Southeast, Northeast, and South have the highest rate of bites. The growing number of cases of envenomation reported annually is a serious public health concern, especially involving scorpions, and highlights the importance of studying arthropod venom and improving the therapies.
Collapse
Affiliation(s)
- Pedro Henrique C Castro
- Fundação Ezequiel Dias, Diretoria de Pesquisa e Desenvolvimento, Rua Conde Pereira Carneiro, 80, Gameleira, 30510-010 Belo Horizonte, MG, Brazil
| | - Ana Luiza B Paiva
- Fundação Ezequiel Dias, Diretoria de Pesquisa e Desenvolvimento, Rua Conde Pereira Carneiro, 80, Gameleira, 30510-010 Belo Horizonte, MG, Brazil
| | - Gustavo Vinícius M Peixoto
- Fundação Ezequiel Dias, Diretoria de Pesquisa e Desenvolvimento, Rua Conde Pereira Carneiro, 80, Gameleira, 30510-010 Belo Horizonte, MG, Brazil
| | | | - Paula Calaça
- Fundação Ezequiel Dias, Diretoria de Pesquisa e Desenvolvimento, Rua Conde Pereira Carneiro, 80, Gameleira, 30510-010 Belo Horizonte, MG, Brazil
| | - Alessandra Matavel
- Fundação Ezequiel Dias, Diretoria de Pesquisa e Desenvolvimento, Rua Conde Pereira Carneiro, 80, Gameleira, 30510-010 Belo Horizonte, MG, Brazil
| |
Collapse
|
4
|
Cardoso FC, Walker AA, King GF, Gomez MV. Holistic profiling of the venom from the Brazilian wandering spider Phoneutria nigriventer by combining high-throughput ion channel screens with venomics. Front Mol Biosci 2023; 10:1069764. [PMID: 36865382 PMCID: PMC9972223 DOI: 10.3389/fmolb.2023.1069764] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction: Spider venoms are a unique source of bioactive peptides, many of which display remarkable biological stability and neuroactivity. Phoneutria nigriventer, often referred to as the Brazilian wandering spider, banana spider or "armed" spider, is endemic to South America and amongst the most dangerous venomous spiders in the world. There are 4,000 envenomation accidents with P. nigriventer each year in Brazil, which can lead to symptoms including priapism, hypertension, blurred vision, sweating, and vomiting. In addition to its clinical relevance, P. nigriventer venom contains peptides that provide therapeutic effects in a range of disease models. Methods: In this study, we explored the neuroactivity and molecular diversity of P. nigriventer venom using fractionation-guided high-throughput cellular assays coupled to proteomics and multi-pharmacology activity to broaden the knowledge about this venom and its therapeutic potential and provide a proof-of-concept for an investigative pipeline to study spider-venom derived neuroactive peptides. We coupled proteomics with ion channel assays using a neuroblastoma cell line to identify venom compounds that modulate the activity of voltage-gated sodium and calcium channels, as well as the nicotinic acetylcholine receptor. Results: Our data revealed that P. nigriventer venom is highly complex compared to other neurotoxin-rich venoms and contains potent modulators of voltage-gated ion channels which were classified into four families of neuroactive peptides based on their activity and structures. In addition to the reported P. nigriventer neuroactive peptides, we identified at least 27 novel cysteine-rich venom peptides for which their activity and molecular target remains to be determined. Discussion: Our findings provide a platform for studying the bioactivity of known and novel neuroactive components in the venom of P. nigriventer and other spiders and suggest that our discovery pipeline can be used to identify ion channel-targeting venom peptides with potential as pharmacological tools and to drug leads.
Collapse
Affiliation(s)
- F. C. Cardoso
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia,Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia,*Correspondence: F. C. Cardoso,
| | - A. A. Walker
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia,Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
| | - G. F. King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia,Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
| | - M. V. Gomez
- Department of Neurotransmitters, Institute of Education and Research, Santa Casa, Belo Horizonte, Brazil
| |
Collapse
|
5
|
Munhoz J, Peron G, Bonfanti AP, Oliveira J, Silva TAADRE, Sutti R, Thomé R, Bombeiro AL, Barreto N, Chalbatani GM, Gharagouzloo E, Vitorino-Araujo JL, Verinaud L, Rapôso C. Components from spider venom activate macrophages against glioblastoma cells: new potential adjuvants for anticancer immunotherapy. J Biochem 2021; 170:51-68. [PMID: 33599263 DOI: 10.1093/jb/mvab020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/13/2021] [Indexed: 12/11/2022] Open
Abstract
Immunomodulation has been considered an important approach in the treatment of malignant tumors. However, the modulation of innate immune cells remains an underexplored tool. Studies from our group demonstrated that the Phoneutria nigriventer spider venom (PnV) administration increased the infiltration of macrophage in glioblastoma, in addition to decreasing the tumor size in a preclinical model. The hypothesis that PnV would be modulating the innate immune system led us to the main objective of the present study: to elucidate the effects of PnV and its purified fractions on cultured macrophages. Results showed that PnV and the three fractions activated macrophages differentiated from bone marrow precursors. Further purification generated twenty-three subfractions named Low Weight (LW-1 to LW-12) and High Weight (HW-1 to HW-11). LW-9 presented the best immunomodulatory effect. Treated cells were more phagocytic, migrated more, showed an activated morphological profile and induced an increased cytotoxic effect of macrophages on tumor cells. However, while M1-controls (LPS) increased IL-10, TNF-alpha and IL-6 release, PnV, fractions and subfractions did not alter any cytokine, with the exception of LW-9 that stimulated IL-10 production. These findings suggest that molecules present in LW-9 have the potential to be used as immunoadjuvants in the treatment of cancer.
Collapse
Affiliation(s)
- Jaqueline Munhoz
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Gabriela Peron
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP
| | - Amanda Pires Bonfanti
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.,Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP
| | - Janine Oliveira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP
| | | | - Rafael Sutti
- Faculdade de Ciências Médicas, Santa Casa de São Paulo, São Paulo, SP, Brazil
| | - Rodolfo Thomé
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - André Luís Bombeiro
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP
| | - Natalia Barreto
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.,Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP
| | | | - Elahe Gharagouzloo
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - João Luiz Vitorino-Araujo
- Disciplina de Neurocirurgia, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil
| | - Liana Verinaud
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP
| | - Catarina Rapôso
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
6
|
Barreto N, Caballero M, Bonfanti AP, de Mato FCP, Munhoz J, da Rocha-E-Silva TAA, Sutti R, Vitorino-Araujo JL, Verinaud L, Rapôso C. Spider venom components decrease glioblastoma cell migration and invasion through RhoA-ROCK and Na +/K +-ATPase β2: potential molecular entities to treat invasive brain cancer. Cancer Cell Int 2020; 20:576. [PMID: 33327966 PMCID: PMC7745393 DOI: 10.1186/s12935-020-01643-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Glioblastoma (GB) cells have the ability to migrate and infiltrate the normal parenchyma, leading to the formation of recurrent tumors often adjacent to the surgical extraction site. We recently showed that Phoneutria nigriventer spider venom (PnV) has anticancer effects mainly on the migration of human GB cell lines (NG97 and U-251). The present work aimed to investigate the effects of isolated components from the venom on migration, invasiveness, morphology and adhesion of GB cells, also evaluating RhoA-ROCK signaling and Na+/K+-ATPase β2 (AMOG) involvement. METHODS Human (NG97) GB cells were treated with twelve subfractions (SFs-obtained by HPLC from PnV). Migration and invasion were evaluated by scratch wound healing and transwell assays, respectively. Cell morphology and actin cytoskeleton were shown by GFAP and phalloidin labeling. The assay with fibronectin coated well plate was made to evaluate cell adhesion. Western blotting demonstrated ROCK and AMOG levels and a ROCK inhibitor was used to verify the involvement of this pathway. Values were analyzed by the GraphPad Prism software package and the level of significance was determinate using one-way analysis of variance (ANOVA) followed by Dunnett's multiple comparisons test. RESULTS Two (SF1 and SF11) of twelve SFs, decreased migration and invasion compared to untreated control cells. Both SFs also altered actin cytoskeleton, changed cell morphology and reduced adhesion. SF1 and SF11 increased ROCK expression and the inhibition of this protein abolished the effects of both subfractions on migration, morphology and adhesion (but not on invasion). SF11 also increased Na+/K+-ATPase β2. CONCLUSION All components of the venom were evaluated and two SFs were able to impair human glioblastoma cells. The RhoA effector, ROCK, was shown to be involved in the mechanisms of both PnV components. It is possible that AMOG mediates the effect of SF11 on the invasion. Further investigations to isolate and biochemically characterize the molecules are underway.
Collapse
Affiliation(s)
- Natália Barreto
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-865, Brazil.,Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, São Paulo, Brazil
| | - Marcus Caballero
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-865, Brazil.,Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, São Paulo, Brazil
| | - Amanda Pires Bonfanti
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-865, Brazil.,Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, São Paulo, Brazil
| | - Felipe Cezar Pinheiro de Mato
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-865, Brazil.,Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, São Paulo, Brazil
| | - Jaqueline Munhoz
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-865, Brazil.,Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, São Paulo, Brazil
| | | | - Rafael Sutti
- Faculdade de Ciências Médicas, Santa Casa de São Paulo, São Paulo, SP, Brazil
| | - João Luiz Vitorino-Araujo
- Disciplina de Neurocirurgia, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil
| | - Liana Verinaud
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, São Paulo, Brazil
| | - Catarina Rapôso
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-865, Brazil.
| |
Collapse
|
7
|
VEGF/VEGFR-2 system exerts neuroprotection against Phoneutria nigriventer spider envenomation through PI3K-AKT-dependent pathway. Toxicon 2020; 185:76-90. [PMID: 32649934 DOI: 10.1016/j.toxicon.2020.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 01/19/2023]
Abstract
This study was undertaken to elucidate why VEGF/VEGFR-2 is elevated in the hippocampus of rats injected with Phoneutria nigriventer spider venom (PNV). PNV delays Na+ channels inactivation; blocks Ca2+ and K+ channels, increases glutamate release, causes blood-brain breakdown (BBBb), brain edema and severe excitotoxicity. Analytical FT-IR spectroscopy showed profound alteration in molecular biochemical state, with evidences for VEGFR-2 (KDR/Flk-1) signaling mediation. By blocking VEGF/VEGFR-2 binding via pre-treatment with itraconazole we demonstrated that animals' condition was deteriorated soon at 1-2 h post-PNV exposure concurrently with decreased expression of VEGF, BBB-associated proteins, ZO-1, β-catenin, laminin, P-gp (P-glycoprotein), Neu-N (neuron's viability marker) and MAPKphosphorylated-p38, while phosphorylated-ERK and Src pathways were increased. At 5 h and coinciding with incipient signs of animals' recuperation, the proteins associated with protection (HIF-1α, VEGF, VEGFR-1, VEGFR-2, Neu-N, occludin, β-catenin, laminin, P-gp efflux protein, phosphorylated-p38) increased thus indicating p38 pathway activation together with paracellular route strengthening. However, the BBB transcellular trafficking and caspase-3 increased (pro-apoptotic pathway activation). At 24 h, the transcellular route reestablished physiological state but the pro-survival pathway PI3K/(p-Akt) dropped in animals underwent VEGF/VEGFR-2 binding inhibition, whereas it was significantly activated at matched interval in PNV group without prior itraconazole; these results demonstrate impaired VEGF' survival effects at 24 h. The inhibition of VEGF/VEGFR-2 binding identified 5 h as turning point at which multi-level dynamic interplay was elicited to reverse hippocampal damage. Collectively, the data confirmed VEGFR-2 signaling via serine-threonine kinase Akt as neuroprotective pathway against PNV-induced damage. Further studies are needed to elucidate mechanisms underlying PNV effects.
Collapse
|
8
|
Spider venom administration impairs glioblastoma growth and modulates immune response in a non-clinical model. Sci Rep 2020; 10:5876. [PMID: 32246025 PMCID: PMC7125223 DOI: 10.1038/s41598-020-62620-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Molecules from animal venoms are promising candidates for the development of new drugs. Previous in vitro studies have shown that the venom of the spider Phoneutria nigriventer (PnV) is a potential source of antineoplastic components with activity in glioblastoma (GB) cell lines. In the present work, the effects of PnV on tumor development were established in vivo using a xenogeneic model. Human GB (NG97, the most responsive line in the previous study) cells were inoculated (s.c.) on the back of RAG−/− mice. PnV (100 µg/Kg) was administrated every 48 h (i.p.) for 14 days and several endpoints were evaluated: tumor growth and metabolism (by microPET/CT, using 18F-FDG), tumor weight and volume, histopathology, blood analysis, percentage and profile of macrophages, neutrophils and NK cells isolated from the spleen (by flow cytometry) and the presence of macrophages (Iba-1 positive) within/surrounding the tumor. The effect of venom was also evaluated on macrophages in vitro. Tumors from PnV-treated animals were smaller and did not uptake detectable amounts of 18F-FDG, compared to control (untreated). PnV-tumor was necrotic, lacking the histopathological characteristics typical of GB. Since in classic chemotherapies it is observed a decrease in immune response, methotrexate (MTX) was used only to compare the PnV effects on innate immune cells with a highly immunosuppressive antineoplastic drug. The venom increased monocytes, neutrophils and NK cells, and this effect was the opposite of that observed in the animals treated with MTX. PnV increased the number of macrophages in the tumor, while did not increase in the spleen, suggesting that PnV-activated macrophages were led preferentially to the tumor. Macrophages were activated in vitro by the venom, becoming more phagocytic; these results confirm that this cell is a target of PnV components. Spleen and in vitro PnV-activated macrophages were different of M1, since they did not produce pro- and anti-inflammatory cytokines. Studies in progress are selecting the venom molecules with antitumor and immunomodulatory effects and trying to better understand their mechanisms. The identification, optimization and synthesis of antineoplastic drugs from PnV molecules may lead to a new multitarget chemotherapy. Glioblastoma is associated with high morbidity and mortality; therefore, research to develop new treatments has great social relevance. Natural products and their derivatives represent over one-third of all new molecular entities approved by FDA. However, arthropod venoms are underexploited, although they are a rich source of new molecules. A recent in vitro screening of the Phoneutria nigriventer spider venom (PnV) antitumor effects by our group has shown that the venom significantly affected glioblastoma cell lines. Therefore, it would be relevant to establish the effects of PnV on tumor development in vivo, considering the complex neoplastic microenvironment. The venom was effective at impairing tumor development in murine xenogeneic model, activating the innate immune response and increasing tumor infiltrating macrophages. In addition, PnV activated macrophages in vitro for a different profile of M1. These activated PnV-macrophages have potential to fight the tumor without promoting tumorigenesis. Studies in progress are selecting the venom molecules with antitumor and immunomodulatory effects and trying to better understand their mechanisms. We aim to synthesize and carry out a formulation with these antineoplastic molecules for clinical trials. Spider venom biomolecules induced smaller and necrotic xenogeneic GB; spider venom activated the innate immune system; venom increased blood monocytes and the migration of macrophages to the tumor; activated PnV-macrophages have a profile different of M1 and have a potential to fight the tumor without promote tumorigenesis.
Collapse
|
9
|
Khusro A, Aarti C, Barbabosa-Pliego A, Rivas-Cáceres RR, Cipriano-Salazar M. Venom as therapeutic weapon to combat dreadful diseases of 21 st century: A systematic review on cancer, TB, and HIV/AIDS. Microb Pathog 2018; 125:96-107. [PMID: 30195644 DOI: 10.1016/j.micpath.2018.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/26/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022]
Abstract
Cancer and infectious diseases are the preeminent causes of human morbidities and mortalities worldwide. At present, chemotherapy, radiotherapy, immunotherapy, and gene therapy are considered as predominant options in order to treat cancer. But these therapies provide inadequate consequences by affecting both the normal and tumor cells. On the other hand, tuberculosis (TB), and HIV (human immunodeficiency virus) infections are significant threats, causing over a million mortalities each year. The extensive applications of antibiotics have caused the microbes to acquire resistance to the existing antibiotics. With the emerging dilemma of drug resistant microbes, it has become imperative to identify novel therapeutic agents from natural sources as emphatic alternative approach. Over the past few decades, venoms derived from several reptiles, amphibians, and arthropods including snakes, scorpions, frogs, spiders, honey bees, wasps, beetles, caterpillars, ants, centipedes, and sponges have been identified as efficient therapeutics. Venoms constitute plethora of bioactive components, particularly peptides, enzymes, and other chemical entities, which exhibit a large array of anticancer and anti-pathogenic activities. This review highlights the panorama of bioactive components of animal venoms divulging the anticancer, anti-tubercular, and anti-HIV activities. In a nutshell, this context discloses the decisive role of animal venoms as alternative natural resources to combat these deadly diseases of 21st century, and propounding the plausible development of new therapeutic drugs in the present era.
Collapse
Affiliation(s)
- Ameer Khusro
- Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai, 600034, Tamil Nadu, India.
| | - Chirom Aarti
- Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai, 600034, Tamil Nadu, India
| | - Alberto Barbabosa-Pliego
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - Raymundo Rene Rivas-Cáceres
- Universidad Autónoma de Ciudad Juárez, Ave. Plutarco Elías Calles No. 1210, FOVISSSTE Chamizal Cd, Juarez, C.P. 32310, Mexico
| | | |
Collapse
|
10
|
Peigneur S, de Lima ME, Tytgat J. Phoneutria nigriventer venom: A pharmacological treasure. Toxicon 2018; 151:96-110. [DOI: 10.1016/j.toxicon.2018.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/27/2018] [Accepted: 07/05/2018] [Indexed: 12/15/2022]
|
11
|
Barreto dos Santos N, Bonfanti AP, Rocha‐e‐Silva TAAD, da Silva PI, da Cruz‐Höfling MA, Verinaud L, Rapôso C. Venom of the
Phoneutria nigriventer
spider alters the cell cycle, viability, and migration of cancer cells. J Cell Physiol 2018; 234:1398-1415. [DOI: 10.1002/jcp.26935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/12/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Natália Barreto dos Santos
- Departamento de Biologia Estrutural e Funcional Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP) Campinas Brazil
| | - Amanda Pires Bonfanti
- Departamento de Biologia Estrutural e Funcional Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP) Campinas Brazil
| | | | | | - Maria Alice da Cruz‐Höfling
- Departamento de Bioquímica e Biologia Tecidual Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP) Campinas Brazil
| | - Liana Verinaud
- Departamento de Biologia Estrutural e Funcional Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP) Campinas Brazil
| | - Catarina Rapôso
- Departamento de Biologia Estrutural e Funcional Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP) Campinas Brazil
| |
Collapse
|