1
|
Zhao YL, Yi HY, Baba SS, Guo YX, Yuan XC, Hou XM, Liang LL, Huo FQ. Activation of 5-HT 6 Receptors in the Ventrolateral Orbital Cortex Produces Anti-Anxiodepressive Effects in a Rat Model of Neuropathic Pain. Mol Neurobiol 2024:10.1007/s12035-024-04314-1. [PMID: 38963532 DOI: 10.1007/s12035-024-04314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/16/2024] [Indexed: 07/05/2024]
Abstract
The comorbidity of anxiety and depression frequently occurs in patients with neuropathic pain. The ventrolateral orbital cortex (VLO) plays a critical role in mediating neuropathic pain and anxiodepression in rodents. Previous studies suggested that 5-HT6 receptors in the VLO are involved in neuropathic pain. Strong evidence supports a close link between 5-HT6 receptors and affective disorders such as depression and anxiety disorders. However, it remains unclear whether the 5-HT6 receptors in the VLO are involved in neuropathic pain-induced anxiodepression. Using a rat neuropathic pain model of spared nerve injury (SNI), we demonstrated that rats exhibited significant anxiodepression-like behaviors and the expression of VLO 5-HT6 receptors obviously decreased four weeks after SNI surgery. Microinjection of the 5-HT6 receptor agonist EMD-386088 into the VLO or overexpression of VLO 5-HT6 receptors alleviated anxiodepression-like behaviors. These effects were blocked by pre-microinjection of a selective 5-HT6 receptor antagonist (SB-258585) or inhibitors of AC (SQ-22536), PKA (H89), and MEK1/2 (U0126) respectively. Meanwhile, the expression of p-ERK, p-CREB, and BDNF in the VLO decreased four weeks after SNI surgery. Furthermore, administration of EMD-386088 upregulated the expression of BDNF, p-ERK, and p-CREB in the VLO of SNI rats, which were reversed by pre-injection of SB-258585. These findings suggest that activating 5-HT6 receptors in the VLO has anti-anxiodepressive effects in rats with neuropathic pain via activating AC-cAMP-PKA-MERK-CREB-BDNF signaling pathway. Accordingly, 5-HT6 receptor in the VLO could be a potential target for the treatment of the comorbidity of neuropathic pain and anxiodepression.
Collapse
Affiliation(s)
- Yu-Long Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Hui-Yuan Yi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Sani Sa'idu Baba
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Yi-Xiao Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Xiao-Cui Yuan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Xue-Mei Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Ling-Li Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Fu-Quan Huo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
2
|
Zhao YL, Xu JL, Yi HY, Baba SS, Guo YX, Hou XM, Yuan XC, Li XH, Wang YY, Liang LL, Huo FQ. Activation of 5-HT 5A receptor in the ventrolateral orbital cortex produces antinociceptive effects in rat models of neuropathic and inflammatory pain. Neuropharmacology 2024; 245:109830. [PMID: 38160874 DOI: 10.1016/j.neuropharm.2023.109830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
The ventrolateral orbital cortex (VLO) is identified as an integral component of the endogenous analgesic system comprising a spinal cord - thalamic nucleus submedius - VLO - periaqueductal gray (PAG) - spinal cord loop. The present study investigates the effects of 5-HT5A receptor activation in the VLO on allodynia induced by spared nerve injury and formalin-evoked flinching behavior and spinal c-Fos expression in male SD rats, and further examines whether GABAergic modulation is involved in the effects evoked by VLO 5-HT5A receptor activation. We found an upregulation of 5-HT5A receptor expression in the VLO during neuropathic and inflammatory pain states. Microinjection of the non-selective 5-HT5A receptor agonist 5-CT into the VLO dose dependently alleviated allodynia, and flinching behavior and spinal c-Fos expression, which were blocked by the selective 5-HT5A receptor antagonist SB-699551. Moreover, application of the GABAA receptor antagonist bicuculline in the VLO augmented the analgesic effects induced by 5-CT in neuropathic and inflammatory pain states, whereas the GABAA receptor agonist muscimol attenuated these analgesic effects. Additionally, the 5-HT5A receptors were found to be colocalized with GABAergic neurons in the VLO. These results provide new evidence for the involvement of central 5-HT5A receptors in the VLO in modulation of neuropathic and inflammatory pain and support the hypothesis that activation of 5-HT5A receptors may inhibit the inhibitory effect of GABAergic interneurons on output neurons projecting to the PAG (GABAergic disinhibitory mechanisms), consequently activating the brainstem descending inhibitory system that depresses nociceptive transmission at the spinal cord level.
Collapse
Affiliation(s)
- Yu-Long Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, China
| | - Jia-Liang Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, China
| | - Hui-Yuan Yi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, China
| | - Sani Sa'idu Baba
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Yi-Xiao Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, China
| | - Xue-Mei Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, China
| | - Xiao-Cui Yuan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, China
| | - Xu-Hui Li
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yu-Ying Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, China
| | - Ling-Li Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, China
| | - Fu-Quan Huo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
3
|
Zheng W, Huang X, Wang J, Gao F, Chai Z, Zeng J, Li S, Yu C. The chronification mechanism of orofacial inflammatory pain: Facilitation by GPER1 and microglia in the rostral ventral medulla. Front Mol Neurosci 2023; 15:1078309. [PMID: 36683848 PMCID: PMC9853019 DOI: 10.3389/fnmol.2022.1078309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/12/2022] [Indexed: 01/08/2023] Open
Abstract
Background Chronic orofacial pain is a common and incompletely defined clinical condition. The role of G protein-coupled estrogen receptor 1 (GPER1) as a new estrogen receptor in trunk and visceral pain regulation is well known. Here, we researched the role of GPER1 in the rostral ventral medulla (RVM) during chronic orofacial pain. Methods and Results A pain model was established where rats were injected in the temporomandibular joint with complete Freund's adjuvant (CFA) to simulate chronic orofacial pain. Following this a behavioral test was performed to establish pain threshold and results showed that the rats injected with CFA had abnormal pain in the orofacial regions. Additional Immunostaining and blot analysis indicated that microglia were activated in the RVM and GPER1 and c-Fos were significantly upregulated in the rats. Conversely, when the rats were injected with G15 (a GPER1 inhibitor) the abnormal pain the CFA rats were experiencing was alleviated and microglia activation was prevented. In addition, we found that G15 downregulated the expression of phospholipase C (PLC) and protein kinase C (PKC), inhibited the expression of GluA1, restores aberrant synaptic plasticity and reduces the overexpression of the synapse-associated proteins PSD-95 and syb-2 in the RVM of CFA rats. Conclusion The findings indicate that GPER1 mediates chronic orofacial pain through modulation of the PLC-PKC signal pathway, sensitization of the RVM region and enhancement of neural plasticity. These results of this study therefore suggest that GPER1 may serve as a potential therapeutic target for chronic orofacial pain.
Collapse
Affiliation(s)
- Wenwen Zheng
- The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Xilu Huang
- The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jing Wang
- The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Feng Gao
- The Sixth People’s Hospital of Chongqing, Anesthesiology, Chongqing, China
| | - Zhaowu Chai
- The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jie Zeng
- The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Sisi Li
- The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Cong Yu
- The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China,*Correspondence: Cong Yu, ✉
| |
Collapse
|
4
|
Huang J, Zhang Z, Gambeta E, Chen L, Zamponi GW. An orbitofrontal cortex to midbrain projection modulates hypersensitivity after peripheral nerve injury. Cell Rep 2021; 35:109033. [PMID: 33910011 DOI: 10.1016/j.celrep.2021.109033] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 02/01/2021] [Accepted: 04/02/2021] [Indexed: 12/28/2022] Open
Abstract
Neuropathic pain is a debilitating condition that is often refractory to treatment. The network of neural substrates for pain transmission and control within the brain is complex and remains poorly understood. Through a combination of neuronal tracing, optogenetics, chemogenetics, electrophysiological recordings, and behavioral assessment, we demonstrate that activation of layer 5 pyramidal neurons in the ventrolateral orbitofrontal cortex (vlOFC) attenuates mechanical and thermal hypersensitivity and cold allodynia in mice with neuropathic pain induced by spared nerve injury (SNI). These vlOFC output neurons project to the posterior ventrolateral periaqueductal gray (vlPAG) region and receive inputs from the ventromedial thalamus (VM). Specific optogenetic and chemogenetic activation of the vlOFC-vlPAG and the VM-vlOFC circuits inhibits hypersensitivity associated with neuropathy. Thus, we reveal a modulatory role of the vlOFC and its projections to the vlPAG circuit in the processing of hypersensitive nociception.
Collapse
Affiliation(s)
- Junting Huang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Zizhen Zhang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Eder Gambeta
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Lina Chen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
5
|
Involvement of 5-HT2A, 5-HT2B and 5-HT2C receptors in mediating the ventrolateral orbital cortex-induced antiallodynia in a rat model of neuropathic pain. Neuroreport 2021; 31:167-173. [PMID: 31789691 DOI: 10.1097/wnr.0000000000001377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The present study examined the roles of 5-HT2A, 5-HT2B and 5-HT2C receptor subtypes in mediating the ventrolateral orbital cortex (VLO)-induced antiallodynia in a rat model of neuropathic pain induced by spared nerve injury (SNI). Change of mechanical paw withdrawal threshold (PWT) was measured using von-Frey filaments. Microinjection of preferential or selective 5-HT2A/C, 5-HT2B and 5-HT2C receptor agonists, (±)-1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI), α-methyl-5-(2-thienylmethoxy)-1H-Indole-3-ethanamine hydrochloride (BW723C86) and 1-(3-Chlorophenyl)-piperazine hydrochloride (m-CPP) into the VLO significantly depressed allodynia induced by SNI, and the inhibitory effect of DOI was blocked or attenuated by selective 5-HT2A/C receptor antagonists ketanserin (+)-tartrate salt (ketanserin) and 5-HT2A receptor antagonist R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidinemethanol (M100907); the effects of BW723C86 and m-CPP were antagonized by 5-HT2B receptor antagonists N-(1-Methyl-1H-5-indolyl)-N'-(3-methyl-5-isothiazolyl)urea (SB204741) and 5-HT2C receptor antagonist RS102221 hydrochloride hydrate (RS-102221), respectively. These results suggest that 5-HT2A, 5-HT2B, 5-HT2C receptor subtypes are involved in mediating the VLO-induced antiallodynia in the neuropathic pain state.
Collapse
|
6
|
Cortical Modulation of Nociception. Neuroscience 2021; 458:256-270. [PMID: 33465410 DOI: 10.1016/j.neuroscience.2021.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/28/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023]
Abstract
Nociception is the neuronal process of encoding noxious stimuli and could be modulated at peripheral, spinal, brainstem, and cortical levels. At cortical levels, several areas including the anterior cingulate cortex (ACC), prefrontal cortex (PFC), ventrolateral orbital cortex (VLO), insular cortex (IC), motor cortex (MC), and somatosensory cortices are involved in nociception modulation through two main mechanisms: (i) a descending modulatory effect at spinal level by direct corticospinal projections or mostly by activation of brainstem structures (i.e. periaqueductal grey matter (PAG), locus coeruleus (LC), the nucleus of raphe (RM) and rostroventral medulla (RVM)); and by (ii) cortico-cortical or cortico-subcortical interactions. This review summarizes evidence related to the participation of the aforementioned cortical areas in nociception modulation and different neurotransmitters or neuromodulators that have been studied in each area. Besides, we point out the importance of considering intracortical neuronal populations and receptors expression, as well as, nociception-induced cortical changes, both functional and connectional, to better understand this modulatory effect. Finally, we discuss the possible mechanisms that could potentiate the use of cortical stimulation as a promising procedure in pain alleviation.
Collapse
|
7
|
Damian DB, Ghiță AM, Istrate S, Coman IC. Experimental research in rats on the reactivity of new corneal blood vessels to adrenaline. Rom J Ophthalmol 2021; 65:64-69. [PMID: 33817436 PMCID: PMC7995500 DOI: 10.22336/rjo.2021.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 11/18/2022] Open
Abstract
Aim: The purpose of this experimental study was to evaluate the existence of adrenergic receptors in ketamine-induced corneal blood vessels in rat pups. Methods: The study of corneal neovascularization motricity was performed on 45-day-old Wistar rats in which, starting from the 15th day of life, corneal blood vessels were obtained by injecting intraperitoneal ketamine at a dose of 150 mg/ kg body weight, a total of 5 successive doses. The examination of the neovascularization was done with the help of a Nikon stereomicroscope connected to a video camera and a computer, the total magnification being 400X. The reactivity of the new corneal blood vessels to the administration in conjunctival instillations of a 1.5 mmol/L adrenaline solution was tested. The parameters followed were represented by variations in the caliber of corneal blood vessels. The data were analyzed using Microsoft Office Excel. Results: Administration of distilled water did not produce statistically significant changes in corneal blood vessels, while adrenaline produced a statistically significant constriction of vascular diameter (p=0.01 at T9, p=0.004 at T10, p=0.019 at time T11 of examinations). Conclusions: The results showed that adrenaline produces vasoconstriction in the new corneal blood vessels, which allows us to assume that they contain α-adrenergic receptors. However, we cannot say that corneal pathological vessels do not contain β2-type adrenergic receptors, because the effect of adrenaline may be an algebraic sum between vasoconstriction produced by stimulating α-adrenergic receptors and vasodilation produced by stimulating β2-adrenergic receptors, but in which the vasodilating effect may be masked by the vasoconstrictor effect given by a higher density of α-adrenergic receptors. Abbreviations: A= adrenaline, DNM = non-measurable diameter, NA= noradrenaline, Std.Er.= Standard error.
Collapse
Affiliation(s)
- Daniela Bianca Damian
- Department of Ophthalmology, “Dr. Alexandru Popescu” Military Emergency Hospital Focșani, Focșani, Vrancea, Romania
| | - Aurelian Mihai Ghiță
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Sânziana Istrate
- Department of Ophthalmology, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Ioana Cristina Coman
- Department of Ophthalmology, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
8
|
Salman I, Fakhoury M, Fouani M, Lawand N. Peripheral Anti-nociceptive and Anti-inflammatory Effect of Oleanolic Acid in a Rat Model of Osteoarthritis. Antiinflamm Antiallergy Agents Med Chem 2020; 20:239-249. [PMID: 33183210 DOI: 10.2174/1871523019999201111191754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/19/2020] [Accepted: 09/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Oleanolic acid (OA) is a naturally occurring pentacyclic triterpenoid with multifarious actions. Chief among them is the anti-inflammatory effect it exerts when taken orally; however, the underpinning mechanisms of such effects have not yet been fully explored. METHODS In the present study, we evaluated the anti-inflammatory and anti-nociceptive effect of OA by injecting it directly into the knee joint using an animal model of osteoarthritis. Behavioral and electrophysiological studies were conducted to determine whether OA exerts a direct modulatory effect on primary sensory afferents that could lead to a decrease in pain-related behaviors and inflammatory responses. Rats were divided into two main groups: a pre- and a post-treatment group. Knee joint inflammation was induced by injecting a mixture of 3% kaolin and carrageenan (K/C). In the pre-treatment groups, two different doses of OA [5 mg/ml (n=5) and 30 mg/ml (n=4); 0.1 ml per injection] were administered into the synovial cavity of the knee joint before induction of inflammation. In the post-treatment group, rats received only one dose [5 mg/ml (n=5)] of OA after induction of inflammation. RESULTS Results indicate that intra-articular injection of OA improves motor coordination and attenuates nociceptive behav-ior and inflammatory reactions. More importantly, we observed a direct depolarizing action of OA on articular sensory fi-bers, a crucial mechanism that activates descending inhibitory pathways and controls incoming nociceptive signals to the spinal cord. CONCLUSION Overall, our findings suggest that OA can be used as preventive and therapeutic approach for the management of osteoarthritis.
Collapse
Affiliation(s)
- Israa Salman
- Department of anatomy, Cell biology & Physiological Sciences; Faculty of Medicine; American University of Beirut, Beirut,. Lebanon
| | - Marc Fakhoury
- Department of anatomy, Cell biology & Physiological Sciences; Faculty of Medicine; American University of Beirut, Beirut,. Lebanon.,Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Lebanon
| | - Malak Fouani
- Department of anatomy, Cell biology & Physiological Sciences; Faculty of Medicine; American University of Beirut, Beirut,. Lebanon
| | - Nada Lawand
- Department of anatomy, Cell biology & Physiological Sciences; Faculty of Medicine; American University of Beirut, Beirut,. Lebanon.,Department of Neurology; Faculty of Medicine; American University of Beirut, Beirut, Lebanon
| |
Collapse
|
9
|
Zhang Y, Yang J, Yang X, Wu Y, Liu J, Wang Y, Huo F, Yan C. The 5-HT 6 Receptors in the Ventrolateral Orbital Cortex Attenuate Allodynia in a Rodent Model of Neuropathic Pain. Front Neurosci 2020; 14:884. [PMID: 32973437 PMCID: PMC7461796 DOI: 10.3389/fnins.2020.00884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
Mechanical allodynia, characterized by a painful sensation induced by innocuous stimuli, is thought to be caused by disruption in pain-related regions. Identification and reversal of this pathologic neuroadaptation are therefore beneficial for clinical treatment. Previous evidence suggests that 5-HT6 receptors in the ventrolateral orbital cortex (VLO) are involved in neuropathic pain, but their function is poorly understood. The aim of the present study is to unveil the role of 5-HT6 receptors in the VLO and the underlying mechanisms in pain modulation. Here, by using the spared nerve injury (SNI) pain model, first, we report that 5-HT6 receptor protein decreased in the contralateral VLO compared with the ipsilateral VLO in rats with allodynia. Second, microinjection of the selective 5-HT6 receptor agonists EMD-386088 and WAY-208466 into the contralateral VLO consistently and significantly depressed allodynia. Third, microinjection of the selective antagonist SB-258585 blocked the agonist-induced anti-allodynic effect, while the antagonist applied alone to the VLO had no effect. Furthermore, the anti-nociceptive effect of EMD-386088 on neuropathic pain was prevented by the adenylate cyclase (AC) inhibitor SQ-22536, and protein kinase A (PKA) inhibitor H89, suggesting that AC/PKA signaling might underlie the antinociception of agonists. Finally, the 5-HT6 receptors were found to be colocalized with a glutamate transporter (EAAC1) by immunofluorescent staining, and the glutamate receptor antagonist kynurenic acid was found to completely block antinociception. These findings indicated that the antinociceptive effect of 5-HT6 receptor agonists might occur via interaction with the glutamatergic system. Altogether, the agonists activated 5-HT6 receptors present in the glutamatergic neurons in the VLO to facilitate the AC/PKA cascade, which subsequently might evoke glutamate release, thus depressing allodynia. These findings suggest a potential therapeutic role of 5-HT6 receptor agonists in treating neuropathic pain.
Collapse
Affiliation(s)
- Yuxiang Zhang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China.,The Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Jingsi Yang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China.,The Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Xixi Yang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China.,The Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Yanan Wu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China.,The Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Junlin Liu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China.,The Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Yangdong Wang
- The Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Fuquan Huo
- The Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chunxia Yan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China.,The Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Wu Y, Fu D, Gu Q, Li Y, Qian Z, Han J, Liu Z, Ren W, Liu Y. Activation of CB1 receptors on GABAergic interneurons in the ventrolateral orbital cortex induces analgesia. Neurosci Lett 2020; 736:135286. [PMID: 32745558 DOI: 10.1016/j.neulet.2020.135286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
The prefrontal ventrolateral orbital cortex (VLO) is involved in antinociception. It has been found that dopamine receptors, adrenoceptors, serotonin receptors and μ-opioid receptors are involved in this effect through direct/indirect activation of the VLO output neurons. However, the effect of CB1 receptors on the VLO modulation of pain has not been studied. In this study, we investigated whether activation of CB1 receptors in the VLO modulates nociception. A common peroneal nerve (CPN) ligation model was used to induce neuropathic pain in male mice. On day 13 after CPN ligation, spontaneous firing of the VLO pyramidal neurons was recorded and CB1 receptor level in the VLO was detected. Mechanical allodynia was measured after HU210 was microinjected into the VLO. Relative contribution of CB1 receptors on GABAergic neurons and glutamatergic neurons was determined by CB1 receptor knockdown using a viral strategy. Our data indicated that on day 13 after nerve injury, spontaneous firing of the VLO pyramidal neurons reduced significantly but was enhanced by intraperitoneal injection of HU210 (20 μg/kg), a potent CB1 receptor agonist. Expression of CB1 receptor in the VLO was up-regulated. Microinjection of HU210 into the VLO attenuated allodynia, and this effect was blocked by pre-microinjection of specific CB1 receptor antagonist AM281. Deletion of CB1 receptors on GABAergic neurons in the VLO can completely block HU210-induced analgesia. Thus, it can be concluded that activation of CB1 receptors on GABAergic interneurons in the VLO may be involved in analgesia effect of cannabinoids.
Collapse
Affiliation(s)
- Yuwei Wu
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China
| | - Dongqin Fu
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China
| | - Qiaofen Gu
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China
| | - Yongfeng Li
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China
| | - Zhaoqiang Qian
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China
| | - Jing Han
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China
| | - Zhiqiang Liu
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China
| | - Wei Ren
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China
| | - Yihui Liu
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China.
| |
Collapse
|
11
|
Chu Z, Liu P, Li X, Liu Y, Liu F, Lei G, Yang L, Deng L, Dang Y. Microinjection of valproic acid into the ventrolateral orbital cortex exerts an antinociceptive effect in a rat of neuropathic pain. Psychopharmacology (Berl) 2020; 237:2509-2516. [PMID: 32468099 DOI: 10.1007/s00213-020-05551-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/11/2020] [Indexed: 12/31/2022]
Abstract
RATIONALE Ventrolateral orbital cortex (VLO) has been found to play an important role in the regulation of neuropathic pain (NPP). As a traditional mood stabilizer, valproic acid (VPA) is currently employed in the treatment of NPP. However, whether VPA plays an analgesic role in VLO is still unknown. OBJECTIVES To elucidate the underlying analgesic mechanism of microinjection of VPA into the VLO on spared nerve injury (SNI), an animal model of NPP. METHODS We firstly examined the role of VPA by intraperitoneal and intral-VLO injection. Then, we accessed its role as a histone deacetylase inhibitor by intral-VLO microinjection of sodium butyrate. Finally, the GABAergic mechanism was measured through the intra-VLO microinjection of several agonists and antagonists of various GABAergic receptor subtypes. RESULTS Both intraperitoneal and intral-VLO injection of VPA attenuated SNI-induced mechanical allodynia. Microinjection of sodium butyrate, one of the histone deacetylase inhibitors, into the VLO attenuated the mechanical allodynia. Besides, microinjection of valpromide, a derivative of VPA which is a GABAergic agonist, into the VLO also attenuated allodynia. Furthermore, microinjection of picrotoxin, a GABAA receptor antagonist, into the VLO attenuated mechanical allodynia; microinjection of picrotoxin before VPA into the VLO increased VPA-induced anti-allodynia. Besides, microinjection of CGP 35348, a GABAB receptor antagonist, into the VLO attenuated allodynia; microinjection of CGP 35348 before VPA into the VLO also increased VPA-induced anti-allodynia. What is more, microinjection of imidazole-4-acetic acid (I4AA), a GABAC receptor antagonist, into the VLO enhanced allodynia; microinjection of I4AA before VPA into the VLO decreased VPA-induced anti-allodynia. CONCLUSIONS These results suggest that both the histone acetylation mechanism and GABAergic system are involved in mediating VLO-induced anti-hypersensitivity.
Collapse
Affiliation(s)
- Zheng Chu
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Peng Liu
- Department of Pharmacology and Toxicology, Institute of Basic Medicine Science, Xi'an Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Xin Li
- Zonglian College of Xi'an Jiaotong University, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yonglong Liu
- Zonglian College of Xi'an Jiaotong University, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Fei Liu
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Gang Lei
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Liu Yang
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Lisha Deng
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Yonghui Dang
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China. .,Key Laboratory of the Health Ministry for Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China. .,Key Laboratory of Shaanxi Province for Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China. .,State Key Laboratory for Manufacturing Systems Engineering, Xi'an, Shaanxi, People's Republic of China.
| |
Collapse
|
12
|
Formalin-induced and neuropathic pain altered time estimation in a temporal bisection task in rats. Sci Rep 2019; 9:18683. [PMID: 31822729 PMCID: PMC6904569 DOI: 10.1038/s41598-019-55168-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/25/2019] [Indexed: 01/31/2023] Open
Abstract
Time perception is an important ability that is related closely to humans’ and animals’ daily activities. It can be distorted by various emotional states. In human studies, experimental pain has been shown to prolong the perception of time. However, related animal studies are lacking. In this study, we used a temporal bisection task to investigate how acute inflammatory pain (induced by hind-paw formalin injection) and chronic neuropathic pain [induced by spinal nerve ligation (SNL)] affected time perception in rats. Rats were trained to recognize “short” (1200-ms) and “long” (2400-ms) anchor-duration pure tones and were rewarded for corresponding lever presses. During testing, rats perceived a series of intermediate-duration and anchor-duration pure tones, and selected levers corresponding to the “short” and “long” tones. After formalin injection, rats gave more “long” lever-press responses than after saline injection. The point of subjective equality after formalin injection also increased, suggesting that formalin-induced acute pain extended time perception. In contrast, rats that had undergone SNL gave fewer “long” lever-press responses compared with the sham surgery group. This animal study suggests that formalin-induced pain and neuropathic pain may have different effects on time perception.
Collapse
|
13
|
Zhang YX, Yang M, Liang F, Li SQ, Yang JS, Huo FQ, Yan CX. The pronociceptive role of 5-HT 6 receptors in ventrolateral orbital cortex in a rat formalin test model. Neurochem Int 2019; 131:104562. [PMID: 31580911 DOI: 10.1016/j.neuint.2019.104562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/16/2019] [Accepted: 09/30/2019] [Indexed: 01/23/2023]
Abstract
Recent studies have shown the 5-HT6 receptors are expressed in regions which are important in pain processing such as the cortex, amygdala, thalamus, PAG, spinal cord and dorsal root ganglia (DRG), suggesting a putative role of 5-HT6 receptors in pain modulation. The ventrolateral orbital cortex (VLO) is part of an endogenous analgesic system, consisting of the spinal cord - thalamic nucleus submedius (Sm) - VLO - periaqueductal gray (PAG) - spinal cord loop. The present study assessed the possible role of 5-HT6 receptors in the VLO in formalin-induced inflammatory pain model. Firstly we found that microinjection of selective 5-HT6 receptor agonists EMD-386088 (5 μg in 0.5 μl) and WAY-208466 (8 μg in 0.5 μl) both augmented 5% formalin-induced nociceptive behavior. Microinjection of selective 5-HT6 receptor antagonist SB-258585 (1,2 and 4 μg in 0.5 μl) significantly reduced formalin-induced flinching. Besides, the pronociceptive effects of EMD-386088 and WAY-208466 were dramatically reduced by SB-258585, implicating 5-HT6 receptor mechanisms in mediating these responses. In addition, the pronociceptive effect of EMD-386088 was also prevented by the adenylate cyclase (AC) inhibitor SQ-22536 (2 nmol in 0.5 μl) and the protein kinase A (PKA) inhibitor H89 (10 nmol in 0.5 μl), respectively. We further confirmed the above results with quantification of spinal c-fos expression. Taken together, our results suggested that 5-HT6 receptors play a pronociceptive role in the VLO in the rat formalin test due to its activation of AC - PKA pathway. Therefore, cerebral cortical 5-HT6 receptors could be a new target to develop analgesic drugs.
Collapse
Affiliation(s)
- Yu-Xiang Zhang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China
| | - Mei Yang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China
| | - Feng Liang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China
| | - Shao-Qing Li
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China
| | - Jing-Si Yang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China
| | - Fu-Quan Huo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| | - Chun-Xia Yan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; The Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China.
| |
Collapse
|
14
|
Microinjection of histamine and its H 3 receptor agonist and antagonist into the agranular insular cortex influence sensory and affective components of neuropathic pain in rats. Eur J Pharmacol 2019; 857:172450. [PMID: 31202805 DOI: 10.1016/j.ejphar.2019.172450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 01/01/2023]
Abstract
Many areas of the brain along with neurotransmitters involve in processing of nociceptive, emotional and cognitive dimensions of neuropathic pain. Brian neuronal histamine through H1, H2, H3 and H4 receptors mediates many physiological functions such as cognition, emotion and pain. In the present study we investigated the effects of intra-agranular insular cortex microinjection of histamine and its H3 receptor agonist and antagonist on sensory and affective aspects of neuropathic pain. Spared nerve injury model of neuropathic pain was used. Two guide cannulas were surgically implanted in the right and left sides of agranular insular cortex. Sensory component (mechanical hyperalgesia) was recorded by application of von Frey filaments onto the plantar surface of the hind paw. Area under curve of mechanical hyperalgesia was calculated. Affective aspect (place escape avoidance paradigm) was recorded using an inverse white/black chamber. Histamine (0.5, 1 and 2 μg/site) and thioperamide (a histamine H3 receptor antagonist, 4 μg/site) decreased, whereas immepip (a histamine H3 receptor agonist, 2 μg/site) increased the percentages of paw withdrawal frequency and time spent in white side of white/black box. Prior administration of thioperamide (4 μg/site) increased the suppressive effects induced by histamine and inhibited immepip (2 μg/site)-induced hyperalgesia and aversion. Based on the present results, it is concluded that histamine and its H3 receptor at the agranular insular cortex level may involve in modulation of sensory and affective components of neuropathic pain.
Collapse
|
15
|
Barbaros MB, Can ÖD, Üçel Uİ, Turan Yücel N, Demir Özkay Ü. Antihyperalgesic Activity of Atomoxetine on Diabetes-Induced Neuropathic Pain: Contribution of Noradrenergic and Dopaminergic Systems. Molecules 2018; 23:molecules23082072. [PMID: 30126223 PMCID: PMC6222656 DOI: 10.3390/molecules23082072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 01/17/2023] Open
Abstract
Atomoxetine is a selective noradrenaline reuptake inhibitor drug. Based on the knowledge that agents increasing monoamine levels in the central nervous system have therapeutic potential for neuropathic pain, it is planned to investigate the possible efficacy of atomoxetine on diabetes-induced hyperalgesia, in this study. Randall-Selitto (mechanical noxious stimuli) and Hargreaves (thermal noxious stimuli) tests were used to evaluate nociceptive perception of rats. Obtained data indicated that streptozotocin-induced diabetes causes significant decreases in the paw withdrawal threshold and paw withdrawal latency values of the animals, respectively. However, atomoxetine administered at 3 mg/kg/day for 7 and 14 days improved these diabetes-induced hyperalgesia responses. Furthermore, antihyperalgesic activity was antagonized with α-methyl-para-tyrosine methyl ester, phentolamine, propranolol, and sulpiride pre-treatments. The same effect was not reversed, however, by SCH 23390. These findings demonstrated, for the first time, that atomoxetine possesses significant antihyperalgesic activity on diabetes-induced neuropathic pain and this effect seems to be mediated by α- and β-adrenergic and D₂/D₃ dopaminergic receptors. Results of this present study seem to offer a new indication for an old drug; atomoxetine, but these preclinical data should first be confirmed with further well-designed clinical trials.
Collapse
Affiliation(s)
- Mustafa Burak Barbaros
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Özgür Devrim Can
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Umut İrfan Üçel
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Nazlı Turan Yücel
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Ümide Demir Özkay
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| |
Collapse
|
16
|
Ong WY, Stohler CS, Herr DR. Role of the Prefrontal Cortex in Pain Processing. Mol Neurobiol 2018; 56:1137-1166. [PMID: 29876878 PMCID: PMC6400876 DOI: 10.1007/s12035-018-1130-9] [Citation(s) in RCA: 380] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022]
Abstract
The prefrontal cortex (PFC) is not only important in executive functions, but also pain processing. The latter is dependent on its connections to other areas of the cerebral neocortex, hippocampus, periaqueductal gray (PAG), thalamus, amygdala, and basal nuclei. Changes in neurotransmitters, gene expression, glial cells, and neuroinflammation occur in the PFC during acute and chronic pain, that result in alterations to its structure, activity, and connectivity. The medial PFC (mPFC) could serve dual, opposing roles in pain: (1) it mediates antinociceptive effects, due to its connections with other cortical areas, and as the main source of cortical afferents to the PAG for modulation of pain. This is a ‘loop’ where, on one side, a sensory stimulus is transformed into a perceptual signal through high brain processing activity, and perceptual activity is then utilized to control the flow of afferent sensory stimuli at their entrance (dorsal horn) to the CNS. (2) It could induce pain chronification via its corticostriatal projection, possibly depending on the level of dopamine receptor activation (or lack of) in the ventral tegmental area-nucleus accumbens reward pathway. The PFC is involved in biopsychosocial pain management. This includes repetitive transcranial magnetic stimulation, transcranial direct current stimulation, antidepressants, acupuncture, cognitive behavioral therapy, mindfulness, music, exercise, partner support, empathy, meditation, and prayer. Studies demonstrate the role of the PFC during placebo analgesia, and in establishing links between pain and depression, anxiety, and loss of cognition. In particular, losses in PFC grey matter are often reversible after successful treatment of chronic pain.
Collapse
Affiliation(s)
- Wei-Yi Ong
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore.
- Neurobiology and Ageing Research Programme, National University of Singapore, Singapore, 119260, Singapore.
| | | | - Deron R Herr
- Department of Pharmacology, National University of Singapore, Singapore, 119260, Singapore.
| |
Collapse
|
17
|
Samur DN, Arslan R, Aydın S, Bektas N. Valnoctamide: The effect on relieving of neuropathic pain and possible mechanisms. Eur J Pharmacol 2018. [PMID: 29522726 DOI: 10.1016/j.ejphar.2018.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The purpose of this study is to assess the possible anti-allodynic and antihyperalgesic effect of valnoctamide, an amide derivative of valproic acid, at the doses of 40, 70 and 100 mg/kg (i.p.) in neuropathic pain model induced by chronic constriction injury in rats, by using dynamic plantar test and plantar test (Hargreaves method), and to evaluate that the possible role of certain serotonin, noradrenergic, opioid and GABAergic receptors by pre-treatment with 1 mg/kg (i.p.) ketanserin, yohimbine, naloxone and 0.5 mg/kg (i.p.) bicuculline, respectively. 70 and 100 mg/kg valnoctamide significantly increased the mechanical and thermal thresholds decreasing with the development of neuropathy and demonstrated anti-allodynic and antihyperalgesic activity. Limited contribution of serotonin 5-HT2A/2C receptors and α2-adrenoceptors, and significant contribution of GABAA and opioid receptors to the anti-allodynic activity have been identified whereas remarkable contribution of opioid receptors and significant contribution of serotonin 5-HT2A/2C receptors, α2-adrenoceptors, GABAA receptors to the antihyperalgesic activity have been identified. Based upon these findings and considering that valnoctamide has safer side-effect profile, it is possible to say that valnoctamide is a potential agent that might be used alone or in combination with the other effective therapies in the alleviating of neuropathic pain.
Collapse
Affiliation(s)
- Dilara Nemutlu Samur
- Anadolu University, Institute of Health Sciences, Department of Pharmacology, 26470 Eskisehir, Turkey; Alanya Alaaddin Keykubat University, Faculty of Medicine, Department of Pharmacology, 07450 Antalya, Turkey.
| | - Rana Arslan
- Anadolu University, Faculty of Pharmacy, Department of Pharmacology, 26470 Eskisehir, Turkey.
| | - Sule Aydın
- Eskisehir Osmangazi University, Faculty of Medicine, Department of Pharmacology, 26040 Eskisehir, Turkey.
| | - Nurcan Bektas
- Anadolu University, Faculty of Pharmacy, Department of Pharmacology, 26470 Eskisehir, Turkey.
| |
Collapse
|