1
|
Amini J, Sanchooli N, Milajerdi MH, Baeeri M, Haddadi M, Sanadgol N. The interplay between tauopathy and aging through interruption of UPR/Nrf2/autophagy crosstalk in the Alzheimer's disease transgenic experimental models. Int J Neurosci 2024; 134:1049-1067. [PMID: 37132251 DOI: 10.1080/00207454.2023.2210409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 10/14/2022] [Accepted: 04/24/2023] [Indexed: 05/04/2023]
Abstract
PURPOSE Alzheimer's disease (AD) is the most common form of tauopathy that usually occursduring aging and unfolded protein response (UPR), oxidative stress and autophagy play a crucialrole in tauopathy-induced neurotoxicity. The aim of this study was to investigate the effects oftauopathy on normal brain aging in a Drosophila model of AD. METHOD We investigated the interplay between aging (10, 20, 30, and 40 days) and human tauR406W (htau)-induced cell stress in transgenic fruit flies. RESULTS Tauopathy caused significant defects in eye morphology, a decrease in motor function and olfactory memory performance (after 20 days), and an increase in ethanol sensitivity (after 30 days). Our results showed a significant increase in UPR (GRP78 and ATF4), redox signalling (p-Nrf2, total GSH, total SH, lipid peroxidation, and antioxidant activity), and regulatory associated protein of mTOR complex 1 (p-Raptor) activity in the control group after 40 days, while the tauopathy model flies showed an advanced increase in the above markers at 20 days of age. Interestingly, only the control flies showed reduced autophagy by a significant decrease in the autophagosome formation protein (dATG1)/p-Raptor ratio at 40 days of age. Our results were also confirmed by bioinformatic analysis of microarray data from tauPS19 transgenic mice (3, 6, 9, and 12 months), in which tauopathy increased expression of heme oxygenase 1, and glutamate-cysteine ligase catalytic subunit and promote aging in transgenic animals. CONCLUSIONS Overall, we suggest that the neuropathological effects of tau aggregates may be accelerated brain aging, where redox signaling and autophagy efficacy play an important role.
Collapse
Affiliation(s)
- Javad Amini
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Naser Sanchooli
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | | | - Maryam Baeeri
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences, and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Haddadi
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
2
|
Zhang S, Zheng R, Long J, Zhu Y, Tan T. Computational design of carboxylase for the synthesis of 4-hydroxyisophthalic acid from p-hydroxybenzoic acid by fixing CO 2. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121703. [PMID: 38996602 DOI: 10.1016/j.jenvman.2024.121703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Carbon dioxide (CO2) emissions constitute the primary contribution to global climate change. Synthetic CO2 fixation represents an exceptionally appealing and sustainable method for carbon neutralization. Unlike the limitations of chemical catalysis, biological CO2 fixation displays high selectivity and the ability to operate under mild conditions. The superfamily of amidohydrolases has demonstrated the ability to synthesize a range of aromatic monocarboxylic acids. However, there is a scarcity of reported carboxylases capable of synthesizing aromatic dicarboxylic acids. Among these, 4-hydroxyisophthalic acid holds significant potential for applications across various fields, yet no enzyme has been reported for its synthesis. In this study, we developed for the first time that exhibits starting activity in fixing CO2 to synthesize 4-hydroxyisophthalic acid. Furthermore, we have devised a computational strategy that effectively enhances the catalytic activity of this enzyme. A focused library comprising only 13 variants was generated. Experimental validation confirmed a threefold improvement in the carboxylation activity of the optimal variant (L47M). The computational enzyme design strategy proposed in this paper demonstrates broad applicability in developing carboxylases for synthesizing other aromatic dicarboxylic acids. This lays the groundwork for leveraging biocatalysis in industrial synthesis for CO2 fixation.
Collapse
Affiliation(s)
- Shiding Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ruonan Zheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jianyu Long
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yushan Zhu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China; National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Tianwei Tan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China; National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
3
|
Ibrahim KM, Darwish SF, Mantawy EM, El-Demerdash E. Molecular mechanisms underlying cyclophosphamide-induced cognitive impairment and strategies for neuroprotection in preclinical models. Mol Cell Biochem 2024; 479:1873-1893. [PMID: 37522975 PMCID: PMC11339103 DOI: 10.1007/s11010-023-04805-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/01/2023] [Indexed: 08/01/2023]
Abstract
Cyclophosphamide has drastically enhanced the expectancy and quality of life of cancer patients. However, it is accompanied by diverse neurological complications which are considered a dose-limiting adverse effect. Neurotoxicity caused by cyclophosphamide can manifest in numerous manners including anxiety, depression, motor dysfunction and cognitive deficits. This review article offers an overview on cyclophosphamide-induced neurotoxicity, providing a unified point of view on the possible underlying molecular mechanisms including oxidative brain damage, neuroinflammation, apoptotic neuronal cell death as well as disruption of the balance of brain neurotransmitters and neurotrophic factors. Besides, this review sheds light on the promising protective agents that have been investigated using preclinical animal models as well as their biological targets and protection mechanisms. Despite promising results in experimental models, none of these agents has been studied in clinical trials. Thus, there is lack of evidence to advocate the use of any neuroprotective agent in the clinical setting. Furthermore, none of the protective agents has been evaluated for its effect on the anticancer activity of cyclophosphamide in tumor-bearing animals. Therefore, there is a great necessity for adequate well-designed clinical studies for evaluation of the therapeutic values of these candidates. Conclusively, this review summarizes the molecular mechanisms accounting for cyclophosphamide-induced neurotoxicity together with the potential protective strategies seeking for downgrading this neurological complication, thus enhancing the quality of life and well-being of cancer patients treated with cyclophosphamide.
Collapse
Affiliation(s)
- Kamilia M Ibrahim
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samar F Darwish
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Eman M Mantawy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Preclinical and Translational Research Center, Faculty of Pharmacy, Ain Shams University, Abasia, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
- Preclinical and Translational Research Center, Faculty of Pharmacy, Ain Shams University, Abasia, Cairo, Egypt.
| |
Collapse
|
4
|
Niveditha S, Shivanandappa T. Potentiation of paraquat toxicity by inhibition of the antioxidant defenses and protective effect of the natural antioxidant, 4-hydroxyisopthalic acid in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2022; 259:109399. [PMID: 35753646 DOI: 10.1016/j.cbpc.2022.109399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/23/2022] [Accepted: 06/19/2022] [Indexed: 11/25/2022]
Abstract
Exposure to pesticides such as paraquat (PQ) is known to induce oxidative stress-mediated damage, which is implicated in neurodegenerative diseases. The antioxidant enzymes are part of the endogenous defense mechanisms capable of protecting against oxidative damage, and down-regulation of these enzymes results in elevated oxidative stress. In this study, we have evaluated the protective action of 4-hydroxyisophthalic acid (DHA-I), a novel bioactive molecule from the roots of D. hamiltonii, against PQ toxicity and demonstrated the protective role of endogenous antioxidant enzymes under the condition of oxidative stress using Drosophila model. The activity of the major antioxidant enzymes, superoxide dismutase 1 (SOD1) and catalase, was suppressed either by RNAi-mediated post transcriptional gene silencing or chemical inhibition. With the decreased in vivo activity of either SOD1 or catalase, Drosophila exhibited hypersensitivity to PQ toxicity, demonstrating the essential role of antioxidant enzymes in the mechanism of defense against PQ-induced oxidative stress. Dietary supplementation of DHA-I increased the resistance of Drosophila depleted in either SOD1 or catalase to PQ toxicity. Enhanced survival of flies against PQ toxicity indicates the protective role of DHA-I against oxidative stress-mediated damage under the condition of compromised antioxidant defenses.
Collapse
Affiliation(s)
- S Niveditha
- Neurobiology laboratory, Department of Zoology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - T Shivanandappa
- Neurobiology laboratory, Department of Zoology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India.
| |
Collapse
|
5
|
Smoot J, Padilla S, Farraj AK. The utility of alternative models in particulate matter air pollution toxicology. Curr Res Toxicol 2022; 3:100077. [PMID: 35676914 PMCID: PMC9168130 DOI: 10.1016/j.crtox.2022.100077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Countless unique particulate matter (PM) samples with limited or no toxicity information. Alternative in vivo models offer greater throughput than traditional mammalian models. Use of zebrafish, fruit flies, and nematodes in PM toxicology lacks systematic review. Their utility in PM toxicity and mechanistic research and as screening tools is reviewed.
Exposure to particulate matter (PM) air pollution increases risk of adverse human health effects. As more attention is brought to bear on the problem of PM, traditional mammalian in vivo models struggle to keep up with the risk assessment challenges posed by the countless number of unique PM samples across air sheds with limited or no toxicity information. This review examines the utility of three higher throughput, alternative, in vivo animal models in PM toxicity research: Danio rerio (zebrafish), Caenorhabditis elegans (nematode), and Drosophila melanogaster (fruit fly). These model organisms vary in basic biology, ease of handling, methods of exposure to PM, number and types of available assays, and the degree to which they mirror human biology and responsiveness, among other differences. The use of these models in PM research dates back over a decade, with assessments of the toxicity of various PM sources including traffic-related combustion emissions, wildland fire smoke, and coal fly ash. This article reviews the use of these alternative model organisms in PM toxicity studies, their biology, the various assays developed, endpoints measured, their strengths and limitations, as well as their potential role in PM toxicity assessment and mechanistic research going forward.
Collapse
Affiliation(s)
- Jacob Smoot
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Stephanie Padilla
- Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, US EPA, RTP, NC, United States
| | - Aimen K. Farraj
- Public Health and Integrated Toxicology Division, US EPA, RTP, NC, United States
- Corresponding author.
| |
Collapse
|
6
|
He J, Li X, Yang S, Li Y, Lin X, Xiu M, Li X, Liu Y. Gastrodin extends the lifespan and protects against neurodegeneration in the Drosophila PINK1 model of Parkinson's disease. Food Funct 2021; 12:7816-7824. [PMID: 34232246 DOI: 10.1039/d1fo00847a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Gastrodin is the main bioactive ingredient of a famous Chinese herb Rhizoma Gastrodiae. Many studies have reported that gastrodin has antioxidative and neuroprotective effects, although its effect on longevity and the mechanism of neuroprotection have not been well studied. Here, we use Drosophila melanogaster as a model to investigate the longevity and neuroprotective effects of gastrodin. Gastrodin significantly extended the lifespan, increased the climbing ability, enhanced the resistance to oxidative stress, increased the enzyme activities of superoxide dismutase (SOD) and catalase (CAT), and promoted the expression of anti-oxidative genes in old flies. The food intake, reproduction and starvation resistance were not affected in flies treated with gastrodin. Moreover, gastrodin delayed the onset of Parkinson-like phenotypes in Pink1B9 mutant flies, including the prolongation of the lifespan, rescue of the climbing ability, rescue of the progressive loss of a cluster of dopaminergic neurons in the protocerebral posterial lateral 1 region, and increase of the dopamine content in the brain. Gastrodin did not ameliorate the tau-induced neurobehavioral deficits in the fly AD model of taupathy. Together, these results indicate that gastrodin could prolong the lifespan by regulating the antioxidant ability, and protect against neurodegeneration in the Pink1B9 model of PD. This suggests that gastrodin can be considered as an ideal therapeutic candidate for drug development towards anti-aging.
Collapse
Affiliation(s)
- Jianzheng He
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
α-Synuclein E46K Mutation and Involvement of Oxidative Stress in a Drosophila Model of Parkinson's Disease. PARKINSONS DISEASE 2021; 2021:6621507. [PMID: 34285796 PMCID: PMC8275411 DOI: 10.1155/2021/6621507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/10/2021] [Accepted: 06/23/2021] [Indexed: 01/24/2023]
Abstract
Parkinson's disease (PD) is an age-associated neurodegenerative condition in which some genetic variants are known to increase disease susceptibility on interaction with environmental factors inducing oxidative stress. Different mutations in the SNCA gene are reported as the major genetic contributors to PD. E46K mutation pathogenicity has not been investigated as intensive as other SNCA gene mutations including A30P and A53T. In this study, based on the GAL4-UAS binary genetic tool, transgenic Drosophila melanogaster flies expressing wild-type and E46K-mutated copies of the human SNCA gene were constructed. Western blotting, immunohistochemical analysis, and light and confocal microscopy of flies' brains were undertaken along with the survival rate measurement, locomotor function assay, and ethanol and paraquat (PQ) tolerance to study α-synuclein neurotoxicity. Biochemical bioassays were carried out to investigate the activity of antioxidant enzymes and alterations in levels of oxidative markers following damages induced by human α-synuclein to the neurons of the transgenic flies. Overexpression of human α-synuclein in the central nervous system of these transgenic flies led to disorganized ommatidia structures and loss of dopaminergic neurons. E46K α-synuclein caused remarkable climbing defects, reduced survivorship, higher ethanol sensitivity, and increased PQ-mediated mortality. A noticeable decline in activity of catalase and superoxide dismutase enzymes besides considerable increase in the levels of lipid peroxidation and reactive oxygen species was observed in head capsule homogenates of α-synuclein-expressing flies, which indicates obvious involvement of oxidative stress as a causal factor in SNCAE46K neurotoxicity. In all the investigations, E46K copy of the SNCA gene was found to impose more severe defects when compared to wild-type SNCA. It can be concluded that the constructed Drosophila models developed PD-like symptoms that facilitate comparative studies of molecular and cellular pathways implicated in the pathogenicity of different α-synuclein mutations.
Collapse
|
8
|
Zarini-Gakiye E, Sanadgol N, Parivar K, Vaezi G. Alpha-lipoic acid ameliorates tauopathy-induced oxidative stress, apoptosis, and behavioral deficits through the balance of DIAP1/DrICE ratio and redox homeostasis: Age is a determinant factor. Metab Brain Dis 2021; 36:669-683. [PMID: 33547995 DOI: 10.1007/s11011-021-00679-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/26/2021] [Indexed: 12/20/2022]
Abstract
Tauopathies belong to a heterogeneous class of neuronal diseases resulting in the metabolic disturbance. A disulfide natural compound of Alpha-Lipoic acid (ALA) has shown numerous pharmacologic, antioxidant, and neuroprotective activities under neuropathological conditions. The aim of this study was to investigate the neuroprotective effects of ALA on the tauopathy-induced oxidative disturbance and behavioral deficits. The transgenic Drosophila model of tauopathy induced by human tauR406W using GAL4/UAS system and effects of ALA (0.001, 0.005, and 0.025 % w/w of diet) on the neuropathology of tau in younger (20 days) and older (30 days) adults were investigated via biochemical, molecular, behavioral and in-situ tissue analyses. Expression of apoptosis-related proteins involving Drosophila Cyt-c-d (trigger of intrinsic apoptosis) and DrICE (effector caspase) were upregulated in both ages (20 and 30 days) and DIAP1 (caspase inhibitor) has reduced only in older model flies compared to the controls. Remarkably, all doses of ALA increased DIAP1 and glutathione (GSH) as well as reducing Cyt-c-d and lipid peroxidation (LPO) in the younger flies compared to the model flies. Moreover, the higher doses of ALA were able to decrease thiol concentrations, to increase total antioxidant capacity, and to improve the behavioral deficits (locomotor function, olfactory memory, and ethanol sensitivity) in the younger flies. On the other hand, only a higher dose of ALA was able to decrease DrICE, Cyt-c-d, LPO, and thiol as well as increasing antioxidant capacity and decreasing ethanol sensitivity (ST50, RT50) in the older flies. TUNEL assay showed that all doses of ALA could potentially increase the DIAP1/DrICE ratio and exert anti-apoptotic effects on younger, but not on the older adults. Furthermore, data obtained from the in-situ ROS assay confirmed that only a higher dose of ALA significantly decreased the ROS level at both ages. Our data showed that an effective neuroprotective dose of ALA and its mechanism of action on this model of tauopathy could potentially be influenced by longevity. Moreover, it was shown that ALA prevents apoptosis and decreases the redox homeostasis, and this partially explains the mechanism by which ALA diminishes behavioral deficits.
Collapse
Affiliation(s)
- Elahe Zarini-Gakiye
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran.
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Gholamhassan Vaezi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
9
|
Zarini-Gakiye E, Vaezi G, Parivar K, Sanadgol N. Age and Dose-Dependent Effects of Alpha-Lipoic Acid on Human Microtubule- Associated Protein Tau-Induced Endoplasmic Reticulum Unfolded Protein Response: Implications for Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:451-464. [PMID: 33573583 DOI: 10.2174/1871527320666210126114442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/21/2020] [Accepted: 11/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In human tauopathies, pathological aggregation of misfolded/unfolded proteins, particularly microtubule-associated protein tau (MAPT, tau) is considered to be an essential mechanism that triggers the induction of endoplasmic reticulum (ER) stress. OBJECTIVE Here, we assessed the molecular effects of natural antioxidant alpha-lipoic acid (ALA) in human tauR406W (hTau)-induced ER unfolded protein response (ERUPR) in fruit flies. METHODS In order to reduce hTau neurotoxicity during brain development, we used a transgenic model of tauopathy where the maximum toxicity was observed in adult flies. Then, the effects of ALA (0.001, 0.005, and 0.025% w/w of diet) in htau-induced ERUPR and behavioral dysfunctions in the ages 20 and 30 days were evaluated in Drosophila melanogaster. RESULTS Data from expression (mRNA and protein) patterns of htau, analysis of eyes external morphology as well as larvae olfactory memory were confirmed by our tauopathy model. Moreover, the expression of ERUPR-related proteins involving Activating Transcription Factor 6 (ATF6), inositol regulating enzyme 1 (IRE1), and protein kinase RNA-like ER kinase (PERK) wase upregulated and locomotor function decreased in both ages of the model flies. Remarkably, the lower dose of ALA modified ERUPR and supported the reduction of behavioral deficits in youngest adults through the enhancement of GRP87/Bip, reduction of ATF6, downregulation of PERK-ATF4 pathway, and activation of the IRE1-XBP1 pathway. On the other hand, only a higher dose of ALA affected the ERUPR via moderation of PERK-ATF4 signaling in the oldest adults. As ALA also exerts higher protective effects on the locomotor function of younger adults when htauR406Wis expressed in all neurons (htau-elav) and mushroom body neurons (htau-ok), we proposed that ALA has age-dependent effects in this model. CONCLUSION Taken together, based on our results, we conclude that aging potentially influences the ALA effective dose and mechanism of action on tau-induced ERUPR. Further molecular studies will warrant possible therapeutic applications of ALA in age-related tauopathies.
Collapse
Affiliation(s)
- Elahe Zarini-Gakiye
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Gholamhassan Vaezi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| |
Collapse
|
10
|
The distinctive role of tau and amyloid beta in mitochondrial dysfunction through alteration in Mfn2 and Drp1 mRNA Levels: A comparative study in Drosophila melanogaster. Gene 2020; 754:144854. [PMID: 32525045 DOI: 10.1016/j.gene.2020.144854] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/26/2020] [Accepted: 06/03/2020] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is one of the most common forms of neurodegenerative diseases. Aggregation of Aβ42 and hyperphosphorylated tau are two major hallmarks of AD. Whether different forms of tau (soluble or hyperphosphorylated) or Aβ are the main culprit in the events observed in AD is still under investigation. Here, we examined the effect of wild-type, prone to hyperphosphorylation and hyperphosphorylated tau, and also Aβ42 peptide on the brain antioxidant defense system and two mitochondrial genes, Marf (homologous to human MFN2) and Drp1 involved in mitochondrial dynamics in transgenic Drosophila melanogaster. AD is an age associated disease. Therefore, the activity of antioxidant agents, CAT, SOD, and GSH levels and the mRNA levels of Marf and Drp1 were assessed in different time points of the flies lifespan. Reduction in cognitive function and antioxidant activity was observed in all transgenic flies at any time point. The most and the least effect on the eye phenotype was exerted by hyperphosphorylated tau and Aβ42, respectively. In addition, the most remarkable alteration in Marf and Drp1 mRNA levels was observed in transgenic flies expressing hyperphosphorylated tau when pan neuronal expression of transgenes was applied. However, when the disease causing gene expression was confined to the mushroom body, Marf and Drp1 mRNA levels alteration was more prominent in tauWT and tauE14 transgenic flies, respectively. In conclusion, in spite of antioxidant deficiency caused by different types of tau and Aβ42, it seems that tau exerts more toxic effect on the eye phenotype and mitochondrial genes regulation (Marf and Drp1). Moreover, different mechanisms seem to be involved in mitochondrial genes dysregulation when Aβ or various forms of tau are expressed.
Collapse
|
11
|
S N, Shivanandappa T. Neuroprotective action of 4-Hydroxyisophthalic acid against paraquat-induced motor impairment involves amelioration of mitochondrial damage and neurodegeneration in Drosophila. Neurotoxicology 2018; 66:160-169. [DOI: 10.1016/j.neuro.2018.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/14/2023]
|
12
|
Panchal K, Tiwari AK. Drosophila melanogaster "a potential model organism" for identification of pharmacological properties of plants/plant-derived components. Biomed Pharmacother 2017; 89:1331-1345. [PMID: 28320100 DOI: 10.1016/j.biopha.2017.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 12/18/2022] Open
Abstract
Plants/plant-derived components have been used from ancient times to treat/cure several human diseases. Plants and their parts possess several chemical components that play the vital role in the improvement of human health and their life expectancy. Allopathic medicines have been playing a key role in the treatment of several diseases. Though allopathic medicines provide fast relief, long time consumption cause serious health concerns such as hyperallergic reactions, liver damage, etc. So, the study of medicinal plants which rarely cause any side effect is very important to mankind. Plants contain many health benefit properties like antioxidant, anti-aging, neuroprotective, anti-genotoxic, anti-mutagenic and bioinsecticidal activity. Thus, identification of pharmacological properties of plants/plant-derived components are of utmost importance to be explored. Several model organisms have been used to identify the pharmacological properties of the different plants or active components therein and Drosophila is one of them. Drosophila melanogaster "fruit fly" is a well understood, high-throughput model organism being used more than 110 years to study the different biological aspects related to the development and diseases. Most of the developmental and cell signaling pathways and ∼75% human disease-related genes are conserved between human and Drosophila. Using Drosophila, one can easily analyze the pharmacological properties of plants/plant-derived components by performing several assays available with flies such as survivorship, locomotor, antioxidant, cell death, etc. The current review focuses on the potential of Drosophila melanogaster for the identification of medicinal/pharmacological properties associated with plants/plant-derived components.
Collapse
Affiliation(s)
- Komal Panchal
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research/IAR, Koba Institutional Area, Gandhinagar 382 007, Gujarat, India.
| | - Anand K Tiwari
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research/IAR, Koba Institutional Area, Gandhinagar 382 007, Gujarat, India.
| |
Collapse
|