1
|
Sochacka M, Hoser G, Remiszewska M, Suchocki P, Sikora K, Giebułtowicz J. Effect of Selol on Tumor Morphology and Biochemical Parameters Associated with Oxidative Stress in a Prostate Tumor-Bearing Mice Model. Nutrients 2024; 16:2860. [PMID: 39275182 PMCID: PMC11397541 DOI: 10.3390/nu16172860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024] Open
Abstract
Prostate cancer is the leading cause of cancer death in men. Some studies suggest that selenium Se (+4) may help prevent prostate cancer. Certain forms of Se (+4), such as Selol, have shown anticancer activity with demonstrated pro-oxidative effects, which can lead to cellular damage and cell death, making them potential candidates for cancer therapy. Our recent study in healthy mice found that Selol changes the oxidative-antioxidative status in blood and tissue. However, there are no data on the effect of Selol in mice with tumors, considering that the tumor itself influences this balance. This research investigated the impact of Selol on tumor morphology and oxidative-antioxidative status in blood and tumors, which may be crucial for the formulation's effectiveness. Our study was conducted on healthy and tumor-bearing animal models, which were either administered Selol or not. We determined antioxidant enzyme activities (Se-GPx, GPx, GST, and TrxR) spectrophotometrically in blood and the tumor. Furthermore, we measured plasma prostate-specific antigen (PSA) levels, plasma and tumor malondialdehyde (MDA) concentration as a biomarker of oxidative stress, selenium (Se) concentrations and the tumor ORAC value. Additionally, we assessed the impact of Selol on tumor morphology and the expression of p53, BCL2, and Ki-67. The results indicate that treatment with Selol influences the morphology of tumor cells, indicating a potential role in inducing cell death through necrosis. Long-term supplementation with Selol increased antioxidant enzyme activity in healthy animals and triggered oxidative stress in cancer cells, activating their antioxidant defense mechanisms. This research pathway shows promise in understanding the anticancer effects of Selol. Selol appears to increase the breakdown of cancer cells more effectively in small tumors than in larger ones. In advanced tumors, it may accelerate tumor growth if used as monotherapy. Therefore, further studies are necessary to evaluate its efficacy either in combination therapy or for the prevention of recurrence.
Collapse
Affiliation(s)
- Małgorzata Sochacka
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, PL-02097 Warsaw, Poland
| | - Grażyna Hoser
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Ceglowska 80, PL-01809 Warsaw, Poland
| | - Małgorzata Remiszewska
- Department of Pharmacology, National Medicines Institute, 30/34 Chełmska Street, PL-00725 Warsaw, Poland
| | - Piotr Suchocki
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, PL-02097 Warsaw, Poland
| | - Krzysztof Sikora
- Pathomorphology Centre, National Medical Institute of the Ministry of the Interior and Administration, 137 Wołoska Street, PL-02507 Warsaw, Poland
| | - Joanna Giebułtowicz
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, PL-02097 Warsaw, Poland
| |
Collapse
|
2
|
Egilmez CB, Pazarlar BA, Erdogan MA, Uyanikgil Y, Erbas O. Choline chloride shows gender-dependent positive effects on social deficits, learning/memory impairments, neuronal loss and neuroinflammation in the lipopolysaccharide-induced rat model of autism. Int J Dev Neurosci 2024; 84:392-405. [PMID: 38721665 DOI: 10.1002/jdn.10335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/28/2024] [Accepted: 04/24/2024] [Indexed: 08/06/2024] Open
Abstract
The neuroprotective effects of choline chloride, an essential nutrient, a precursor for the acetylcholine and synthesis of membrane phospholipids, have been associated with neurological and neurodegenerative diseases. Its contribution to autism spectrum disorder, a neurodevelopmental disorder, remains unknown. Thus, we aimed to evaluate the effects of choline chloride on social behaviours, and histopathological and biochemical changes in a rat autism model. The autism model was induced by administration of 100 μg/kg lipopolysaccharide (LPS) on the 10th day of gestation. Choline chloride treatment (100 mg/kg/day) was commenced on PN5 and maintained until PN50. Social deficits were assessed by three-chamber sociability, open field, and passive avoidance learning tests. Tumour necrosis factor alpha (TNF-α), interleukin-2 (IL) and IL-17, nerve growth factor (NGF), and glutamate decarboxylase 67 (GAD67) levels were measured to assess neuroinflammatory responses. In addition, the number of hippocampal and cerebellar neurons and glial fibrillary acidic protein (GFAP) expression were evaluated. Social novelty and passive avoidance learning tests revealed significant differences in choline chloride-treated male rats compared with saline-treated groups. TNF-α, IL-2, and IL-17 were significantly decreased after choline chloride treatment in both males and females. NGF and GAD67 levels were unchanged in females, while there were significant differences in males. Histologically, significant changes in terms of gliosis were detected in hippocampal CA1 and CA3 regions and cerebellum in choline chloride-treated groups. The presence of ameliorative effects of choline chloride treatment on social behaviour and neuroinflammation through neuroinflammatory, neurotrophic, and neurotransmission pathways in a sex-dependent rat model of LPS-induced autism was demonstrated.
Collapse
Affiliation(s)
- Cansu Bilister Egilmez
- Department of Physiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | - Burcu Azak Pazarlar
- Department of Physiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Mumin Alper Erdogan
- Department of Physiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | - Yiğit Uyanikgil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Oytun Erbas
- Department of Physiology, Faculty of Medicine, Bilim University, Istanbul, Turkey
| |
Collapse
|
3
|
Pyka P, Garbo S, Fioravanti R, Jacob C, Hittinger M, Handzlik J, Zwergel C, Battistelli C. Selenium-containing compounds: a new hope for innovative treatments in Alzheimer's disease and Parkinson's disease. Drug Discov Today 2024; 29:104062. [PMID: 38871111 DOI: 10.1016/j.drudis.2024.104062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Neurodegenerative diseases are challenging to cure. To date, no cure has been found for Alzheimer's disease or Parkinson's disease, and current treatments are able only to slow the progression of the diseases and manage their symptoms. After an introduction to the complex biology of these diseases, we discuss the beneficial effect of selenium-containing agents, which show neuroprotective effects in vitro or in vivo. Indeed, selenium is an essential trace element that is being incorporated into innovative organoselenium compounds, which can improve outcomes in rodent or even primate models with neurological deficits. Herein, we critically discuss recent findings in the field of selenium-based applications in neurological disorders.
Collapse
Affiliation(s)
- Patryk Pyka
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, 30-688 Krakow, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, św. Łazarza 15, 31-530 Krakow, Poland; Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Sabrina Garbo
- Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
| | - Marius Hittinger
- Pharmbiotec gGmbH, Department of Drug Discovery, Nußkopf 39, 66578 Schiffweiler, Germany
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, 30-688 Krakow, Poland.
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany; Pharmbiotec gGmbH, Department of Drug Discovery, Nußkopf 39, 66578 Schiffweiler, Germany.
| | - Cecilia Battistelli
- Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
4
|
Skalny AV, Aschner M, Santamaria A, Filippini T, Gritsenko VA, Tizabi Y, Zhang F, Guo X, Rocha JBT, Tinkov AA. The Role of Gut Microbiota in the Neuroprotective Effects of Selenium in Alzheimer's Disease. Mol Neurobiol 2024:10.1007/s12035-024-04343-w. [PMID: 39012446 DOI: 10.1007/s12035-024-04343-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
The objective of the present review was to provide a timely update on the molecular mechanisms underlying the beneficial role of Se in Alzheimer's disease pathogenesis, and discuss the potential role of gut microbiota modulation in this neuroprotective effect. The existing data demonstrate that selenoproteins P, M, S, R, as well as glutathione peroxidases and thioredoxin reductases are involved in regulation of Aβ formation and aggregation, tau phosphorylation and neurofibrillary tangles formation, as well as mitigate the neurotoxic effects of Aβ and phospho-tau. Correspondingly, supplementation with various forms of Se in cellular and animal models of AD was shown to reduce Aβ formation, tau phosphorylation, reverse the decline in brain antioxidant levels, inhibit neuronal oxidative stress and proinflammatory cytokine production, improve synaptic plasticity and neurogenesis, altogether resulting in improved cognitive functions. In addition, most recent findings demonstrate that these neuroprotective effects are associated with Se-induced modulation of gut microbiota. In animal models of AD, Se supplementation was shown to improve gut microbiota biodiversity with a trend to increased relative abundance of Lactobacillus, Bifidobacterium, and Desulfivibrio, while reducing that of Lachnospiracea_NK4A136, Rikenella, and Helicobacter. Moreover, the relative abundance of Se-affected taxa was significantly associated with Aβ accumulation, tau phosphorylation, neuronal oxidative stress, and neuroinflammation, indicative of the potential role of gut microbiota to mediate the neuroprotective effects of Se in AD. Hypothetically, modulation of gut microbiota along with Se supplementation may improve the efficiency of the latter in AD, although further detailed laboratory and clinical studies are required.
Collapse
Affiliation(s)
- Anatoly V Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl, 150000, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow, 119146, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, 04960, Mexico City, Mexico
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Medical School, University of Modena and Reggio Emilia, Modena, Italy
- School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Viktor A Gritsenko
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, 460000, Russia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, 20059, USA
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Health Science Center, School of Public Health, National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, Health Science Center, School of Public Health, National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an 710061, China
| | - Joao B T Rocha
- Departamento de Bioquímica E Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl, 150000, Russia.
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow, 119146, Russia.
| |
Collapse
|
5
|
Umapathy S, Pan I, Issac PK, Kumar MSK, Giri J, Guru A, Arockiaraj J. Selenium Nanoparticles as Neuroprotective Agents: Insights into Molecular Mechanisms for Parkinson's Disease Treatment. Mol Neurobiol 2024:10.1007/s12035-024-04253-x. [PMID: 38837103 DOI: 10.1007/s12035-024-04253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Oxidative stress and the accumulation of misfolded proteins in the brain are the main causes of Parkinson's disease (PD). Several nanoparticles have been used as therapeutics for PD. Despite their therapeutic potential, these nanoparticles induce multiple stresses upon entry. Selenium (Se), an essential nutrient in the human body, helps in DNA formation, stress control, and cell protection from damage and infections. It can also regulate thyroid hormone metabolism, reduce brain damage, boost immunity, and promote reproductive health. Selenium nanoparticles (Se-NPs), a bioactive substance, have been employed as treatments in several disciplines, particularly as antioxidants. Se-NP, whether functionalized or not, can protect mitochondria by enhancing levels of reactive oxygen species (ROS) scavenging enzymes in the brain. They can also promote dopamine synthesis. By inhibiting the aggregation of tau, α-synuclein, and/or Aβ, they can reduce the cellular toxicities. The ability of the blood-brain barrier to absorb Se-NPs which maintain a healthy microenvironment is essential for brain homeostasis. This review focuses on stress-induced neurodegeneration and its critical control using Se-NP. Due to its ability to inhibit cellular stress and the pathophysiologies of PD, Se-NP is a promising neuroprotector with its anti-inflammatory, non-toxic, and antimicrobial properties.
Collapse
Affiliation(s)
- Suganiya Umapathy
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Tamil Nadu, 602105, India
| | - Ieshita Pan
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Tamil Nadu, 602105, India.
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Tamil Nadu, 602105, India
| | - Meenakshi Sundaram Kishore Kumar
- Biomedical Research Unit and Laboratory Animal Centre (BRULAC), Department of Anatomy, Saveetha Dental College, Chennai, Tamil Nadu, 600077, India
| | - Jayant Giri
- Department of Mechanical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
6
|
Żarczyńska K, Brym P, Tobolski D. The Role of Selenitetriglycerides in Enhancing Antioxidant Defense Mechanisms in Peripartum Holstein-Friesian Cows. Animals (Basel) 2024; 14:610. [PMID: 38396578 PMCID: PMC10886193 DOI: 10.3390/ani14040610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The transition period in high-yielding dairy cows is a critical phase marked by an elevated risk of oxidative stress. This study evaluated the effect of oral selenitetriglyceride supplementation on oxidative stress management in periparturient cows. A controlled experiment was conducted on 12 cows, divided into two groups: the experimental group (STG) received selenitetriglycerides (0.5 mg Se/kg BW), while the control group (CON) was given a placebo, starting 12 days before calving until the calving day. Blood and liver tissue samples were collected at predetermined intervals around the time of parturition. The study observed a significant increase in serum selenium levels and NEFA stabilization in the STG group compared with the control. Antioxidant parameters indicated elevated GSH-Px and CAT concentrations in the STG group. Liver gene expression analysis revealed a significant increase in SOD2 mRNA levels in the STG group (FC = 4.68, p < 0.01). Conversely, GSH-Px3 expression significantly decreased (FC = 0.10, p < 0.05) on the 7th day postpartum in the CON group. However, SOD1, SOD3, and CAT expressions remained stable in both groups. These findings highlight the beneficial role of selenitetriglycerides in enhancing antioxidant capacity and influencing specific gene expressions associated with oxidative stress management in dairy cows during the peripartum period.
Collapse
Affiliation(s)
- Katarzyna Żarczyńska
- Department and Clinic of Internal Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Paweł Brym
- Department of Animal Genetics, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Dawid Tobolski
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| |
Collapse
|
7
|
Xu K, Huang P, Wu Y, Liu T, Shao N, Zhao L, Hu X, Chang J, Peng Y, Qu S. Engineered Selenium/Human Serum Albumin Nanoparticles for Efficient Targeted Treatment of Parkinson's Disease via Oral Gavage. ACS NANO 2023; 17:19961-19980. [PMID: 37807265 PMCID: PMC10604087 DOI: 10.1021/acsnano.3c05011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopamine (DA) neurons in the midbrain substantia nigra pars compacta (SNpc). While existing therapeutic strategies can alleviate PD symptoms, they cannot inhibit DA neuron loss. Herein, a tailor-made human serum albumin (HSA)-based selenium nanosystem (HSA/Se nanoparticles, HSA/Se NPs) to treat PD that can overcome the intestinal epithelial barrier (IEB) and blood-brain barrier (BBB) is described. HSA, a transporter for drug delivery, has superior biological characteristics that make it an ideal potential drug delivery substance. Findings reveal that HSA/Se NPs have lower toxicity and higher efficacy than other selenium species and the ability to overcome the IEB and BBB to enrich DA neurons, which then protect MN9D cells from MPP+-induced neurotoxicity and ameliorate both behavioral deficits and DA neuronal death in MPTP-model mice. Thus, a therapeutic drug delivery system composed of orally gavaged HSA/Se NPs for the treatment of PD is described.
Collapse
Affiliation(s)
- Kai Xu
- Department
of Neurology, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong
Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired
Intelligence, Guangzhou, Guangdong 510515, China
- Key
Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Peng Huang
- Department
of Neurology, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong
Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired
Intelligence, Guangzhou, Guangdong 510515, China
- Key
Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yixuan Wu
- Department
of Neurology, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong
Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired
Intelligence, Guangzhou, Guangdong 510515, China
- Key
Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Teng Liu
- Department
of Neonatology and Pediatrics, Xiangya Hospital
of Central South University, Changsha, Hunan 410008, China
| | - Ningyi Shao
- Cancer
Centre, Faculty of Health Sciences, University
of Macau, Taipa, Macau Special Administrative Region 999078, China
| | - Lulu Zhao
- Chongqing
Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory
of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoyan Hu
- Shenzhen
Key Laboratory of Biomimetic Materials and Cellular Immunomodulation,
Institute of Biomedicine and Biotechnology, Shenzhen Institute of
Advanced Technology, Chinese Academy of
Sciences, Shenzhen, Guangdong 518055, China
- University
of Chinese Academy of Sciences, Beijing 100864, China
| | - Junlei Chang
- Shenzhen
Key Laboratory of Biomimetic Materials and Cellular Immunomodulation,
Institute of Biomedicine and Biotechnology, Shenzhen Institute of
Advanced Technology, Chinese Academy of
Sciences, Shenzhen, Guangdong 518055, China
| | - Yongbo Peng
- Chongqing
Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory
of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Shaogang Qu
- Department
of Neurology, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong
Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired
Intelligence, Guangzhou, Guangdong 510515, China
- Key
Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department
of Neurology, Ganzhou People’s Hospital, Ganzhou, Jiangxi 341000, China
| |
Collapse
|
8
|
Liu W, Zhang F, Liang W, Huang K, Jia C, Zhang J, Li X, Wei W, Gong R, Chen J. Integrated insight into the molecular mechanisms of selenium-modulated, MPP +-induced cytotoxicity in a Parkinson's disease model. J Trace Elem Med Biol 2023; 79:127208. [PMID: 37269647 DOI: 10.1016/j.jtemb.2023.127208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 06/13/2022] [Accepted: 05/17/2023] [Indexed: 06/05/2023]
Abstract
OBJECTIVE Parkinson's disease (PD) is a neurodegenerative disease that is associated with oxidative stress. Due to the anti-inflammatory and antioxidant functions of Selenium (Se), this molecule may have neuroprotective functions in PD; however, the involvement of Se in such a protective function is unclear. METHODS 1-methyl-4-phenylpyridinium (MPP+), which inhibits mitochondrial respiration, is generally used to produce a reliable cellular model of PD. In this study, a MPP+-induced PD model was used to test if Se could modulate cytotoxicity, and we further capture gene expression profiles following PC12 cell treatment with MPP+ with or without Se by genome wide high-throughput sequencing. RESULTS We identified 351 differentially expressed genes (DEGs) and 14 differentially expressed long non-coding RNAs (DELs) in MPP+-treated cells when compared to controls. We further document 244 DEGs and 27 DELs in cells treated with MPP+ and Se vs. cells treated with MPP+ only. Functional annotation analysis of DEGs and DELs revealed that these groups were enriched in genes that respond to reactive oxygen species (ROS), metabolic processes, and mitochondrial control of apoptosis. Thioredoxin reductase 1 (Txnrd1) was also identified as a biomarker of Se treatment. CONCLUSIONS Our data suggests that the DEGs Txnrd1, Siglec1 and Klf2, and the DEL AABR07044454.1 which we hypothesize to function in cis on the target gene Cdkn1a, may modulate the underlying neurodegenerative process, and act a protective function in the PC12 cell PD model. This study further systematically demonstrated that mRNAs and lncRNAs induced by Se are involved in neuroprotection in PD, and provides novel insight into how Se modulates cytotoxicity in the MPP+-induced PD model.
Collapse
Affiliation(s)
- Wen Liu
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Donghu Road 169, Wuhan 430071, China
| | - Feiyang Zhang
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Donghu Road 169, Wuhan 430071, China
| | - Wu Liang
- Department of Neurosurgery, Minda Hospital of Hubei Minzu University, Enshi 445000, China
| | - Kaixin Huang
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Donghu Road 169, Wuhan 430071, China
| | - Chenguang Jia
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Donghu Road 169, Wuhan 430071, China
| | - Jie Zhang
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Donghu Road 169, Wuhan 430071, China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Donghu Road 169, Wuhan 430071, China; Neuroepigenetic Research Lab, Medical Research Institute, Wuhan University, Donghu Road 115, Wuhan 430071, China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Donghu Road 169, Wuhan 430071, China; Neuroepigenetic Research Lab, Medical Research Institute, Wuhan University, Donghu Road 115, Wuhan 430071, China.
| | - Rui Gong
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Donghu Road 169, Wuhan 430071, China.
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Donghu Road 169, Wuhan 430071, China.
| |
Collapse
|
9
|
Cieślik M, Zawadzka A, Czapski GA, Wilkaniec A, Adamczyk A. Developmental Stage-Dependent Changes in Mitochondrial Function in the Brain of Offspring Following Prenatal Maternal Immune Activation. Int J Mol Sci 2023; 24:ijms24087243. [PMID: 37108406 PMCID: PMC10138707 DOI: 10.3390/ijms24087243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/01/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Maternal immune activation (MIA) is an important risk factor for neurodevelopmental disorders such as autism. The aim of the current study was to investigate the development-dependent changes in the mitochondrial function of MIA-exposed offspring, which may contribute to autism-like deficits. MIA was evoked by the single intraperitoneal administration of lipopolysaccharide to pregnant rats at gestation day 9.5, and several aspects of mitochondrial function in fetuses and in the brains of seven-day-old pups and adolescent offspring were analyzed along with oxidative stress parameters measurement. It was found that MIA significantly increased the activity of NADPH oxidase (NOX), an enzyme generating reactive oxygen species (ROS) in the fetuses and in the brain of seven-day-old pups, but not in the adolescent offspring. Although a lower mitochondrial membrane potential accompanied by a decreased ATP level was already observed in the fetuses and in the brain of seven-day-old pups, persistent alterations of ROS, mitochondrial membrane depolarization, and lower ATP generation with concomitant electron transport chain complexes downregulation were observed only in the adolescent offspring. We suggest that ROS observed in infancy are most likely of a NOX activity origin, whereas in adolescence, ROS are produced by damaged mitochondria. The accumulation of dysfunctional mitochondria leads to the intense release of free radicals that trigger oxidative stress and neuroinflammation, resulting in an interlinked vicious cascade.
Collapse
Affiliation(s)
- Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, ul. Pawińskiego 5, 02-106 Warsaw, Poland
| | - Aleksandra Zawadzka
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, ul. Pawińskiego 5, 02-106 Warsaw, Poland
| | - Grzegorz A Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, ul. Pawińskiego 5, 02-106 Warsaw, Poland
| | - Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, ul. Pawińskiego 5, 02-106 Warsaw, Poland
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, ul. Pawińskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
10
|
Wu H, Zhao G, Liu S, Zhang Q, Wang P, Cao Y, Wu L. Supplementation with Selenium Attenuates Autism-Like Behaviors and Improves Oxidative Stress, Inflammation and Related Gene Expression in an Autism Disease Model. J Nutr Biochem 2022; 107:109034. [DOI: 10.1016/j.jnutbio.2022.109034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2022] [Accepted: 03/20/2022] [Indexed: 12/23/2022]
|
11
|
Pinheiro WO, Costa do Santos MS, Farias GR, Fascineli ML, Ramos KLV, Duarte ECB, Damasceno EAM, da Silva JR, Joanitti GA, de Azevedo RB, Sousa MH, Lacava ZGM, Mosiniewicz-Szablewska E, Suchocki P, Morais PC, de Andrade LR. Combination of selol nanocapsules and magnetic hyperthermia hinders breast tumor growth in aged mice after a short-time treatment. NANOTECHNOLOGY 2022; 33:205101. [PMID: 35100566 DOI: 10.1088/1361-6528/ac504c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Short time treatment with reduced dosages of selol-loaded PLGA nanocapsules (NcSel) combined with magnetic hyperthermia (MHT) is evaluated in aged Erhlich tumor-bearing mice. Clinical, hematological, biochemical, genotoxic and histopathological parameters are assessed during 7 d treatment with NcSel and MHT, separately or combined. The time evolution of the tumor volume is successfully modeled using the logistic mathematical model. The combined therapy comprising NcSel and MHT is able to hinder primary tumor growth and a case of complete tumor remission is recorded. Moreover, no metastasis was diagnosed and the adverse effects are negligible. NcSel plus MHT may represent an effective and safe alternative to cancer control in aged patients. Future clinical trials are encouraged.
Collapse
Affiliation(s)
- Willie Oliveira Pinheiro
- University of Brasilia, Post-Graduation Program in Sciences and Technologies in Health, Faculty of Ceilandia, 72220-275, Brasilia, DF, Brazil
- University of Brasilia, Faculty of Ceilandia, Green Nanotechnology Group, 72220-900 Brasilia, DF, Brazil
| | | | - Gabriel Ribeiro Farias
- University of Brasilia, Laboratory of Immunology and Inflammation, Department of Cell Biology, 70910-900 Brasilia, DF, Brazil
| | - Maria Luiza Fascineli
- University of Brasilia, Institute of Biological Sciences, Department of Genetics and Morphology, 70910-900 Brasilia, DF, Brazil
- Department of Morphology (DMORF), Health Science Center, Federal University of Paraíba, 58051-900, João Pessoa, Brazil
| | - Khellida Loiane Vieira Ramos
- University of Brasilia, Institute of Biological Sciences, Department of Genetics and Morphology, 70910-900 Brasilia, DF, Brazil
| | | | | | - Jaqueline Rodrigues da Silva
- University of Brasilia, Institute of Biological Sciences, Department of Genetics and Morphology, 70910-900 Brasilia, DF, Brazil
| | - Graziella Anselmo Joanitti
- University of Brasilia, Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Faculty of Ceilandia, 72220-275 Brasilia-DF, Brazil
| | - Ricardo Bentes de Azevedo
- University of Brasilia, Institute of Biological Sciences, Department of Genetics and Morphology, 70910-900 Brasilia, DF, Brazil
| | - Marcelo Henrique Sousa
- University of Brasilia, Faculty of Ceilandia, Green Nanotechnology Group, 72220-900 Brasilia, DF, Brazil
| | - Zulmira Guerrero Marques Lacava
- University of Brasilia, Institute of Biological Sciences, Department of Genetics and Morphology, 70910-900 Brasilia, DF, Brazil
| | | | - Piotr Suchocki
- Department of Bioanalysis and Drug Analysis, Medical University of Warsaw, Warsaw, Poland
| | - Paulo Cesar Morais
- University of Brasília, Institute of Physics, Brasília DF 70910-900, Brazil
- Catholic University of Brasília, Genomic Sciences and Biotechnology, Brasília DF 70790-160, Brazil
| | - Laise Rodrigues de Andrade
- University of Brasilia, Institute of Biological Sciences, Department of Genetics and Morphology, 70910-900 Brasilia, DF, Brazil
| |
Collapse
|
12
|
Wu H, Luan Y, Wang H, Zhang P, Liu S, Wang P, Cao Y, Sun H, Wu L. Selenium inhibits ferroptosis and ameliorates autistic-like behaviors of BTBR mice by regulating the Nrf2/GPx4 pathway. Brain Res Bull 2022; 183:38-48. [DOI: 10.1016/j.brainresbull.2022.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 11/02/2022]
|
13
|
Samad N, Hafeez F, Imran I. D-galactose induced dysfunction in mice hippocampus and the possible antioxidant and neuromodulatory effects of selenium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:5718-5735. [PMID: 34424474 DOI: 10.1007/s11356-021-16048-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Aging is an ultimate reality that everyone has to face. D-galactose (D-gal) has been used extensively to develop aging model. Trace elements such as selenium (Se) have been used as a potential antioxidant for neuro-protection. The present work aims to develop therapeutic agents such as Se for the treatment of aging-induced neurological ailments such as anxiety, depression, and memory impairment. For this purpose, mice were treated with D-gal at a dose of 300 mg/ml/kg and various doses of Se (0.175 and 0.35mg/ml/kg) for 28 days. Behavioral tests were monitored after treatment days. After the behavioral assessment, mice were decapitated and their brains were collected. Hippocampi were removed from the brain for biochemical, neurochemical, and histopathological analysis. The present findings of behavioral analysis showed that D-gal-induced anxiety- and depression-like symptoms were inhibited by both doses of Se. D-gal-induced memory alteration was also prevented by repeated doses of Se (0.175 and 0.35mg/ml/kg). Biochemical analysis showed that D-gal-induced increase of oxidative stress and inflammatory markers and decrease of antioxidant enzymes and total protein contents in the hippocampus were prevented by Se administration. An increase in the activity of acetylcholinesterase was also diminished by Se. The neurochemical assessment showed that D-gal-induced increased serotonin metabolism and decreased acetylcholine levels in the hippocampus were restored by repeated treatment of Se. Histopathological estimations also exhibited; normalization of D-gal induced neurodegenerative changes. It is concluded that D-gal-induced dysfunction in mice hippocampus caused anxiety, depression, memory impairment, oxidative stress, neuro-inflammation, and histological alterations that were mitigated by Se via its antioxidant potential, anti-inflammatory property, and modulating capability of serotonergic and cholinergic functions.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Farheen Hafeez
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
14
|
Liu X, Lin J, Zhang H, Khan NU, Zhang J, Tang X, Cao X, Shen L. Oxidative Stress in Autism Spectrum Disorder-Current Progress of Mechanisms and Biomarkers. Front Psychiatry 2022; 13:813304. [PMID: 35299821 PMCID: PMC8921264 DOI: 10.3389/fpsyt.2022.813304] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a type of neurodevelopmental disorder that has been diagnosed in an increasing number of children around the world. Existing data suggest that early diagnosis and intervention can improve ASD outcomes. However, the causes of ASD remain complex and unclear, and there are currently no clinical biomarkers for autism spectrum disorder. More mechanisms and biomarkers of autism have been found with the development of advanced technology such as mass spectrometry. Many recent studies have found a link between ASD and elevated oxidative stress, which may play a role in its development. ASD is caused by oxidative stress in several ways, including protein post-translational changes (e.g., carbonylation), abnormal metabolism (e.g., lipid peroxidation), and toxic buildup [e.g., reactive oxygen species (ROS)]. To detect elevated oxidative stress in ASD, various biomarkers have been developed and employed. This article summarizes recent studies about the mechanisms and biomarkers of oxidative stress. Potential biomarkers identified in this study could be used for early diagnosis and evaluation of ASD intervention, as well as to inform and target ASD pharmacological or nutritional treatment interventions.
Collapse
Affiliation(s)
- Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen, China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Jun Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, China
| |
Collapse
|
15
|
Ding D, Mou D, Zhao L, Jiang X, Che L, Fang Z, Xu S, Lin Y, Zhuo Y, Li J, Huang C, Zou Y, Li L, Wu D, Feng B. Maternal organic selenium supplementation alleviates LPS induced inflammation, autophagy and ER stress in the thymus and spleen of offspring piglets by improving the expression of selenoproteins. Food Funct 2021; 12:11214-11228. [PMID: 34647565 DOI: 10.1039/d1fo01653a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The thymus and spleen are the main reservoir for T lymphocytes, which can regulate the innate immune response and provide protection against pathogens and tissue damage. Oxidative stress, excessive inflammation, abnormal autophagy and endoplasmic reticulum (ER) stress can all lead to dysfunction of the thymus and spleen. This study was conducted to investigate the effect of maternal 2-hydroxy-4-methylselenobutanoic acid (HMSeBA, an organic Se source) supplementation during pregnancy on the selenoprotein expression, inflammation, ER stress and autophagy of their young offspring's thymus and spleen. Thirty sows were randomly assigned to receive one of the following two diets during gestation: control diet (control, basal diet, n = 15) or HMSeBA supplemented diet (HMSeBA, basal diet +0.3 mg Se kg-1 as HMSeBA, n = 15). Tissues of thymus and spleen were collected from the offspring at birth and weaning after the lipopolysaccharide challenge. Results showed that maternal HMSeBA supplementation significantly up-regulated the gene expression of selenoproteins in the thymus and spleen of newborn piglets compared with the basal diet (p < 0.05), as well as the protein abundance of GPX1 and GPX4 (p < 0.05). In addition, maternal HMSeBA supplementation effectively decreased the expression of inflammation and autophagy related proteins in the thymus and spleen of newborn piglets as compared with the control group (p < 0.05). In weaning piglets, maternal HMSeBA significantly increased the antioxidative capacity of thymus and spleen (p < 0.05), and reversed LPS induced MDA content as compared with the control group (p < 0.05). Furthermore, maternal HMSeBA supplementation during gestation reversed the activation of the MAPK/NF-κB pathway, ER stress and autophagy induced by the LPS challenge in the thymus and spleen of weaning piglets (p < 0.05). In conclusion, maternal HMSeBA supplementation during gestation could decrease the level of inflammation, autophagy and ER stress in the thymus and spleen of young offspring by improving the antioxidative capacity and selenoprotein expression in these tissues. Therefore, maternal HMSeBA supplementation during gestation might be beneficial for the immune function of their offspring by alleviating inflammation, autophagy and ER stress levels in the thymus and spleen. This study showed more evidence for the function of Se on mater-offspring integrated nutrition.
Collapse
Affiliation(s)
- Dajiang Ding
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Daolin Mou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lianpeng Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agricultural University, China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
16
|
Assmann CE, Weis GCC, da Rosa JR, Bonadiman BDSR, Alves ADO, Schetinger MRC, Ribeiro EE, Morsch VMM, da Cruz IBM. Amazon-derived nutraceuticals: Promises to mitigate chronic inflammatory states and neuroinflammation. Neurochem Int 2021; 148:105085. [PMID: 34052297 DOI: 10.1016/j.neuint.2021.105085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022]
Abstract
Nutraceuticals have been the focus of numerous research in recent years and accumulating data support their use for promoting some health benefits. Several nutraceuticals have been widely studied as supplements due to their functional properties ameliorating symptoms associated with neurological disorders, such as oxidative stress and chronic inflammatory states. This seems to be the case of some fruits and seeds from the Amazon Biome consumed since the pre-Columbian period that could have potential beneficial impact on the human nervous system. The beneficial activities of these food sources are possibly related to a large number of bioactive molecules including polyphenols, carotenoids, unsaturated fatty acids, vitamins, and trace elements. In this context, this review compiled the research on six Amazonian fruits and seeds species and some of the major nutraceuticals found in their composition, presenting brief mechanisms related to their protagonist action in improving inflammatory responses and neuroinflammation.
Collapse
Affiliation(s)
- Charles Elias Assmann
- Post-Graduate Program in Biological Sciences, Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Grazielle Castagna Cezimbra Weis
- Post-Graduate Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Jéssica Righi da Rosa
- Post-Graduate Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Beatriz da Silva Rosa Bonadiman
- Post-Graduate Program in Biochemistry, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Audrei de Oliveira Alves
- Post-Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Maria Rosa Chitolina Schetinger
- Post-Graduate Program in Biological Sciences, Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | | | - Vera Maria Melchiors Morsch
- Post-Graduate Program in Biological Sciences, Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Ivana Beatrice Mânica da Cruz
- Post-Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil; Post-Graduate Program in Gerontology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
17
|
Nazıroğlu M, Öz A, Yıldızhan K. Selenium and Neurological Diseases: Focus on Peripheral Pain and TRP Channels. Curr Neuropharmacol 2021; 18:501-517. [PMID: 31903884 PMCID: PMC7457405 DOI: 10.2174/1570159x18666200106152631] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/26/2019] [Accepted: 01/04/2020] [Indexed: 12/18/2022] Open
Abstract
Pain is a complex physiological process that includes many components. Growing evidence supports the idea that oxidative stress and Ca2+ signaling pathways participate in pain detection by neurons. The main source of endogenous reactive oxygen species (ROS) is mitochondrial dysfunction induced by membrane depolarization, which is in turn caused by Ca2+ influx into the cytosol of neurons. ROS are controlled by antioxidants, including selenium. Selenium plays an important role in the nervous system, including the brain, where it acts as a cofactor for glutathione peroxidase and is incorporated into selenoproteins involved in antioxidant defenses. It has neuroprotective effects through modulation of excessive ROS production, inflammation, and Ca2+ overload in several diseases, including inflammatory pain, hypersensitivity, allodynia, diabetic neuropathic pain, and nociceptive pain. Ca2+ entry across membranes is mediated by different channels, including transient receptor potential (TRP) channels, some of which (e.g., TRPA1, TRPM2, TRPV1, and TRPV4) can be activated by oxidative stress and have a role in the induction of peripheral pain. The results of recent studies indicate the modulator roles of selenium in peripheral pain through inhibition of TRP channels in the dorsal root ganglia of experimental animals. This review summarizes the protective role of selenium in TRP channel regulation, Ca2+ signaling, apoptosis, and mitochondrial oxidative stress in peripheral pain induction.
Collapse
Affiliation(s)
- Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey.,Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.,Drug Discovery Unit, BSN Health, Analysis and Innovation Ltd. Inc. Teknokent, Isparta, Turkey
| | - Ahmi Öz
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Kenan Yıldızhan
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
18
|
Bjørklund G, Doşa MD, Maes M, Dadar M, Frye RE, Peana M, Chirumbolo S. The impact of glutathione metabolism in autism spectrum disorder. Pharmacol Res 2021; 166:105437. [PMID: 33493659 DOI: 10.1016/j.phrs.2021.105437] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
This paper reviews the potential role of glutathione (GSH) in autism spectrum disorder (ASD). GSH plays a key role in the detoxification of xenobiotics and maintenance of balance in intracellular redox pathways. Recent data showed that imbalances in the GSH redox system are an important factor in the pathophysiology of ASD. Furthermore, ASD is accompanied by decreased concentrations of reduced GSH in part caused by oxidation of GSH into glutathione disulfide (GSSG). GSSG can react with protein sulfhydryl (SH) groups, thereby causing proteotoxic stress and other abnormalities in SH-containing enzymes in the brain and blood. Moreover, alterations in the GSH metabolism via its effects on redox-independent mechanisms are other processes associated with the pathophysiology of ASD. GSH-related regulation of glutamate receptors such as the N-methyl-D-aspartate receptor can contribute to glutamate excitotoxicity. Synergistic and antagonistic interactions between glutamate and GSH can result in neuronal dysfunction. These interactions can involve transcription factors of the immune pathway, such as activator protein 1 and nuclear factor (NF)-κB, thereby interacting with neuroinflammatory mechanisms, ultimately leading to neuronal damage. Neuronal apoptosis and mitochondrial dysfunction are recently outlined as significant factors linking GSH impairments with the pathophysiology of ASD. Moreover, GSH regulates the methylation of DNA and modulates epigenetics. Existing data support a protective role of the GSH system in ASD development. Future research should focus on the effects of GSH redox signaling in ASD and should explore new therapeutic approaches by targeting the GSH system.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| | - Monica Daniela Doşa
- Department of Pharmacology, Faculty of Medicine, Ovidius University of Constanta, Campus, 900470, Constanta, Romania.
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Impact Research Center, Deakin University, Geelong, Australia
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Richard E Frye
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, USA
| | | | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; CONEM Scientific Secretary, Verona, Italy
| |
Collapse
|
19
|
Cieślik M, Gassowska-Dobrowolska M, Zawadzka A, Frontczak-Baniewicz M, Gewartowska M, Dominiak A, Czapski GA, Adamczyk A. The Synaptic Dysregulation in Adolescent Rats Exposed to Maternal Immune Activation. Front Mol Neurosci 2021; 13:555290. [PMID: 33519375 PMCID: PMC7840660 DOI: 10.3389/fnmol.2020.555290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
Maternal immune activation (MIA) is a risk factor for neurodevelopmental disorders in offspring, but the pathomechanism is largely unknown. The aim of our study was to analyse the molecular mechanisms contributing to synaptic alterations in hippocampi of adolescent rats exposed prenatally to MIA. MIA was evoked in pregnant female rats by i.p. administration of lipopolysaccharide at gestation day 9.5. Hippocampi of offspring (52-53-days-old rats) were analysed using transmission electron microscopy (TEM), qPCR and Western blotting. Moreover, mitochondrial membrane potential, activity of respiratory complexes, and changes in glutathione system were measured. It was found that MIA induced changes in hippocampi morphology, especially in the ultrastructure of synapses, including synaptic mitochondria, which were accompanied by impairment of mitochondrial electron transport chain and decreased mitochondrial membrane potential. These phenomena were in agreement with increased generation of reactive oxygen species, which was evidenced by a decreased reduced/oxidised glutathione ratio and an increased level of dichlorofluorescein (DCF) oxidation. Activation of cyclin-dependent kinase 5, and phosphorylation of glycogen synthase kinase 3β on Ser9 occurred, leading to its inhibition and, accordingly, to hypophosphorylation of microtubule associated protein tau (MAPT). Abnormal phosphorylation and dysfunction of MAPT, the manager of the neuronal cytoskeleton, harmonised with changes in synaptic proteins. In conclusion, this is the first study demonstrating widespread synaptic changes in hippocampi of adolescent offspring prenatally exposed to MIA.
Collapse
Affiliation(s)
- Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | | | - Aleksandra Zawadzka
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | | | - Magdalena Gewartowska
- Electron Microscopy Platform, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Dominiak
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Grzegorz A Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
20
|
Cieślik M, Gąssowska-Dobrowolska M, Jęśko H, Czapski GA, Wilkaniec A, Zawadzka A, Dominiak A, Polowy R, Filipkowski RK, Boguszewski PM, Gewartowska M, Frontczak-Baniewicz M, Sun GY, Beversdorf DQ, Adamczyk A. Maternal Immune Activation Induces Neuroinflammation and Cortical Synaptic Deficits in the Adolescent Rat Offspring. Int J Mol Sci 2020; 21:E4097. [PMID: 32521803 PMCID: PMC7312084 DOI: 10.3390/ijms21114097] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 01/01/2023] Open
Abstract
Maternal immune activation (MIA), induced by infection during pregnancy, is an important risk factor for neuro-developmental disorders, such as autism. Abnormal maternal cytokine signaling may affect fetal brain development and contribute to neurobiological and behavioral changes in the offspring. Here, we examined the effect of lipopolysaccharide-induced MIA on neuro-inflammatory changes, as well as synaptic morphology and key synaptic protein level in cerebral cortex of adolescent male rat offspring. Adolescent MIA offspring showed elevated blood cytokine levels, microglial activation, increased pro-inflammatory cytokines expression and increased oxidative stress in the cerebral cortex. Moreover, pathological changes in synaptic ultrastructure of MIA offspring was detected, along with presynaptic protein deficits and down-regulation of postsynaptic scaffolding proteins. Consequently, ability to unveil MIA-induced long-term alterations in synapses structure and protein level may have consequences on postnatal behavioral changes, associated with, and predisposed to, the development of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Henryk Jęśko
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Grzegorz A. Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Aleksandra Zawadzka
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Agnieszka Dominiak
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Żwirki i Wigury 61, 02-097 Warsaw, Poland;
| | - Rafał Polowy
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (R.P.); (R.K.F.)
| | - Robert K. Filipkowski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (R.P.); (R.K.F.)
| | - Paweł M. Boguszewski
- Laboratory of Animal Models, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland;
| | - Magdalena Gewartowska
- Electron Microscopy Platform, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.); (M.F.-B.)
| | - Małgorzata Frontczak-Baniewicz
- Electron Microscopy Platform, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.); (M.F.-B.)
| | - Grace Y. Sun
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65201, USA;
| | - David Q. Beversdorf
- Departments of Radiology, Neurology, and Psychological Sciences, William and Nancy Thompson Endowed Chair in Radiology, DC069.10, One Hospital Drive, University of Missouri, Columbia, MO 65211, USA;
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| |
Collapse
|
21
|
Bampi SR, Casaril AM, Fronza MG, Domingues M, Vieira B, Begnini KR, Seixas FK, Collares TV, Lenardão EJ, Savegnago L. The selenocompound 1-methyl-3-(phenylselanyl)-1H-indole attenuates depression-like behavior, oxidative stress, and neuroinflammation in streptozotocin-treated mice. Brain Res Bull 2020; 161:158-165. [PMID: 32470357 DOI: 10.1016/j.brainresbull.2020.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/08/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022]
Abstract
Major depressive disorder (MDD) is a chronic mental illness affecting a wide range of people worldwide. The pathophysiology of MDD is not completely elucidated, but it is believed that oxidative stress and neuroinflammation are involved. In light with this, the aim of the present study was to investigate whether a single administration of the antioxidant 1-methyl-3-(phenylselanyl)-1H-indole (MFSeI) was able to reverse the streptozotocin-induced depression-like behavior, oxidative stress, and neuroinflammation in mice. MFSeI (10 mg/kg) was administered intragastrically (i.g.) 24 h after the intracerebroventricular injection of STZ (0.2 mg/4 μL/per mouse). Thirty minutes after MFSeI administration, behavioral tests and neurochemical analyses were performed. Fluoxetine (10 mg/kg, i.g.) was used as a positive control. MFSeI and fluoxetine were able to reverse the STZ-induced depression-like behavior, as evidenced by decreased immobility time in the forced swimming test and increased grooming time in the splash test. Mechanistically, MFSeI reversed the increased levels of reactive species and lipid peroxidation in the prefrontal cortices and hippocampi of STZ-treated mice. Additionally, neuroinflammation (i.e. expression of NF-κB, IL-1β, and TNF-α) and the reduced mRNA levels of BDNF in the and hippocampi of depressed mice were reversed by treatment with MFSeI. Fluoxetine did not improve the STZ-induced alterations at the levels of reactive species, NF-κB and BDNF in the prefrontal cortices neither the levels of TNF-α in both brain regions. Together, these data suggest that the MFSeI may be a promising compound with antidepressant-like action, reducing oxidative stress and modulating inflammatory pathways in the brain of depressed mice.
Collapse
Affiliation(s)
- Suely Ribeiro Bampi
- Postgraduate Program in Biotechnology, Neurobiotechnology Research Group, Center of Biotechnology, Federal University of Pelotas, RS, Brazil
| | - Angela Maria Casaril
- Postgraduate Program in Biotechnology, Neurobiotechnology Research Group, Center of Biotechnology, Federal University of Pelotas, RS, Brazil
| | - Mariana G Fronza
- Postgraduate Program in Biotechnology, Neurobiotechnology Research Group, Center of Biotechnology, Federal University of Pelotas, RS, Brazil
| | - Micaela Domingues
- Postgraduate Program in Biotechnology, Neurobiotechnology Research Group, Center of Biotechnology, Federal University of Pelotas, RS, Brazil
| | - Beatriz Vieira
- Postgraduate Program in Chemistry, Laboratory of Clean Organic Synthesis, Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, RS, Brazil
| | - Karine Rech Begnini
- Postgraduate Program in Biotechnology, Molecular and Cellular Oncology Research Group, Center of Biotechnology, Federal University of Pelotas, RS, Brazil
| | - Fabiana K Seixas
- Postgraduate Program in Biotechnology, Molecular and Cellular Oncology Research Group, Center of Biotechnology, Federal University of Pelotas, RS, Brazil
| | - Tiago Veiras Collares
- Postgraduate Program in Biotechnology, Molecular and Cellular Oncology Research Group, Center of Biotechnology, Federal University of Pelotas, RS, Brazil
| | - Eder João Lenardão
- Postgraduate Program in Chemistry, Laboratory of Clean Organic Synthesis, Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Postgraduate Program in Biotechnology, Neurobiotechnology Research Group, Center of Biotechnology, Federal University of Pelotas, RS, Brazil.
| |
Collapse
|
22
|
Manivasagam T, Arunadevi S, Essa MM, SaravanaBabu C, Borah A, Thenmozhi AJ, Qoronfleh MW. Role of Oxidative Stress and Antioxidants in Autism. ADVANCES IN NEUROBIOLOGY 2020; 24:193-206. [PMID: 32006361 DOI: 10.1007/978-3-030-30402-7_7] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorders with poorly understood etiology that are defined exclusively on the basis of behavioral observations. This disorder has been linked to increased levels of oxidative stress and lower antioxidant capacity. Oxidative stress in autism has been studied at the membrane level and also by measuring products of lipid peroxidation, detoxifying agents (such as glutathione), and antioxidants involved in the defense system against reactive oxygen species (ROS). Several studies have suggested alterations in the activities of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase, and catalase in autism. Additionally, altered glutathione levels and homocysteine/methionine metabolism, increased inflammation, excitotoxicity, as well as mitochondrial and immune dysfunction have been suggested in autism. Moreover, environmental and genetic risk factors may intensify vulnerability to oxidative stress in autism. Collectively, these studies suggest increased oxidative stress in autism that may contribute to the development of this disease both in terms of pathogenesis and clinical symptoms. Antioxidant supplementation, or ways to improve the altered metabolite levels in the interconnected transmethylation and transsulfuration pathways, has been associated with decreased autistic behaviors and severity. This chapter provides a conceptual framework on oxidative stress and antioxidants utility. These types of interventions should be further studied in order to determine their effectiveness at improving metabolic imbalances.
Collapse
Affiliation(s)
- Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Selvaraj Arunadevi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Mustafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman.,Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman.,Food and Brain Research Foundation, Chennai, Tamil Nadu, India
| | - Chidambaram SaravanaBabu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Arokiasamy Justin Thenmozhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamil Nadu, India.
| | - M Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar
| |
Collapse
|
23
|
Selenized Plant Oil Is an Efficient Source of Selenium for Selenoprotein Biosynthesis in Human Cell Lines. Nutrients 2019; 11:nu11071524. [PMID: 31277500 PMCID: PMC6682991 DOI: 10.3390/nu11071524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 11/17/2022] Open
Abstract
Selenium is an essential trace element which is incorporated in the form of a rare amino acid, the selenocysteine, into an important group of proteins, the selenoproteins. Among the twenty-five selenoprotein genes identified to date, several have important cellular functions in antioxidant defense, cell signaling and redox homeostasis. Many selenoproteins are regulated by the availability of selenium which mostly occurs in the form of water-soluble molecules, either organic (selenomethionine, selenocysteine, and selenoproteins) or inorganic (selenate or selenite). Recently, a mixture of selenitriglycerides, obtained by the reaction of selenite with sunflower oil at high temperature, referred to as Selol, was proposed as a novel non-toxic, highly bioavailable and active antioxidant and antineoplastic agent. Free selenite is not present in the final product since the two phases (water soluble and oil) are separated and the residual water-soluble selenite discarded. Here we compare the assimilation of selenium as Selol, selenite and selenate by various cancerous (LNCaP) or immortalized (HEK293 and PNT1A) cell lines. An approach combining analytical chemistry, molecular biology and biochemistry demonstrated that selenium from Selol was efficiently incorporated in selenoproteins in human cell lines, and thus produced the first ever evidence of the bioavailability of selenium from selenized lipids.
Collapse
|
24
|
Yang L, Gong NR, Zhang Q, Ma YB, Zhou H. Apparent Correlations Between AMPK Expression and Brain Inflammatory Response and Neurological Function Factors in Rats with Chronic Renal Failure. J Mol Neurosci 2019; 68:204-213. [PMID: 30919248 DOI: 10.1007/s12031-019-01299-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/12/2019] [Indexed: 01/23/2023]
Abstract
To explore the correlations between AMP-activated protein kinase (AMPK) expression and brain inflammatory response and neurological function factors in rats with chronic renal failure. Chronic renal failure models in rats were established, and the healthy control group (normal group) was set. Chronic renal failure model rats were divided into model group (without any treatment), control group (intraperitoneal injection of normal saline), A-769662 group (intraperitoneal injection of AMPK specific activator), and compound C group (intraperitoneal injection of AMPK specific inhibitor). The results of HE staining showed renal tissue enlargement, and significant pathological changes. Compared with the normal group, AMPK level in peripheral blood and AMPK mRNA and protein expressions in brain tissue were significantly reduced, and AMPK pathway activation was significantly inhibited in other groups. Compared with the model group, rats in the A-769662 group had significantly decreased serum creatinine (Scr) and blood urea nitrogen (BUN) levels and γ-aminobutyric acid (γ-GABA) content, significantly increased brain-derived neurotrophic factor (BDNF) positive expressions and 5-hydroxytryptamine (5-HT) content, and decreased interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), and intercellular adhesion molecule 1 (ICAM-1) expressions (all P < 0.05), while it was just the opposite in compound C group (all P < 0.05). There is an apparent correlation between AMPK expression and brain inflammatory response in chronic renal failure rats. AMPK is expected to be an important pathway in the treatment of uremic encephalopathy.
Collapse
Affiliation(s)
- Li Yang
- Department of Nephrology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Ni-Rong Gong
- Department of Nephrology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Qin Zhang
- Department of Nephrology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Ya-Bin Ma
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19 Nonglin Xia Road, Yuexiu District, Guangzhou, 510080, Guangdong Province, China
| | - Hui Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19 Nonglin Xia Road, Yuexiu District, Guangzhou, 510080, Guangdong Province, China.
| |
Collapse
|
25
|
Mowry FE, Biancardi VC. Neuroinflammation in hypertension: the renin-angiotensin system versus pro-resolution pathways. Pharmacol Res 2019; 144:279-291. [PMID: 31039397 DOI: 10.1016/j.phrs.2019.04.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/31/2022]
Abstract
Overstimulation of the pro-inflammatory pathways within brain areas responsible for sympathetic outflow is well evidenced as a primary contributing factor to the establishment and maintenance of neurogenic hypertension. However, the precise mechanisms and stimuli responsible for promoting a pro-inflammatory state are not fully elucidated. Recent work has unveiled novel compounds derived from omega-3 polyunsaturated fatty acids (ω-3 PUFAs), termed specialized pro-resolving mediators (SPMs), which actively regulate the resolution of inflammation. Failure or dysregulation of the resolution process has been linked to a variety of chronic inflammatory and neurodegenerative diseases. Given the pathologic role of neuroinflammation in the hypertensive state, SPMs and their associated pathways may provide a link between hypertension and the long-standing association of dietary ω-3 PUFAs with cardioprotection. Herein, we review recent progress in understanding the RAS-driven pathophysiology of neurogenic hypertension, particularly in regards to the chronic low-grade neuroinflammatory response. In addition, we examine the potential for an impaired resolution of inflammation process in the context of hypertension.
Collapse
Affiliation(s)
- Francesca Elisabeth Mowry
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Alabama, USA
| | - Vinicia Campana Biancardi
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Alabama, USA; Center for Neurosciences Research Initiative, Auburn University, Alabama, USA.
| |
Collapse
|
26
|
Wang J, Zhang T, Liu X, Fan H, Wei C. Aqueous extracts of se-enriched Auricularia auricular attenuates D-galactose-induced cognitive deficits, oxidative stress and neuroinflammation via suppressing RAGE/MAPK/NF-κB pathway. Neurosci Lett 2019; 704:106-111. [PMID: 30953738 DOI: 10.1016/j.neulet.2019.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/21/2019] [Accepted: 04/02/2019] [Indexed: 01/28/2023]
Abstract
Aging is a natural process that accompanied with progressive cognitive deficits and functional decline in organisms. Selenium (Se), an essential trace element, exhibits antioxidative and anti-inflammatory abilities. Here, our study aimed to investigate the protective effects of aqueous extracts of Se-enriched Auricularia auricular (AESAA) on aging mice induced by d-galactose (D-gal) and explore its potential mechanism. d-gal was administered (100 mg/kg) subcutaneously for 12 weeks to establish an aging mouse model. Morris water maze (MWM) test was conducted to assess the cognitive deficits of mice. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) activities and malondialdehyde (MDA) level in hippocampus were measured to evaluate oxidative stress. The contents of pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) in hippocampus were determined by ELISA method. Further, hippocampal levels of RAGE, p-Erk, p-JNK, p-P38 and p-NF-κB were detected by western blot and the RAGE expression was confirmed by immunohistochemistry. We found that AESAA supplementation significantly decreased d-gal-induced cognitive deficits, as evidenced by better performance in the MWM test. Furthermore, AESAA treatment attenuated oxidative stress and decreased the contents of pro-inflammatory cytokines in hippocampus. Importantly, AESAA inhibited the up-regulation of RAGE, p-Erk, p-JNK, p-P38 in the hippocampus of d-gal treated mice. Moreover, the results also indicated that AESAA inhibited p-NF-κB and p-IκBα expression. In conclusion, our findings suggest that AESAA effectively decreases cognitive impairment, alleviates oxidative damage and neuroinflammation in mice through s RAGE/MAPK/NF-κB signaling pathway, which provides a potential therapy for delaying the aging process.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Agricultural Quality Standards and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Tianzhu Zhang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiaoxiao Liu
- Institute of Agricultural Quality Standards and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Huimei Fan
- Institute of Agricultural Quality Standards and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Chunyan Wei
- Institute of Agricultural Quality Standards and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
27
|
Grosicka-Maciąg E, Kurpios-Piec D, Woźniak K, Kowalewski C, Szumiło M, Drela N, Kiernozek E, Suchocki P, Rahden-Staroń I. Selol (Se IV) modulates adhesive molecules in control and TNF-α-stimulated HMEC-1 cells. J Trace Elem Med Biol 2019; 51:106-114. [PMID: 30466918 DOI: 10.1016/j.jtemb.2018.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/13/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022]
Abstract
Selol, an organic selenitetrigliceride formulation containing selenium at +4 oxidation level, has been suggested as anticancer drug. One of the causes of several diseases including cancer may be inflammation. This study aimed at determining the activity of Selol via measuring its effect on reactive oxygen species (ROS) generation, nuclear factor kappa B (NF-κB) activation, intercellular cell adhesion molecules-1 (ICAM-1), vascular cell adhesive molecule-1 (VCAM-1), and plateled-endothelial cell adhesive molecule-1 (PECAM-1) levels on control and on tumor necrosis factor-α (TNF-α)-stimulated human microvascular endothelial cells (HMEC-1). Cells were treated either with Selol 5% (4 or 8 μgSe/mL) or TNF-α (10 ng/mL) alone or with Selol concomitant with TNF-α. Selol treatment resulted in ROS generation, activation of NF-κB, downregulation of PECAM-1, VCAM-1 and slight upregulation ICAM-1 expression on the cell surface. TNF-α treatment reflected in sharp NF-κB activation, upregulation of both ICAM-1 and VCAM-1 in parallel with the downregulation of PECAM-1 expression on cell surface. Exposure to both compounds upregulated ICAM-1 and VCAM-1, downregulated PECAM-1 level on cell surface in parallel with no changes in level of NF-κB activation as compared with effects mediated by TNF-α alone. These results points to new look at Selol action since it shows a pro-inflammatory activity in parallel with effects on CAMs expression on the cell surface of human microvascular endothelial cells. However, since Selol enhances CAMs expression level when is present concomitantly with TNF-α this fact might suggest that selenium present in the condition of inflammation will make it worse.
Collapse
Affiliation(s)
- Emilia Grosicka-Maciąg
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warszawa, Banacha 1, Poland.
| | - Dagmara Kurpios-Piec
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warszawa, Banacha 1, Poland.
| | - Katarzyna Woźniak
- Department of Dermatology and Immunodermatology, Medical University of Warsaw, 02-008 Warszawa, Koszykowa 82a, Poland.
| | - Cezary Kowalewski
- Department of Dermatology and Immunodermatology, Medical University of Warsaw, 02-008 Warszawa, Koszykowa 82a, Poland.
| | - Maria Szumiło
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warszawa, Banacha 1, Poland.
| | - Nadzieja Drela
- Immunology Department, Faculty of Biology, University of Warsaw, 02-096 Warszawa, Miecznikowa 1, Poland.
| | - Ewelina Kiernozek
- Immunology Department, Faculty of Biology, University of Warsaw, 02-096 Warszawa, Miecznikowa 1, Poland.
| | - Piotr Suchocki
- Department of Bioanalysis and Drug Analysis, Medical University of Warsaw, 02-097 Warszawa, Banacha 1, Poland.
| | - Iwonna Rahden-Staroń
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warszawa, Banacha 1, Poland.
| |
Collapse
|
28
|
Sochacka M, Giebułtowicz J, Remiszewska M, Suchocki P, Wroczyński P. Effects of Selol 5% supplementation on tissue antioxidant enzyme levels and peroxidation marker in healthy mice. Pharmacol Rep 2018; 70:1073-1078. [PMID: 30296743 DOI: 10.1016/j.pharep.2018.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/27/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Selenium (Se) is an essential micronutrient for animals and humans used in the prevention or treatment of cancer. Selol is a mixture of selenitetriglycerides, containing Se(IV). It does not exhibit mutagenic activity and is less toxic than inorganic sodium selenite containing Se(IV). The antioxidant properties of the Selol were demonstrated using the blood of healthy animals. The aim of the study was to evaluate Selol as a Se supplement by determining the effect of its administration on the Se level and the antioxidant status in the tissues. METHODS We examined the effect of long-term (28-day) Selol 5% supplementation on the activity of antioxidant enzymes, including the main selenoenzymes in healthy mice organs, such as liver, brain, lungs, and testis. Enzyme activities of the tissue homogenates and the concentration of malondialdehyde (MDA) as a biomarker of oxidative stress were measured using spectrophotometric methods. The selenium concentrations in the tissues were determined by inductively coupled plasma mass spectrometer (ICP-MS) as well. RESULTS A significant increase in glutathione peroxidase, thioredoxin reductase, and glutathione S-transferase activity as well as the MDA concentration was observed in most of the studied tissues during the Selol 5% supplementation. CONCLUSIONS Long-term supplementation with the new Se(IV) compound - Selol 5% significantly affects the activity of antioxidant enzymes and the redox state in healthy mice organs. In the healthy population Selol 5% seems to be a promising new antioxidant compound.
Collapse
Affiliation(s)
- Małgorzata Sochacka
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland.
| | - Joanna Giebułtowicz
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | | | - Piotr Suchocki
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Piotr Wroczyński
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| |
Collapse
|
29
|
Chan SHH, Chan JYH. Mitochondria and Reactive Oxygen Species Contribute to Neurogenic Hypertension. Physiology (Bethesda) 2018; 32:308-321. [PMID: 28615314 DOI: 10.1152/physiol.00006.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/05/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023] Open
Abstract
Beyond its primary role as fuel generators, mitochondria are engaged in a variety of cellular processes, including redox homeostasis. Mitochondrial dysfunction, therefore, may have a profound impact on high-energy-demanding organs such as the brain. Here, we review the roles of mitochondrial biogenesis and bioenergetics, and their associated signaling in cellular redox homeostasis, and illustrate their contributions to the oxidative stress-related neural mechanism of hypertension, focusing on specific brain areas that are involved in the generation or modulation of sympathetic outflows to the cardiovascular system. We also highlight future challenges of research on mitochondrial physiology and pathophysiology.
Collapse
Affiliation(s)
- Samuel H H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|