1
|
Runyon K, Bui T, Mazanek S, Hartle A, Marschalko K, Howe WM. Distinct cholinergic circuits underlie discrete effects of reward on attention. Front Mol Neurosci 2024; 17:1429316. [PMID: 39268248 PMCID: PMC11390659 DOI: 10.3389/fnmol.2024.1429316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
Attention and reward are functions that are critical for the control of behavior, and massive multi-region neural systems have evolved to support the discrete computations associated with each. Previous research has also identified that attention and reward interact, though our understanding of the neural mechanisms that mediate this interplay is incomplete. Here, we review the basic neuroanatomy of attention, reward, and cholinergic systems. We then examine specific contexts in which attention and reward computations interact. Building on this work, we propose two discrete neural circuits whereby acetylcholine, released from cell groups located in different parts of the brain, mediates the impact of stimulus-reward associations as well as motivation on attentional control. We conclude by examining these circuits as a potential shared loci of dysfunction across diseases states associated with deficits in attention and reward.
Collapse
Affiliation(s)
- Kelly Runyon
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Tung Bui
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Sarah Mazanek
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Alec Hartle
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Katie Marschalko
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | | |
Collapse
|
2
|
Zahoor I, Pan G, Cerghet M, Elbayoumi T, Mao-Draayer Y, Giri S, Palaniyandi SS. Current understanding of cardiovascular autonomic dysfunction in multiple sclerosis. Heliyon 2024; 10:e35753. [PMID: 39170118 PMCID: PMC11337049 DOI: 10.1016/j.heliyon.2024.e35753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Autoimmune diseases, including multiple sclerosis (MS), are proven to increase the likelihood of developing cardiovascular disease (CVD) due to a robust systemic immune response and inflammation. MS can lead to cardiovascular abnormalities that are related to autonomic nervous system dysfunction by causing inflammatory lesions surrounding tracts of the autonomic nervous system in the brain and spinal cord. CVD in MS patients can affect an already damaged brain, thus worsening the disease course by causing brain atrophy and white matter disease. Currently, the true prevalence of cardiovascular dysfunction and associated death rates in patients with MS are mostly unknown and inconsistent. Treating vascular risk factors is recommended to improve the management of this disease. This review provides an updated summary of CVD prevalence in patients with MS, emphasizing the need for more preclinical studies using animal models to understand the pathogenesis of MS better. However, no distinct studies exist that explore the temporal effects and etiopathogenesis of immune/inflammatory cells on cardiac damage and dysfunction associated with MS, particularly in the cardiac myocardium. To this end, a thorough investigation into the clinical presentation and underlying mechanisms of CVD must be conducted in patients with MS and preclinical animal models. Additionally, clinicians should monitor for cardiovascular complications while prescribing medications to MS patients, as some MS drugs cause severe CVD.
Collapse
Affiliation(s)
- Insha Zahoor
- Department of Neurology, Henry Ford Health, Detroit, MI, USA
| | - Guodong Pan
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health, Detroit, MI, USA
| | - Mirela Cerghet
- Department of Neurology, Henry Ford Health, Detroit, MI, USA
| | - Tamer Elbayoumi
- Department of Pharmaceutical Sciences, College of Pharmacy, Midwestern University, Glendale, AZ, USA
| | - Yang Mao-Draayer
- Multiple Sclerosis Center of Excellence, Autoimmunity Center of Excellence, Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health, Detroit, MI, USA
| | - Suresh Selvaraj Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health, Detroit, MI, USA
- Department of Physiology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
3
|
Latif S, Kang YS. Blood-Brain Barrier Solute Carrier Transporters and Motor Neuron Disease. Pharmaceutics 2022; 14:2167. [PMID: 36297602 PMCID: PMC9608738 DOI: 10.3390/pharmaceutics14102167] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 01/21/2024] Open
Abstract
Defective solute carrier (SLC) transporters are responsible for neurotransmitter dysregulation, resulting in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). We provided the role and kinetic parameters of transporters such as ASCTs, Taut, LAT1, CAT1, MCTs, OCTNs, CHT, and CTL1, which are mainly responsible for the transport of essential nutrients, acidic, and basic drugs in blood-brain barrier (BBB) and motor neuron disease. The affinity for LAT1 was higher in the BBB than in the ALS model cell line, whereas the capacity was higher in the NSC-34 cell lines than in the BBB. Affinity for MCTs was lower in the BBB than in the NSC-34 cell lines. CHT in BBB showed two affinity sites, whereas no expression was observed in ALS cell lines. CTL1 was the main transporter for choline in ALS cell lines. The half maximal inhibitory concentration (IC50) analysis of [3H]choline uptake indicated that choline is sensitive in TR-BBB cells, whereas amiloride is most sensitive in ALS cell lines. Knowledge of the transport systems in the BBB and motor neurons will help to deliver drugs to the brain and develop the therapeutic strategy for treating CNS and neurological diseases.
Collapse
Affiliation(s)
| | - Young-Sook Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Korea
| |
Collapse
|
4
|
Horkowitz AP, Schwartz AV, Alvarez CA, Herrera EB, Thoman ML, Chatfield DA, Osborn KG, Feuer R, George UZ, Phillips JA. Acetylcholine Regulates Pulmonary Pathology During Viral Infection and Recovery. Immunotargets Ther 2020; 9:333-350. [PMID: 33365281 PMCID: PMC7751717 DOI: 10.2147/itt.s279228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction This study was designed to explore the role of acetylcholine (ACh) in pulmonary viral infection and recovery. Inflammatory control is critical to recovery from respiratory viral infection. ACh secreted from non-neuronal sources, including lymphocytes, plays an important, albeit underappreciated, role in regulating immune-mediated inflammation. Methods ACh and lymphocyte cholinergic status in the lungs were measured over the course of influenza infection and recovery. The role of ACh was examined by inhibiting ACh synthesis in vivo. Pulmonary inflammation was monitored by Iba1 immunofluorescence, using a novel automated algorithm. Tissue repair was monitored histologically. Results Pulmonary ACh remained constant through the early stage of infection and increased during the peak of the acquired immune response. As the concentration of ACh increased, cholinergic lymphocytes appeared in the BAL and lungs. Cholinergic capacity was found primarily in CD4 T cells, but also in B cells and CD8 T cells. The cholinergic CD4+ T cells bound to influenza-specific tetramers and were retained in the resident memory regions of the lung up to 2 months after infection. Histologically, cholinergic lymphocytes were found in direct physical contact with activated macrophages throughout the lung. Inflammation was monitored by ionized calcium-binding adapter molecule 1 (Iba1) immunofluorescence, using a novel automated algorithm. When ACh production was inhibited, mice exhibited increased tissue inflammation and delayed recovery. Histologic examination revealed abnormal tissue repair when ACh was limited. Conclusion These findings point to a previously unrecognized role for ACh in the transition from active immunity to recovery and pulmonary repair following respiratory viral infection.
Collapse
Affiliation(s)
- Alexander P Horkowitz
- Donald P. Shiley Biosciences Center, San Diego State University, San Diego, California, USA.,Department of Biology, San Diego State University, San Diego, California, USA
| | - Ashley V Schwartz
- Department of Mathematics and Statistics, San Diego State University, San Diego, California, USA
| | - Carlos A Alvarez
- Donald P. Shiley Biosciences Center, San Diego State University, San Diego, California, USA.,Department of Biology, San Diego State University, San Diego, California, USA
| | - Edgar B Herrera
- Donald P. Shiley Biosciences Center, San Diego State University, San Diego, California, USA
| | - Marilyn L Thoman
- Donald P. Shiley Biosciences Center, San Diego State University, San Diego, California, USA
| | - Dale A Chatfield
- Department of Chemistry, San Diego State University, San Diego, California, USA
| | - Kent G Osborn
- Office of Animal Research, University of California San Diego, San Diego, California, USA
| | - Ralph Feuer
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Uduak Z George
- Department of Mathematics and Statistics, San Diego State University, San Diego, California, USA
| | - Joy A Phillips
- Donald P. Shiley Biosciences Center, San Diego State University, San Diego, California, USA
| |
Collapse
|