1
|
Li H, Liu Q, Yang J, Gu S, Shi J, Li H, Cheng J. The effect and mechansim of β-arrestins in the regulation of microglia polarization in the pathogenesis of Parkinson's disease. Minerva Med 2022; 113:1036-1038. [PMID: 34672167 DOI: 10.23736/s0026-4806.21.07829-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Haining Li
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China.,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Qiang Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China.,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Juan Yang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China.,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Shue Gu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China.,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Jin Shi
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Hui Li
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Jiang Cheng
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China -
| |
Collapse
|
2
|
Dong X, Chen Y, Lu J, Huang S, Pei G. β-arrestin 2 and Epac2 cooperatively mediate DRD1-stimulated proliferation of human neural stem cells and growth of human cerebral organoids. Stem Cells 2022; 40:857-869. [PMID: 35772103 DOI: 10.1093/stmcls/sxac046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/15/2022] [Indexed: 11/12/2022]
Abstract
G protein coupled receptors (GPCRs) reportedly relay specific signals, such as dopamine and serotonin, to regulate neurogenic processes though the underlying signaling pathways are not fully elucidated. Based on our previous work which demonstrated Dopamine receptor D1 (DRD1) effectively induces the proliferation of human neural stem cells, here we continued to show the knockout of β-arrestin 2 by CRISPR/Cas9 technology significantly weakened the DRD1-induced proliferation and neurosphere growth. Furthermore, inhibition of the downstream p38 MAPK by its specific inhibitors or small hairpin RNA mimicked the weakening effect of β-arrestin 2 knockout. In addition, blocking of Epac2, a PKA independent signal pathway, by its specific inhibitors or small hairpin RNA also significantly reduced DRD1-induced effects. Simultaneous inhibition of β-arrestin 2/p38 MAPK and Epac2 pathways nearly abolished the DRD1-stimulated neurogenesis, indicating the cooperative contribution of both pathways. Consistently, the expansion and folding of human cerebral organoids as stimulated by DRD1 were also mediated cooperatively by both β-arrestin 2/p38 MAPK and Epac2 pathways. Taken together, our results reveal that GPCRs apply at least two different signal pathways to regulate neurogenic processes in a delicate and balanced manners.
Collapse
Affiliation(s)
- Xiaoxu Dong
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China.,State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yujie Chen
- Uli Schwarz Quantitative Biology Core Facility, Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Juan Lu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shichao Huang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Gang Pei
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China.,State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Bandopadhyay R, Mishra N, Rana R, Kaur G, Ghoneim MM, Alshehri S, Mustafa G, Ahmad J, Alhakamy NA, Mishra A. Molecular Mechanisms and Therapeutic Strategies for Levodopa-Induced Dyskinesia in Parkinson's Disease: A Perspective Through Preclinical and Clinical Evidence. Front Pharmacol 2022; 13:805388. [PMID: 35462934 PMCID: PMC9021725 DOI: 10.3389/fphar.2022.805388] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is the second leading neurodegenerative disease that is characterized by severe locomotor abnormalities. Levodopa (L-DOPA) treatment has been considered a mainstay for the management of PD; however, its prolonged treatment is often associated with abnormal involuntary movements and results in L-DOPA-induced dyskinesia (LID). Although LID is encountered after chronic administration of L-DOPA, the appearance of dyskinesia after weeks or months of the L-DOPA treatment has complicated our understanding of its pathogenesis. Pathophysiology of LID is mainly associated with alteration of direct and indirect pathways of the cortico-basal ganglia-thalamic loop, which regulates normal fine motor movements. Hypersensitivity of dopamine receptors has been involved in the development of LID; moreover, these symptoms are worsened by concurrent non-dopaminergic innervations including glutamatergic, serotonergic, and peptidergic neurotransmission. The present study is focused on discussing the recent updates in molecular mechanisms and therapeutic approaches for the effective management of LID in PD patients.
Collapse
Affiliation(s)
- Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Nainshi Mishra
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Ruhi Rana
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Gagandeep Kaur
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gulam Mustafa
- College of Pharmacy (Boys), Al-Dawadmi Campus, Shaqra University, Riyadh, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Nabil. A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)—Guwahati, Guwahati, India
| |
Collapse
|
4
|
He HJ, Xiong X, Zhou S, Zhang XR, Zhao X, Chen L, Xie CL. Neuroprotective effects of curcumin via autophagy induction in 6-hydroxydopamine Parkinson's models. Neurochem Int 2022; 155:105297. [PMID: 35122926 DOI: 10.1016/j.neuint.2022.105297] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
Abstract
Curcumin, a polyphenolic compound extracted from curcuma longa, acts as a nontoxic matter with anti-oxidant and anti-inflammatory effects as well as antiproliferative activities. Here, our research aimed to explore the neuroprotective effects of curcumin both in the 6-hydroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD) in vivo and 6-OHDA-lesioned PC12 cells in vitro. In vitro, 6-OHDA caused a distinct decrease in cell viability of PC12 cells (150 μM). With the incubation of curcumin (1 μM), 6-OHDA-induced apoptosis was suppressed, increasing the autophagy markers (LC3-II/LC3-I, Beclin-1) and inhibiting phosphor-AKT/AKT, phosphor-mTOR/mTOR. In vivo, curcumin (50 mg/kg) reduced the accumulation of a-synuclein and led to higher parkinsonian disability scores in 6-OHDA-lesioned PD rats, contributing to induction of autophagy through inhibiting AKT/mTOR signal pathway. Moreover, treatment with autophagy inhibitors, such as 3-MA and chloroquine, abolished the neuroprotective effects of curcumin as evidence by compromised autophagy and declined motor behavior in PD rats. In conclusion, the present study demonstrated that curcumin repressed PC12 cell death in vitro and improved parkinsonian disability scores in vivo by inhibiting AKT/mTOR signaling pathway which mediated by autophagy, indicating a potential value of curcumin in the therapeutic intervention of Parkinson's disease.
Collapse
Affiliation(s)
- Hai-Jun He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xi Xiong
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Shuoting Zhou
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xing-Ru Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xuemiao Zhao
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Lingli Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Cheng-Long Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Key Laboratory of Alzheimer's Disease of Zhejiang Province, China; Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China; Oujiang Laboratory, Wenzhou, Zhejiang, China.
| |
Collapse
|
5
|
Ma TL, Zhou Y, Zhang CY, Gao ZA, Duan JX. The role and mechanism of β-arrestin2 in signal transduction. Life Sci 2021; 275:119364. [PMID: 33741415 DOI: 10.1016/j.lfs.2021.119364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
β-arrestin2 is a ubiquitously expressed scaffold protein localized on the cytoplasm and plasma membrane. It was originally found to bind to GPCRs, uncoupling G proteins and receptors' binding and inhibiting the signal transduction of the GPCRs. Further investigations have revealed that β-arrestin2 not only mediates the desensitization of GPCRs but also serves as a multifunctional scaffold to mediate receptor internalization, kinase activation, and regulation of various signaling pathways, such as TLR4/NF-κB, MAPK, Wnt, TGF-β, and AMPK/mTOR pathways. β-arrestin2 regulates cell invasion, migration, autophagy, angiogenesis, and anti-inflammatory effects by regulating various signaling pathways, which play a vital role in many physiological and pathological processes. This paper reviews the structure and function of β-arrestin2, the regulation of β-arrestin2 based signaling pathways. The role and mechanism of β-arrestin2 signaling have been delineated in sufficient detail. The prospect of regulating the expression and activity of β-arrestin2 in multisystem diseases holds substantial therapeutic promise.
Collapse
Affiliation(s)
- Tian-Liang Ma
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Impants, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Zi-Ang Gao
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Jia-Xi Duan
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
6
|
The Effects of Antipsychotics on the Synaptic Plasticity Gene Homer1a Depend on a Combination of Their Receptor Profile, Dose, Duration of Treatment, and Brain Regions Targeted. Int J Mol Sci 2020; 21:ijms21155555. [PMID: 32756473 PMCID: PMC7432375 DOI: 10.3390/ijms21155555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Antipsychotic agents modulate key molecules of the postsynaptic density (PSD), including the Homer1a gene, implicated in dendritic spine architecture. How the antipsychotic receptor profile, dose, and duration of administration may influence synaptic plasticity and the Homer1a pattern of expression is yet to be determined. Methods: In situ hybridization for Homer1a was performed on rat tissue sections from cortical and striatal regions of interest (ROI) after acute or chronic administration of three antipsychotics with divergent receptor profile: Haloperidol, asenapine, and olanzapine. Univariate and multivariate analyses of the effects of topography, treatment, dose, and duration of antipsychotic administration were performed. Results: All acute treatment regimens were found to induce a consistently higher expression of Homer1a compared to chronic ones. Haloperidol increased Homer1a expression compared to olanzapine in striatum at the acute time-point. A dose effect was also observed for acute administration of haloperidol. Conclusions: Biological effects of antipsychotics on Homer1a varied strongly depending on the combination of their receptor profile, dose, duration of administration, and throughout the different brain regions. These molecular data may have translational valence and may reflect behavioral sensitization/tolerance phenomena observed with prolonged antipsychotics.
Collapse
|
7
|
Ionescu MI. Molecular docking investigation of the amantadine binding to the enzymes upregulated or downregulated in Parkinson's disease. ADMET AND DMPK 2020; 8:149-175. [PMID: 35300368 PMCID: PMC8915579 DOI: 10.5599/admet.854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/01/2020] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease. Levodopa in combination with amantadine has a demonstrated efficacy in motility impairment. An extensive investigation of some enzymes described to be upregulated or downregulated in PD was made - adenylate kinase (AK), adenine phosphoribosyltransferase (APRT), ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1), nucleoside-diphosphate kinase 3 (NDK3), purine nucleoside phosphorylase 1 (PNP1), and ecto-5'-nucleotidase (NT5E). Also, creatine kinase (CK) was included in the study because it is one of the main enzymes involved in the regulation of the nucleotide ratio in energy metabolism. To date, there is no proven link between amantadine treatment of PD and these enzymes. Because there are many AKs isoforms modified in PD, the AK was the first investigated. The molecular docking experiments allow the analysis of the selective binding of amantadine - unionized (with -NH2 group) and ionized form (with -NH3 + group) - to the AKs' isoforms implicated in PD. Using available X-ray 3D structures of human AKs in closed-conformation, it was demonstrated that there are notable differences between the interactions of the two forms of amantadine for the zebrafish AK1 (5XZ2), human AK2 (2C9Y), human AK5 (2BWJ), and AK from B.stearothermophilus. The cytosolic human AK1 and human AK2 mostly interact with ionized amantadine by AMP binding residues. The human AK5 interaction with ionized amantadine does not involve the residues from the catalytic site. Among other enzymes tested in the present study, APRT revealed the best results in respect of binding amantadine ionized form. The results offer a new perspective for further investigation of the connections between amantadine treatment of PD and some enzymes involved in purine metabolism.
Collapse
Affiliation(s)
- Mihaela Ileana Ionescu
- Department of Microbiology, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Louis Pasteur, 400349, Cluj-Napoca, Romania, .,Department of Microbiology, County Emergency Clinical Hospital, 400006, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Leta V, Jenner P, Chaudhuri KR, Antonini A. Can therapeutic strategies prevent and manage dyskinesia in Parkinson’s disease? An update. Expert Opin Drug Saf 2019; 18:1203-1218. [DOI: 10.1080/14740338.2019.1681966] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Valentina Leta
- King’s College London, Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, London, UK
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, London, UK
| | - Peter Jenner
- Neurodegenerative Diseases Research Group, School of Cancer and Pharmaceutical Sciences, Faculty of Life Science and Medicine, King’s College London, London, UK
| | - K. Ray Chaudhuri
- King’s College London, Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, London, UK
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, London, UK
| | - Angelo Antonini
- Department of Neuroscience, University of Padova, Padua, Italy
| |
Collapse
|