1
|
Song RX, Miao HT, Jia SY, Li WG, Liu JZ, Zhang W, Xing BR, Zhao JY, Zhang LM, Li XM. Hemorrhagic Shock and Resuscitation Causes Excessive Dopaminergic Signaling in the mPFC and Cognitive Dysfunction. Mol Neurobiol 2024; 61:3899-3910. [PMID: 38041715 DOI: 10.1007/s12035-023-03804-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023]
Abstract
Peri-operative hemorrhagic shock and resuscitation (HSR), a severe traumatic stress, is closely associated with post-operative anxiety, depression, and cognitive dysfunction, subsequently causing a serious burden on families and society. Following the co-release of corticotropin-releasing factor and catecholamine, traumatic stress activates dopaminergic neurons, increasing the addictive behavior and neurocognitive impairment risks. This study investigates the association between cognitive dysfunction and dopaminergic neurons in the mPFC under HSR conditions. This study established an HSR model by bleeding and re-transfusion in the mice. After HSR exposure, a dopamine D1 receptor antagonist, SKF-83566, was administered intraperitoneally for three consecutive days. Novel object recognition (NOR), conditioned fearing (FC), and conditioned place preference (CPP) were used to assess cognitive changes 16 days after HSR exposure. Local field potential (LFP) in the mPFC was also investigated during the novel object exploration. Compared with the mice exposed to sham, there was a significant decrease in the object recognition index, a reduction in context- and tone-related freezing time, an increase in CPP values, a downregulation of β-power but upregulation of γ-power in the mPFC in the mice exposed to HSR. Moreover, the mice exposed to HSR showed significantly upregulated TH-positive cell number, cleaved caspase-1- and TH-positive cells, and interleukin (IL)-1β/18 expression in the mPFC compared with sham; SKF-83566 could partially reverse these alternations. The HSR caused excessive dopaminergic signaling and cognitive dysfunction in the mPFC, a condition that might be ameliorated using a dopamine D1 receptor inhibitor.
Collapse
Affiliation(s)
- Rong-Xin Song
- Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China
| | - Hui-Tao Miao
- Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China
| | - Shi-Yan Jia
- Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China
| | - Wen-Guang Li
- Graduate School, Hebei Medical University, Shijiazhuang, China
| | - Ji-Zhen Liu
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bao-Rui Xing
- Department of Orthopedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China
| | - Jian-Yong Zhao
- Department of Orthopedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China
| | - Li-Min Zhang
- Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China.
| | - Xiao-Ming Li
- Department of Orthopedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China.
| |
Collapse
|
2
|
Zhang DX, Jia SY, Xiao K, Zhang MM, Yu ZF, Liu JZ, Zhang W, Zhang LM, Xing BR, Zhou TT, Li XM, Zhao XC, An P. Icariin mitigates anxiety-like behaviors induced by hemorrhagic shock and resuscitation via inhibiting of astrocytic activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155507. [PMID: 38552430 DOI: 10.1016/j.phymed.2024.155507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/18/2024] [Accepted: 02/28/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Abnormal activation of astrocytes in the amygdala contributes to anxiety after hemorrhagic shock and resuscitation (HSR). Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB)-associated epigenetic reprogramming of astrocytic activation is crucial to anxiety. A bioactive monomer derived from Epimedium icariin (ICA) has been reported to modulate NF-κB signaling and astrocytic activation. PURPOSE The present study aimed to investigate the effects of ICA on post-HSR anxiety disorders and its potential mechanism of action. METHODS We first induced HSR in mice through a bleeding and re-transfusion model and selectively inhibited and activated astrocytes in the amygdala using chemogenetics. Then, ICA (40 mg/kg) was administered by oral gavage once daily for 21 days. Behavioral, electrophysiological, and pathological changes were assessed after HSR using the light-dark transition test, elevated plus maze, recording of local field potential (LFP), and immunofluorescence assays. RESULTS Exposure to HSR reduced the duration of the light chamber and attenuated open-arm entries. Moreover, HSR exposure increased the theta oscillation power in the amygdala and upregulated NF-κB p65, H3K27ac, and H3K4me3 expression. Contrarily, chemogenetic inhibition of astrocytes significantly reversed these changes. Chemogenetic inhibition in astrocytes was simulated by ICA, but chemogenetic activation of astrocytes blocked the neuroprotective effects of ICA. CONCLUSION ICA mitigated anxiety-like behaviors induced by HSR in mice via inhibiting astrocytic activation, which is possibly associated with NF-κB-induced epigenetic reprogramming.
Collapse
Affiliation(s)
- Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Shi-Yan Jia
- Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China; Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, China
| | - Ke Xiao
- Department of Anesthesiology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ming-Ming Zhang
- Department of Anesthesiology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Zhi-Fang Yu
- Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China
| | - Ji-Zhen Liu
- Department of Anesthesiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- Department of Anesthesiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li-Min Zhang
- Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China
| | - Bao-Rui Xing
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing)
| | - Ting-Ting Zhou
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing)
| | - Xiao-Ming Li
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing)
| | - Xiao-Chun Zhao
- Department of Anesthesiology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ping An
- Department of Neurobiology, School of Life Science, China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Li Y, Xin Y, Qi MM, Wu ZY, Wang H, Zheng WC, Wang JX, Zhang DX, Zhang LM. VX-765 Alleviates Circadian Rhythm Disorder in a Rodent Model of Traumatic Brain Injury Plus Hemorrhagic Shock and Resuscitation. J Neuroimmune Pharmacol 2024; 19:3. [PMID: 38300393 DOI: 10.1007/s11481-024-10102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
Severe traumatic brain injury (TBI) can result in persistent complications, including circadian rhythm disorder, that substantially affect not only the injured people, but also the mood and social interactions with the family and the community. Pyroptosis in GFAP-positive astrocytes plays a vital role in inflammatory changes post-TBI. We determined whether VX-765, a low molecular weight caspase-1 inhibitor, has potential therapeutic value against astrocytic inflammation and pyroptosis in a rodent model of TBI plus hemorrhagic shock and resuscitation (HSR). A weight-drop plus bleeding and refusion model was used to establish traumatic exposure in rats. VX-765 (50 mg/kg) was injected via the femoral vein after resuscitation. Wheel-running activity was assessed, brain magnetic resonance images were evaluated, the expression of pyroptosis-associated molecules including cleaved caspase-1, gasdermin D (GSDMD), and interleukin-18 (IL-18) in astrocytes in the region of anterior hypothalamus, were explored 30 days post-trauma. VX-765-treated rats had significant improvement in circadian rhythm disorder, decreased mean diffusivity (MD) and mean kurtosis (MK), increased fractional anisotropy (FA), an elevated number and branches of astrocytes, and lower cleaved caspase-1, GSDMD, and IL-18 expression in astrocytes than TBI + HSR-treated rats. These results demonstrated that inhibition of pyroptosis-associated astrocytic activations in the anterior hypothalamus using VX-765 may ameliorate circadian rhythm disorder after trauma. In conclusion, we suggest that interventions targeting caspase-1-induced astrocytic pyroptosis by VX-765 are promising strategies to alleviate circadian rhythm disorder post-TBI.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Yue Xin
- Department of Anesthesiology, Graduated School, Hebei Medical University, Cangzhou, China
| | - Man-Man Qi
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Zhi-You Wu
- Department of Neurosurgery, Graduated School, Hebei Medical University, Cangzhou, China
| | - Han Wang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Wei-Chao Zheng
- Department of Anesthesiology, Graduated School, Hebei Medical University, Cangzhou, China
| | - Jie-Xia Wang
- Department of Anesthesiology, Graduated School, Hebei Medical University, Cangzhou, China
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China.
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China.
- Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China.
| |
Collapse
|
4
|
Zhang LM, Xin Y, Song RX, Zheng WC, Hu JS, Wang JX, Wu ZY, Zhang DX. CORM-3 alleviates the intestinal injury in a rodent model of hemorrhage shock and resuscitation: roles of GFAP-positive glia. J Mol Histol 2023; 54:271-282. [PMID: 37335421 DOI: 10.1007/s10735-023-10133-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 06/11/2023] [Indexed: 06/21/2023]
Abstract
Hemorrhagic shock and resuscitation (HSR) can induce severe intestinal damages, thereby leading to sepsis and long-term complications including dysbacteriosis and pulmonary injury. The NOD-like receptor protein 3 (NLRP3) inflammasome facilitates inflammation-associated cell recruitment in the gastrointestinal tract, and participates in many inflammatory bowel diseases. Previous studies have shown that exogenous carbon monoxide (CO) exerts neuroprotective effects against pyroptosis after HSR. We aimed to investigate whether carbon monoxide-releasing molecules-3 (CORM-3), an exogenous CO compound, could attenuate HSR-induced intestinal injury and the potential underlying mechanism.Rats were subjected to a HSR model by bleeding and re-infusion. Following resuscitation, 4 mg/kg of CORM-3 was administered intravenously into femoral vein. At 24 h and 7 d after HSR modeling, the pathological changes in intestinal tissues were evaluated by H&E staining. The intestinal pyroptosis, glial fibrillary acidic protein (GFAP)-positive glial pyroptosis, DAO (diamine oxidase) content, intestine tight junction proteins including zonula occludens-1 (ZO-1) and claudin-1 were further detected by immunofluorescence, western blot and chemical assays at 7 d after HSR. CORM-3 administration led to significantly mitigated HSR-induced intestinal injury, aggravation of intestinal pyroptosis indicated by cleaved caspase-1, IL-1β and IL-18, upregulation of GFAP-positive glial pyroptosis, decreased intensity of ZO-1 and claudin-1 in the jejunum, and increased of DAO in the serum. Nigericin, an agonist of NLRP3, significantly reversed the protective effects of CORM-3. CORM-3 alleviates the intestinal barrier dysfunction in a rodent model of HSR, and the potential mechanism may be associated with inhibition of NLRP3-associated pyroptosis. CORM-3 administration could be a promising therapeutic strategy for intestinal injury after hemorrhagic shock.
Collapse
Affiliation(s)
- Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China.
| | - Yue Xin
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Rong-Xin Song
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Shijiazhuang, China
| | - Wei-Chao Zheng
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Jin-Shu Hu
- Department of Clinical Laboratory, Cangzhou Central Hospital, Cangzhou, China
| | - Jie-Xia Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Shijiazhuang, China
| | - Zhi-You Wu
- Department of Neurosurgery, Cangzhou Central Hospital, Hebei Medical University, Shijiazhuang, China
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
5
|
Liu JZ, Zhang LM, Zhang DX, Song RX, Lv JM, Wang LY, Jia SY, Shan YD, Shao JJ, Zhang W. NLRP3 in the GABAergic neuron induces cognitive impairments in a mouse model of hemorrhage shock and resuscitation. J Psychiatr Res 2023; 159:213-223. [PMID: 36739849 DOI: 10.1016/j.jpsychires.2023.01.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/28/2022] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Affiliation(s)
- Ji-Zhen Liu
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine Cangzhou No.2 Hospital, Cangzhou, China
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Rong-Xin Song
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Jin-Meng Lv
- Anesthesia and Trauma Research Unit, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine Cangzhou No.2 Hospital, Cangzhou, China
| | - Lu-Ying Wang
- Anesthesia and Trauma Research Unit, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine Cangzhou No.2 Hospital, Cangzhou, China
| | - Shi-Yan Jia
- Anesthesia and Trauma Research Unit, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine Cangzhou No.2 Hospital, Cangzhou, China
| | - Yu-Dong Shan
- Anesthesia and Trauma Research Unit, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine Cangzhou No.2 Hospital, Cangzhou, China
| | - Jing-Jing Shao
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
6
|
Zhang LM, Wu ZY, Liu JZ, Li Y, Lv JM, Wang LY, Shan YD, Song RX, Miao HT, Zhang W, Zhang DX. Subanesthetic dose of S-ketamine improved cognitive dysfunction via the inhibition of hippocampal astrocytosis in a mouse model of post-stroke chronic stress. J Psychiatr Res 2023; 158:1-14. [PMID: 36542981 DOI: 10.1016/j.jpsychires.2022.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/21/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Post-stroke chronic stress (PSCS) is generally associated with the poorer recovery and more pronounced cognitive dysfunction. Recent evidence has implied that S-ketamine can reduce suicidal ideation in treatment-resistant depression. In this current study, we aimed to investigate whether the administration of S-ketamine ameliorated cognitive deficits under PSCS conditions, which was established by a model combining middle cerebral artery occlusion (MCAO) and chronic restraint stress. Our data suggested that mice exposed to PSCS exhibited depression-like behavior and cognitive impairment, which coincided with astrocytosis as indicated by increased GFAP-positive cells and impairment of long-time potentiation (LTP) in the hippocampal CA1. Subanesthetic doses (10 mg/kg) of S-ketamine have significantly mitigated depression-like behaviors, cognitive deficits and LTP impairment, reduced astrocytosis, excessive GABA, and inflammatory factors, including NLRP3 and IL-18 in astrocytes in the CA1. Besides, neuroprotective effects induced by S-ketamine administration were found in vitro but could be partially reversed by an agonist of the NLRP3 nigericin. Our current data also suggests that the subanesthetic doses of S-ketamine improved cognitive dysfunction via the inhibition of hippocampal astrocytosis in a mouse model of PSCS.
Collapse
Affiliation(s)
- Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China; Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| | - Zhi-You Wu
- Graduated School, Hebei Medical University, Shijiazhuang, China.
| | - Ji-Zhen Liu
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China.
| | - Jin-Meng Lv
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China; Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| | - Lu-Ying Wang
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China; Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| | - Yu-Dong Shan
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China; Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| | - Rong-Xin Song
- Graduated School, Hebei Medical University, Shijiazhuang, China.
| | - Hui-Tao Miao
- Graduated School, Hebei Medical University, Shijiazhuang, China.
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China.
| |
Collapse
|
7
|
Zhang LM, Zhang DX, Song RX, Lv JM, Wang LY, Wu ZY, Miao HT, Zhou YB, Zhang W, Xin Y, Li Y. IL-18BP Alleviates Anxiety-Like Behavior Induced by Traumatic Stress via Inhibition of the IL-18R-NLRP3 Signaling Pathway in a Mouse Model of Hemorrhagic Shock and Resuscitation. Mol Neurobiol 2022; 60:382-394. [PMID: 36269543 DOI: 10.1007/s12035-022-03085-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/08/2022] [Indexed: 11/25/2022]
Abstract
Psychological distress and posttraumatic stress, including anxiety, severely influence life quality. Previously, we reported that interleukin-18 (IL-18) was involved in pyroptosis-induced emotional changes in a rodent model of hemorrhagic shock and resuscitation (HSR). Here, we aimed to continue our investigation on the role of IL-18 binding protein (IL-18BP), which exhibits excellent anti-inflammatory effects as an IL-18 negative regulator. Mice were administered with an intraperitoneal injection of IL-18BP after HSR exposure and anxiety-like behavior was examined using the open-field test and elevated plus maze test. Moreover, the following variables post-HSR were measured: (1) the activation of astrocytes; (2) pyroptosis-associated factors including cleaved caspase-1, GSDMD, IL-18; (3) the roles of IL-18 receptor (IL-18R)-NOD-like receptor pyrin domain-containing-3 (NLRP3) signal with the application of the NLRP3 specific agonist or astrocyte-specific NLRP3 knockout mice. IL-18BP administration remarkably alleviated HSR-induced anxiety-like behavior, astrocytic activation, and increases in pyroptosis-associated factors, while NLRP3 agonist nigericin partially reversed IL-18BP-induced neuroprotective effects. Astrocyte-specific NLRP3 knockout mice exhibited relatively less anxiety-like behavior. Similarly, IL-18BP exhibited an anti-pyroptosis effect in astrocytes in an in vitro model of low oxygen-glucose deprivation. These findings offer unique perspectives on HSR-induced posttraumatic stress and indicate that inhibition of IL-18R-NLRP3 signal via IL-18BP can attenuate astrocytic activation and pyroptosis, broadening the therapeutic landscape for patients with psychological distress and posttraumatic stress.
Collapse
Affiliation(s)
- Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China.
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China.
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Rong-Xin Song
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Jin-Meng Lv
- Anesthesia and Trauma Research Unit, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Lu-Ying Wang
- Anesthesia and Trauma Research Unit, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Zhi-You Wu
- Department of Neurosurgery, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Hui-Tao Miao
- Department of Neurosurgery, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Yan-Bo Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yue Xin
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| |
Collapse
|
8
|
Zhang LM, Xin Y, Wu ZY, Song RX, Miao HT, Zheng WC, Li Y, Zhang DX, Zhao XC. STING mediates neuroinflammatory response by activating NLRP3-related pyroptosis in severe traumatic brain injury. J Neurochem 2022; 162:444-462. [PMID: 35892155 DOI: 10.1111/jnc.15678] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/21/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022]
Abstract
Long-term neurological deficits after severe traumatic brain injury (TBI), including cognitive dysfunction and emotional impairments, can significantly impair rehabilitation. Glial activation induced by inflammatory response is involved in the neurological deficits post-TBI. This study aimed to investigate the role of the stimulator of interferon genes (STING)-nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) signaling in a rodent model of severe TBI. Severe TBI models were established using weight-drop plus blood loss-reinfusion. Selective STING agonist ADU-S100 or antagonist C-176 was given as a single dose after modeling. Further, NLRP3 inhibitor MCC950 or activator nigericin, or caspase-1 inhibitor VX765, was given as an intracerebroventricular injection 30 min before modeling. After that, a novel object recognition test, open field test, force swimming test, western blot, and immunofluorescence assays were used to assess behavioral and pathological changes in severe TBI. Administration of C-176 alleviated TBI-induced cognitive dysfunction and emotional impairments, neuronal loss, and inflammatory activation of glia cells. However, the administration of STING agonist ADU-S100 exacerbated TBI-induced behavioral and pathological changes. In addition, STING activation exacerbated pyroptosis-associated neuroinflammation via promoting glial activation, as evidenced by increased cleaved caspase-1 and GSDMD N-terminal expression. In contrast, the administration of C-176 showed anti-pyroptotic effects. The neuroprotective effects of C-176 were partially reversed by the NLRP3 activator, nigericin. Collectively, glial STING is responsible for neuroinflammation post-TBI. However, pharmacologic inhibition of STING led to a remarkable improvement of neuroinflammation partly through suppressing NLRP3 signaling. The STING-NLRP3 signaling is a potential therapeutic target in TBI-induced neurological dysfunction.
Collapse
Affiliation(s)
- Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.,Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing)
| | - Yue Xin
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Zhi-You Wu
- Department of Neurosurgery, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Rong-Xin Song
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Hui-Tao Miao
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Wei-Chao Zheng
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Xiao-Chun Zhao
- Department of Anesthesiology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
9
|
Scalable production and complete biophysical characterization of poly(ethylene glycol) surface conjugated liposome encapsulated hemoglobin (PEG-LEH). PLoS One 2022; 17:e0269939. [PMID: 35802716 PMCID: PMC9269976 DOI: 10.1371/journal.pone.0269939] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/31/2022] [Indexed: 11/19/2022] Open
Abstract
Particle encapsulated hemoglobin (Hb)-based oxygen (O2) carriers (HBOCs) have clear advantages over their acellular counterparts because of their larger molecular diameter and lack of vasoactivity upon transfusion. Poly(ethylene glycol) surface conjugated liposome encapsulated Hb (PEG-LEH) nanoparticles are considered a promising class of HBOC for use as a red blood cell (RBC) substitute. However, their widespread usage is limited by manufacturing processes which prevent material scale up. In this study, PEG-LEH nanoparticles were produced via a scalable and robust process using a high-pressure cell disruptor, and their biophysical properties were thoroughly characterized. Hb encapsulation, methemoglobin (metHb) level, O2-PEG-LEH equilibria, PEG-LEH gaseous (oxygen, carbon monoxide, nitric oxide) ligand binding/release kinetics, lipocrit, and long-term storage stability allowed us to examine their potential suitability and efficacy as an RBC replacement. Our results demonstrate that PEG-LEH nanoparticle suspensions manufactured via a high-pressure cell disruptor have Hb concentrations comparable to whole blood (~12 g/dL) and possess other desirable characteristics, which may permit their use as potential lifesaving O2 therapeutics.
Collapse
|
10
|
Wan T, Li X, Fu M, Gao X, Li P, Guo W. NLRP3-Dependent Pyroptosis: A Candidate Therapeutic Target for Depression. Front Cell Neurosci 2022; 16:863426. [PMID: 35722622 PMCID: PMC9204297 DOI: 10.3389/fncel.2022.863426] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/27/2022] [Indexed: 01/20/2023] Open
Abstract
Depression, a major public health problem, imposes a significant economic burden on society. Recent studies have gradually unveiled the important role of neuroinflammation in the pathogenesis of depression. Pyroptosis, a programmed cell death mediated by Gasdermins (GSDMs), is also considered to be an inflammatory cell death with links to inflammation. Pyroptosis has emerged as an important pathological mechanism in several neurological diseases and has been found to be involved in several neuroinflammatory-related diseases. A variety of chemical agents and natural products have been found to be capable of exerting therapeutic effects by modulating pyroptosis. Studies have shown that depression is closely associated with pyroptosis and the induced neuroinflammation of relevant brain regions, such as the hippocampus, amygdala, prefrontal cortex neurons, etc., in which the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome plays a crucial role. This article provides a timely review of recent findings on the activation and regulation of pyroptosis in relation to depression.
Collapse
Affiliation(s)
- Teng Wan
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Hengyang Medical College, University of South China, Hengyang, China
- *Correspondence: Teng Wan
| | - Xiaoyu Li
- Hengyang Medical College, University of South China, Hengyang, China
| | - Mingyuan Fu
- Hengyang Medical College, University of South China, Hengyang, China
| | - Xiaoyu Gao
- Hengyang Medical College, University of South China, Hengyang, China
| | - Peiling Li
- Hengyang Medical College, University of South China, Hengyang, China
| | - Weiming Guo
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Weiming Guo
| |
Collapse
|
11
|
An P, Zhao XC, Liu MJ, You YQ, Li JY. Gender-based differences in neuroprotective effects of hydrogen gas against intracerebral hemorrhage-induced depression. Neurochem Int 2022; 153:105276. [PMID: 34995727 DOI: 10.1016/j.neuint.2022.105276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Post-stroke depression (PSD) severely affects recovery in patients with intracerebral hemorrhage (ICH). Although hydrogen gas (H2) exerts excellent neuroprotective effects in patients with ICH, there are sex-based differences in H2 efficacy in several diseases. Herein, we determined whether estrogen increases susceptibility to the neuroprotective effects of H2 in males with ICH-induced depression. METHODS A rodent model of ICH in the basal ganglia was established using autologous blood injection (30 μL). Mice were treated with 2.9% H2 for 2 h daily for 3 days post-ICH. Estrogen (1 mg/kg) was administered by subcutaneous injection daily for 3 days to male mice post-ICH. Thirty days post-ICH, PSD was evaluated by sucrose preference, forced swimming, and 3-chamber social tests. Following the completion of behavioral tests, levels of superoxide dismutase (SOD) and reactive oxygen species (ROS), astrocytic activation, phosphorylated (p)-NF-κB-positive astrocytes, p-NF-κB, p-IKKβ, IL-1β, and IL-6 expression were determined. RESULTS Compared with female mice, H2 administration post-ICH exhibited fewer neuroprotective effects, including decreased sucrose consumption and time spent sniffing a novel mouse, increased immobility time, downregulated total SOD content, upregulated ROS content and p-NF-κB levels, and elevated astrocyte branches, whereas estrogen enhanced the neuroprotective effects of H2 in male mice. A reduced number of p-NF-κB-positive astrocytes, downregulated expression of p-NF-κB, p-IKKβ, IL-1β, and IL-6 in the amygdala were demonstrated in ICH-males treated with estrogen plus H2. CONCLUSIONS Estrogen was responsible for increased H2 sensitivity in male mice with ICH. The underlying mechanism may be associated with the suppression of NF-κB signaling in astrocytes.
Collapse
Affiliation(s)
- Ping An
- Department of Neurobiology, School of Life Science, China Medical University, Shenyang, People's Republic of China.
| | - Xiao-Chun Zhao
- Department of Anesthesiology, School and Hospital of Stomatology, China Medical University, Shenyang, People's Republic of China.
| | - Man-Jia Liu
- Department of Anesthesiology, ShengJing Hospital of China Medical University, Shenyang, People's Republic of China.
| | - Yu-Qing You
- Department of Anesthesiology, ShengJing Hospital of China Medical University, Shenyang, People's Republic of China.
| | - Jing-Ya Li
- Department of Anesthesiology, ShengJing Hospital of China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
12
|
Wang H, Wang Z, Wang P, Yu M, Xu J, Zhang G. A novel approach to estimate blood pressure of blood loss continuously based on stacked auto-encoder neural networks. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Zhang LM, Zhang DX, Zheng WC, Hu JS, Fu L, Li Y, Xin Y, Wang XP. CORM-3 exerts a neuroprotective effect in a rodent model of traumatic brain injury via the bidirectional gut-brain interactions. Exp Neurol 2021; 341:113683. [PMID: 33711325 DOI: 10.1016/j.expneurol.2021.113683] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/12/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Traumatic brain injury (TBI) induced the gastrointestinal inflammation that is associated with TBI-related morbidity and mortality. Carbon monoxide-releasing molecule (CORM)-3 is a water-soluble exogenous carbon monoxide that exerts protective effects against inflammation-induced pyroptosis. We investigated the gastrointestinal inflammation in a rodent model of traumatic brain injury (TBI) with subsequent hemorrhagic shock and resuscitation (HSR), as well as effects of CORM-3 using an intestinal injection on both gut and brain. METHODS Following exposure to TBI plus HSR, rats were administrated with CORM-3 (8 mg/kg) through an intestinal injection after resuscitation immediately. The pathological changes and pyroptosis in the gut were measured at 24 h and 30 day post-trauma. We also assessed the intestinal and cortical CO content, as well as IL-1β and IL-18 levels in the serum within 48 h after trauma. We then explored pathological changes in the ventromedial prefrontal cortex (vmPFC) and neurological behavior deficits on 30 day post-trauma. RESULTS After TBI + HSR exposure, CORM-3-treated rats presented significantly decreased pyroptosis, more CO content in the jejunum, and lower IL-1β, IL-18 levels in the serum at 24 h after trauma. Moreover, the rats treated with CORM-3 exerted ameliorated jejunal and vmPFC injury, enhanced learning/memory ability and exploratory activity, improved anxiety-like behaviors than the TBI + HSR-treated rats on 30 day post-trauma. CONCLUSION These experimental data demonstrated and bidirectional gut-brain interactions after TBI, anti-inflammatory effects of CORM-3, which may improve late outcomes after brain injury.
Collapse
Affiliation(s)
- Li-Min Zhang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China.
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Wei-Chao Zheng
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Jin-Shu Hu
- Clinical Laboratory, Cangzhou Central Hospital, Cangzhou, China
| | - Lan Fu
- Department of Radiodiagnosis, Cangzhou Central Hospital, Cangzhou, China
| | - Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Yue Xin
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Xu-Peng Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|