1
|
Zhang Z, Bao Y, Wei P, Yan X, Qiu Q, Qiu L. Melatonin attenuates dental pulp stem cells senescence due to vitro expansion via inhibiting MMP3. Oral Dis 2024; 30:2410-2424. [PMID: 37448325 DOI: 10.1111/odi.14649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/07/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023]
Abstract
OBJECTIVE We aimed to identify the crucial genes involved in dental pulp stem cell (DPSC) senescence and evaluate the impact of melatonin on DPSC senescence. METHODS Western blotting, SA-β-Gal staining and ALP staining were used to evaluate the senescence and differentiation potential of DPSCs. The optimal concentration of melatonin was determined using the CCK-8 assay. Differentially expressed genes (DEGs) involved in DPSC senescence were obtained via bioinformatics analysis, followed by RT-qPCR. Gain- and loss-of-function studies were conducted to explore the role of MMP3 in DPSC in vitro expansion and in response to melatonin. GSEA was employed to analyse MMP3-related pathways in cellular senescence. RESULTS Treatment with 0.1 μM melatonin attenuated cellular senescence and differentiation potential suppression in DPSCs due to long-term in vitro expansion. MMP3 was a crucial gene in senescence, as confirmed by bioinformatics analysis, RT-qPCR and Western blotting. Furthermore, gain- and loss-of-function studies revealed that MMP3 played a regulatory role in cellular senescence. Rescue assays showed that overexpression of MMP3 reversed the effect of melatonin on senescence. GSEA revealed that the MMP3-dependent anti-senescence effect of melatonin was associated with the IL6-JAK-STAT3, TNF-α-Signalling-VIA-NF-κB, COMPLEMENT, NOTCH Signalling and PI3K-AKT-mTOR pathways. CONCLUSION Melatonin attenuated DPSC senescence caused by long-term expansion by inhibiting MMP3.
Collapse
Affiliation(s)
- Zeying Zhang
- Department of Endodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yandong Bao
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Penggong Wei
- Department of Endodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Xiaoyuan Yan
- Department of Endodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Qiujing Qiu
- Department of Endodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Lihong Qiu
- Department of Endodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
2
|
Chang SY, Chen RS, Chang JYF, Chen MH. The temporospatial relationship between mouse dental pulp stem cells and tooth innervation. J Dent Sci 2024; 19:1075-1082. [PMID: 38618089 PMCID: PMC11010667 DOI: 10.1016/j.jds.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/07/2024] [Indexed: 04/16/2024] Open
Abstract
Background/purpose Dental pulp stem cells (DPSCs) exhibit versatile differentiation capabilities, including neural differentiation, prompting the hypothesis that they may be implicated in the neurodevelopment of teeth. This study aimed to explore the temporospatial dynamics between DPSCs and tooth innervation, employing immunofluorescence staining and fluorescent dye injections to investigate the distribution of DPSCs, neural stem cells (NSCs), nerve growth cones, and sensory nerves in developing mouse tooth germs at various stages. Materials and methods Immunofluorescence staining targeting CD146, Nestin, and GAP-43, along with the injection of AM1-43 fluorescent dye, were utilized to observe the distribution of DPSCs, NSCs, nerve growth cones, and sensory nerves in mouse tooth germs at different developmental stages. Results Positive CD146 immunostaining was observed in microvascular endothelial cells and pericytes within and around the tooth germ. The percentage of CD146-positive cells remained consistent between 4-day-old and 8-day-old second molar tooth germs. Conversely, Nestin expression in odontoblasts and their processes decreased in 8-day-old tooth germs compared to 4-day-old ones. Positive immunostaining for GAP-43 and AM1-43 fluorescence revealed the entry of nerve growth cones and sensory nerves into the pulp in 8-day-old tooth germs, while these elements were confined to the dental follicle in 4-day-old germs. No co-localization of CD146-positive DPSCs with nerve growth cones and sensory nerves was observed. Conclusion DPSCs and NSCs were present in dental pulp tissue before nerves penetrated the pulp. The decline in NSCs after nerve entry suggests a potential role for DPSCs and NSCs in attracting neural growth and/or differentiation within the pulp.
Collapse
Affiliation(s)
- Shu-Ya Chang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Prosthodontics, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan City, Taiwan
| | - Rung-Shu Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Julia Yu Fong Chang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Min-Huey Chen
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Yang S, Huang F, Zhang F, Sheng X, Fan W, Dissanayaka WL. Emerging Roles of YAP/TAZ in Tooth and Surrounding: from Development to Regeneration. Stem Cell Rev Rep 2023:10.1007/s12015-023-10551-z. [PMID: 37178226 DOI: 10.1007/s12015-023-10551-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Yes associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are ubiquitous transcriptional co-activators that control organ development, homeostasis, and tissue regeneration. Current in vivo evidence suggests that YAP/TAZ regulates enamel knot formation during murine tooth development, and is indispensable for dental progenitor cell renewal to support constant incisor growth. Being a critical sensor for cellular mechano-transduction, YAP/TAZ lays at the center of the complex molecular network that integrates mechanical cues from the dental pulp chamber and surrounding periodontal tissue into biochemical signals, dictating in vitro cell proliferation, differentiation, stemness maintenance, and migration of dental stem cells. Moreover, YAP/TAZ-mediated cell-microenvironment interactions also display essential regulatory roles during biomaterial-guided dental tissue repair and engineering in some animal models. Here, we review recent advances in YAP/TAZ functions in tooth development, dental pulp, and periodontal physiology, as well as dental tissue regeneration. We also highlight several promising strategies that harness YAP/TAZ activation for promoting dental tissue regeneration.
Collapse
Affiliation(s)
- Shengyan Yang
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Fang Huang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fuping Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xinyue Sheng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenguo Fan
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Waruna Lakmal Dissanayaka
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
4
|
Li G, Xu Z, Yang M, Ning Y, Ye L, Jiang H, Du Y. Topographic Cues of a PLGA Scaffold Promote Odontogenic Differentiation of Dental Pulp Stem Cells through the YAP/β-Catenin Signaling Axis. ACS Biomater Sci Eng 2023; 9:1598-1607. [PMID: 36861954 DOI: 10.1021/acsbiomaterials.2c01497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
PURPOSE The underlying mechanism of how topographic cues of artificial scaffolds regulate cell function remains poorly understood. Yes-associated protein (YAP) and β-catenin signaling have both been reported to play important roles in mechano-transduction and dental pulp stem cells (DPSCs) differentiation. We investigated the effects of YAP and β-catenin in spontaneous odontogenic differentiation of DPSCs induced by topographic cues of a poly(lactic-co-glycolic acid) (PLGA) membrane. METHODS The topographic cues and function of a fabricated PLGA scaffold were explored via scanning electron microscopy (SEM), alizarin red staining (ARS), reverse transcription-polymerase chain reaction (RT-PCR), and pulp capping. Immunohistochemistry (IF), RT-PCR, and western blotting (WB) were used to observe the activation of YAP and β-catenin when DPSCs were cultured on the scaffolds. Further, YAP was inhibited or overexpressed on either side of the PLGA membrane, and YAP, β-catenin, and odontogenic marker expression were analyzed using IF, ARS, and WB. RESULTS The closed side of the PLGA scaffold promoted spontaneous odontogenic differentiation and nuclear translocation of YAP and β-catenin in vitro and in vivo compared to the open side. The YAP antagonist verteporfin inhibited β-catenin expression, nuclear translocation, and odontogenic differentiation on the closed side, but the effects were rescued by LiCl. YAP overexpressing DPSCs on the open side activated β-catenin signaling and promoted odontogenic differentiation. CONCLUSION The topographic cue of our PLGA scaffold promotes odontogenic differentiation of DPSCs and pulp tissue through the YAP/β-catenin signaling axis.
Collapse
Affiliation(s)
- Guixian Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou 510055, Guangdong, China
| | - Zhiqing Xu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou 510055, Guangdong, China
| | - Maobin Yang
- Regenerative Health Research Laboratory, Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Yang Ning
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou 510055, Guangdong, China
| | - Li Ye
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou 510055, Guangdong, China
| | - Hongwei Jiang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou 510055, Guangdong, China
| | - Yu Du
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou 510055, Guangdong, China
| |
Collapse
|
5
|
Wang T, Li K, Liu H, Luo E. Focusing on Hippo Pathway in Stem Cells of Oral Origin, Enamel Formation and Periodontium Regeneration. Organogenesis 2022; 18:2082236. [PMID: 35786361 PMCID: PMC9897286 DOI: 10.1080/15476278.2022.2082236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hippo pathway is a cellular regulatory pathway composed of core molecules such as MST1/2, LATS1/2, SAV1, MOB1A/B and downstream YAP/TAZ. Fully involved in regulating cell proliferation, differentiation, migration and apoptosis, the Hippo pathway is critical in regulating stem cells of oral origin, for instance, DPSCs and PDLSCs, enamel formation and periodontium regeneration. Here, we summarized the Hippo pathway involved in these progresses and concluded crosstalks of the Hippo pathway with BCL-2, ERK1/2, ROCK, TGF-β/BMP and Wnt/β-catenin pathways, hoping to provide foundation for further clinical therapy.
Collapse
Affiliation(s)
- Tianyi Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Kehan Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - En Luo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China,CONTACT En Luo State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Chengdu, Sichuan610041, China
| |
Collapse
|
6
|
Neural Regulations in Tooth Development and Tooth-Periodontium Complex Homeostasis: A Literature Review. Int J Mol Sci 2022; 23:ijms232214150. [PMID: 36430624 PMCID: PMC9698398 DOI: 10.3390/ijms232214150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The tooth-periodontium complex and its nerves have active reciprocal regulation during development and homeostasis. These effects are predominantly mediated by a range of molecules secreted from either the nervous system or the tooth-periodontium complex. Different strategies mimicking tooth development or physiological reparation have been applied to tooth regeneration studies, where the application of these nerve- or tooth-derived molecules has been proven effective. However, to date, basic studies in this field leave many vacancies to be filled. This literature review summarizes the recent advances in the basic studies on neural responses and regulation during tooth-periodontium development and homeostasis and points out some research gaps to instruct future studies. Deepening our understanding of the underlying mechanisms of tooth development and diseases will provide more clues for tooth regeneration.
Collapse
|
7
|
Dose-Dependent Effects of Melatonin on the Viability, Proliferation, and Differentiation of Dental Pulp Stem Cells (DPSCs). J Pers Med 2022; 12:jpm12101620. [PMID: 36294759 PMCID: PMC9605259 DOI: 10.3390/jpm12101620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022] Open
Abstract
(1) Background: Dental pulp stem cells (DPSCs) are derived from pulp tissue lodged within human teeth and are mesenchymal in origin. These DPSCs have been demonstrated to dissociate into clusters of various cell lineages and are very easy to isolate, culture, and expand. Melatonin, a multifaceted molecule with a spectrum of effects in the human body, is known to influence stem cell viability, proliferation, and differentiation, but little is known about the impact melatonin has on the capacity of DPSCs to differentiate into adipocytes, osteocytes, and chondrocytes. The primary objective of this research was to explore the impact that melatonin has on proliferation, and the capacity of DPSCs to differentiate into adipocytes, osteocytes, and chondrocytes. (2) Methodology: DPSCs were extracted from 12 healthy human teeth, cultured, and expanded. Flow cytometry was performed to examine the surface stem cell markers. Further, melatonin was added to the cultured DPSCs in various concentrations, to assess cytotoxicity using an MTT assay. Following this, the DPSCs were tested for their proliferative ability, as well as adipogenic, osteogenic, and chondrogenic differentiation capabilities under the influence of variable concentrations of melatonin. (3) Results: DPSCs obtained from human teeth demonstrated surface characteristics of mesenchymal stem cells, as shown by the positive expression of CD105, CD90, and CD73 markers. An MTT cytotoxicity assay revealed that melatonin was well tolerated by the cells at low (1 µM) and high (25 µM) concentrations. Assessment of DPSC cell differentiation elucidated that melatonin at 1 µM and 25 µM concentrations with the induction media stimulated DPSCs to differentiate into osteocytes, but did not have much influence on adipogenic and chondrogenic differentiation. (4) Conclusions: Melatonin could be used in stem cell and tissue engineering applications for osteogenic differentiation of DPSCs and could protect these cells due to its cytoprotective, immunomodulatory, and antioxidant roles, in addition to being an osteopromoter molecule.
Collapse
|
8
|
Therapeutic Effect of Melatonin in Premature Ovarian Insufficiency: Hippo Pathway Is Involved. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3425877. [PMID: 36017238 PMCID: PMC9398856 DOI: 10.1155/2022/3425877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022]
Abstract
Objective Premature ovarian insufficiency (POI) is a female reproductive disorder of unknown etiology with no definite pathogenesis. Melatonin (MT) is an endogenous hormone synthesized mainly by pineal cells and has strong endogenous effects in regulating ovarian function. To systematically explore the pharmacological mechanism of MT on POI therapy, a literature review approach was conducted at the signaling pathways level. Methods Relevant literatures were searched and downloaded from databases, including PubMed and China National Knowledge Infrastructure, using the keywords “premature ovarian insufficiency,” “Hippo signaling pathways,” and “melatonin.” The search criteria were from 2010 to 2022. Text mining was also performed. Results MT is involved in the regulation of Hippo signaling pathway in a variety of modes and has been correlated with ovarian function. Conclusions The purpose of this review is to summarize the research progress of Hippo signaling pathways and significance of MT in POI, the potential crosstalk between MT and Hippo signaling pathways, and the prospective therapy.
Collapse
|
9
|
Melatonin and the Programming of Stem Cells. Int J Mol Sci 2022; 23:ijms23041971. [PMID: 35216086 PMCID: PMC8879213 DOI: 10.3390/ijms23041971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Melatonin interacts with various types of stem cells, in multiple ways that comprise stimulation of proliferation, maintenance of stemness and self-renewal, protection of survival, and programming toward functionally different cell lineages. These various properties are frequently intertwined but may not be always jointly present. Melatonin typically stimulates proliferation and transition to the mature cell type. For all sufficiently studied stem or progenitor cells, melatonin’s signaling pathways leading to expression of respective morphogenetic factors are discussed. The focus of this article will be laid on the aspect of programming, particularly in pluripotent cells. This is especially but not exclusively the case in neural stem cells (NSCs) and mesenchymal stem cells (MSCs). Concerning developmental bifurcations, decisions are not exclusively made by melatonin alone. In MSCs, melatonin promotes adipogenesis in a Wnt (Wingless-Integration-1)-independent mode, but chondrogenesis and osteogenesis Wnt-dependently. Melatonin upregulates Wnt, but not in the adipogenic lineage. This decision seems to depend on microenvironment and epigenetic memory. The decision for chondrogenesis instead of osteogenesis, both being Wnt-dependent, seems to involve fibroblast growth factor receptor 3. Stem cell-specific differences in melatonin and Wnt receptors, and contributions of transcription factors and noncoding RNAs are outlined, as well as possibilities and the medical importance of re-programming for transdifferentiation.
Collapse
|
10
|
Shin YY, Seo Y, Oh SJ, Ahn JS, Song MH, Kang MJ, Oh JM, Lee D, Kim YH, Sung ES, Kim HS. Melatonin and verteporfin synergistically suppress the growth and stemness of head and neck squamous cell carcinoma through the regulation of mitochondrial dynamics. J Pineal Res 2022; 72:e12779. [PMID: 34826168 DOI: 10.1111/jpi.12779] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/15/2021] [Accepted: 11/15/2021] [Indexed: 12/01/2022]
Abstract
The prevalence of head and neck squamous cell carcinoma (HNSCC) has continued to rise for decades. However, drug resistance to chemotherapeutics and relapse, mediated by cancer stem cells (CSCs), remains a significant impediment in clinical oncology to achieve successful treatment. Therefore, we focused on analyzing CSCs in HNSCC and demonstrated the effect of melatonin (Mel) and verteporfin (VP) on SCC-25 cells. HNSCC CSCs were enriched in the reactive oxygen species-low state and in sphere-forming cultures. Combination treatment with Mel and VP decreased HNSCC viability and increased apoptosis without causing significant damage to normal cells. Sphere-forming ability and stem cell population were reduced by co-treatment with Mel and VP, while mitochondrial ROS level was increased by the treatment. Furthermore, the expression of mitophagy markers, parkin and PINK1, was significantly decreased in the co-treated cells. Mel and VP induced mitochondrial depolarization and inhibited mitochondrial function. Parkin/TOM20 was localized near the nucleus and formed clusters of mitochondria in the cells after treatment. Moreover, Mel and VP downregulated the expression of markers involved in epithelial-mesenchymal transition and metastasis. The migration capacity of cells was significantly decreased by co-treatment with Mel and VP, accompanied by the down-regulation of MMP-2 and MMP-9 expression. Taken together, these results indicate that co-treatment with Mel and VP induces mitochondrial dysfunction, resulting in the apoptosis of CSCs. Mel and VP could thus be further investigated as potential therapies for HNSCC through their action on CSCs.
Collapse
Affiliation(s)
- Ye Young Shin
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, Korea
- Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan, Korea
| | - Yoojin Seo
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Su-Jeong Oh
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, Korea
- Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan, Korea
| | - Ji-Su Ahn
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, Korea
- Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan, Korea
| | - Min-Hye Song
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Min-Jung Kang
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Jung-Min Oh
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Dongjun Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, Korea
| | - Yun Hak Kim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Korea
- Department of Biomedical Informatics, Pusan National University School of Medicine, Yangsan, Korea
| | - Eui-Suk Sung
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Hyung-Sik Kim
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, Korea
- Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan, Korea
| |
Collapse
|